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Figure 1:  Distribution function of the minimum outcome from N 
draws from a normal distribution

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N=1

N=10

N=100

N=1000

   OCTOBER 1998 RISKS AND REWARDS PAGE 3   

October’s Market Demons: The ‘87 Stock Market
Crash and Like-
lihood of a Re-
currence
      by Vinod Chandrashekaran

Editor’s Note: The following article orig
inally appeared in the Winter 1998 issue
of The BARRA Newsletter, Horizon, and
is reprinted here with permission.

   

onday, October 27, 1997, wit-Mnessed a drop of 554 points in
the Dow Jones Industrial Av-
erage, the largest one-day

point drop in the history of the market.
Dramatic as it was, this drop was only the
twelfth-largest fall in percentage terms.
The largest percentage drop in the history
of the stock market occurred on Monday,
October 19, 1987, when the S&P 500
Index declined by 20.5%.  The recent
sharp movements witnessed in global
markets raise an important question:
What is the likelihood of market crashes? 
This article seeks to provide an answer to
this and related questions by focusing
mainly on the crash of October 1987. 
Specifically, we shall seek answers to
three questions:
1. Given the history of market returns,

was the crash of ‘87 unusual?
2. How do conditional variance models

(such as GARCH) behave around
periods of extreme moves in the mar-
ket?

3. What is the impact of the crash on
backtesting and performance evalua-
tion?

I. Was the Crash of ‘87 
Unusual?

The average daily return and the standard
deviation of the daily return on the S&P
500 Index over the last two decades have
been about 0.066% and 0.96%, respec-
tively.  On October 19, 1987, the index
had a return of 20.5%, which is approx-
imately a 20-sigma event.  If we make the
simplifying assumption that daily returns
follow a lognormal distribution, then the
probability of observing a 20-sigma event
is approximately equal to 2.75 × 10 . 89

Based on this analysis, we would con-

clude that the crash of ‘87 was a rare and pendent draws from a normal distribution
unusual event. with mean zero and standard deviation 1. 
Effects of Repeated Draws Define a new random variable Y as fol-
from One Distribution lows: Y=min (X , ..., X ).  Figure 1

graphs the cumulative distribution func-We can learn a bit more about the likeli-
hood of a crash by taking a slightly differ-
ent perspective.  The return of 20.5%
does not represent a single draw from a
lognormal distribution.  The history of
publicly available daily returns on the
U.S. stock market goes back over 100
years, and the random return on October
19, 1987, represents but one of the over
25,000 daily returns that have been ob-
served over the last century.  A more ap-
propriate question to ask is: Given that we
have observed 100 years of returns, what
is the probability that one of the observed
returns is 20.5%?  Since the return on
the S&P 500 Index on October 19, 1987,
is the lowest on record, we can ask this
question slightly differently as well: 
Given that we have observed 100 years of
returns, what is the probability that the
minimum daily return we will observe is

20.5%?
To see how much difference this per-

spective makes, let us consider a simple
example.  Let X1, ..., X  denote N inde-N

1   N

tion of Y for N=1, 10, 100, 1000.  As we
would intuitively expect, the figure shows
that the distribution of Y shifts to the left
as the value of N increases.  Table 1 lists
the probability that Y is less than 2 (a
2-sigma 

continued on page 4, column 1

TABLE 1
Probability That the Minimum 
Outcome from N Draws Is a 
2-Sigma or a 3-Sigma Event

 N (Y< 2) (Y< 3)
Prob Prob

1 0.023 0.001
10 0.214 0.013

100 0.911 0.126
1000 1.000 0.741



Figure 2:  Distribution function of the minimum daily return over horizon of 
length T (assuming lognormal distribution)
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Figure 3:  Distribution function of the minimum monthly return over horizon of length 
T (assuming lognomal distribution)
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October’s Market Demons
continued from page 3

event) and the probability that Y is less
than 3 (a 3-sigma event).

Table 1 clearly shows that events that
may be viewed as very unlikely to occur
become much more likely to occur when
we take into account the fact that we are
making repeated draws from the same
distribution.  For example, the likelihood
of a 3-sigma event when we make a sin-
gle draw is 0.1%.  In contrast, if we sam-
ple 1000 times, the likelihood that the
minimum draw is less than 3 sigma is
74.1%.  An inspection of the numbers in
the table reveals another interesting fact:
For small values of N (e.g., N=1, 10),
the probabilities within each column in-
crease linearly with N.  For example, the
probability that Y is less than 2 when
N=10 (0.214) is approximately ten  times
the probability that Y is less than 2 when
N=1 (0.023).  It can be shown that this
approximate linear relationship holds for
small probability events (such as 2-sigma
events under a lognormal distribution) and
small values of N.

The Effect of Increasing Observation
Horizons
We now evaluate the likelihood of a
crash, using this slightly different per-
spective.  Assume that daily returns on
the S&P 500 Index are drawn from a
lognormal distribution with mean and
standard deviation equal to the sample
mean (0.066%) and sample standard de-
viation (0.96%) observed over the last
two decades [1].  Using these assump-
tions, we can construct the theoretical
cumulative probability distribution func-
tion for the minimum daily return ob-
served over horizons ranging from one
day to 100 years (see Figure 2).  Figure 2
shows that tail events become much more
likely as we increase the observation hori-
zon.  For example, the likelihood that the
minimum negative daily return is 4% or
lower is 0.0012% over a given day but
increases to 26.27% over a 100-year hori-
zon.  However, in spite of the increase in
likelihood of tail events due to an increase
in the number of observations, it is clear
from the figure that a minimum return of

20.5% is still virtually impossible to
explain using data on daily returns.

It is clear from the preceding discus-
sion that increasing the observation hori-
zon will increase the likelihood of tail
events.  Since the lognormal distribution
assigns positive probabilities to returns in

the range ( 100% ) there surely must be
an observation horizon over which a mini- The Effect of Changing 
mum daily return of 20.5% is likely. Return Horizons
But this line of inquiry is not very satisfy-
ing.  For example, we would not find it
very comforting to know that a minimum
daily return of 20.5% is very likely to
happen over a million years!  Instead of
increasing the observation horizon, we
investigate two other avenues of research:

How does the analysis above change
if we increase the return horizon
from daily to monthly?
How would a change in the distribu-
tional assumption affect our
conclusions?

First, we examine the effect of a change
in the return horizon on our conclusions. 
The monthly mean return on the S&P 500
Index is about 1%, with a 

continued on page 5, column 1



Figure 4:  Distribution function of the minimum daily return over horizon of length T 
(assuming t-distribution with 5 df)
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Figure 5:  Distribution function of the minimum daily return over horizon of length T 
(assuming t-distribution with 3 df)
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October’s Market Demons
continued from page 4

standard deviation of about 4%.  Using
these statistics, Figure 3 graphs the cumu-
lative probability distribution function for
the minimum monthly return over obser-
vation horizons ranging from one month
to 100 years.  The probability that the
minimum monthly return over a 100-year
observation period is less than 21.5%
(which was the return on the S&P 500
Index over the month of October 1987) is
approximately 0.0067%.  These numbers
suggest that even when we look at
monthly returns, the market crash repre-
sents a very unlikely event.

The Effect of Changing Distribution As-
sumptions
Next we examine the effect of a change in
the distributional assumption on our re-
sults.  It is well-known that the uncondi-
tional distribution of stock returns is char-
acterized by the presence of fat tails.  A
direct implication of this is that tail events
are more likely than the lognormal distri-
bution would predict.  This line of inquiry
has a long history.  Fama [2] concluded
that stock returns appeared to be drawn
from a member of the stable Paretian
family of distributions with infinite vari-
ance.  The normal distribution belongs to
the stable Paretian class and is the only
member of this class with finite variance. 
Subsequent researchers have shown that if
the time series of market returns is drawn
from normal distributions with
time-varying variances, then the uncondi-
tional distribution of market returns
would have fat tails.

One popular alternative to the
lognormal assumption is to assume that
the unconditional distribution of stock
returns is log-t.  The log-t distribution
arises when stock returns for each period
are lognormally distributed, with each
period’s variance being drawn from an
inverted gamma distribution.  If a random
variable U has a log-t distribution with v
degrees of freedom, then log (U) t ,v
where t  follows a t-distribution with vv
degrees of freedom.  The expected value
of log (U) is zero, and the variance of log
(U) is equal to:

Let: .

Let r denote the log of 1 plus the rate of are infinite.  (Note that in the latter case
return on the market.  The mean and the distribution has infinite kurtosis.)
standard deviation of r are denoted by Figures 4 and 5 display the cumula-
and  respectively. tive probability distribution function for

In our study, we assume that: the minimum daily return for observation

.

follows a t-distribution with v degrees of
freedom.  We will present results for the
cases v=5 and v=3.  A point worth not-
ing about t-distributions is that all even
moments of orders equal to or greater
than the v  moment are infinite.  So, forth

example, when v=5, even moments of
order 6 and above are infinite; and when

v=3, even moments of order 4 and above

horizons ranging from one day to 100
years for v=5 and v=3, respectively.  An
examination of the graphs reveals that, as
anticipated, tail events 

continued on page 6, column 1
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TABLE 2
Theoretical and Empirical Percentile Points 

for the Distribution of Daily Returns
on the S&P 500 index (Returns Expressed in %)

Percentile Empirical Lognormal

Log-t with
5 Degrees of

Freedom

Log-t with
3 Degrees of

Freedom

1
5

10
25
50
75
90
95
99

2.29
1.33
0.92
0.38
0.07
0.54
1.07
1.49
2.35

2.17
1.51
1.17
0.58
0.07
0.71
1.30
1.65
2.30

2.44
1.43
1.03
0.48
0.07
0.61
1.16
1.57
2.57

2.45
1.24
0.84
0.36
0.07
0.49
0.97
1.37
2.58

TABLE 3
Theoretical and Empirically Observed Skewness

and Excess Kurtosis Coefficients for Daily Returns on the S&P 500 Index

Statistics

Empirical
(Including
10/19/87)

Empirical
(Excluding
10/19/87) Lognormal

Log-t with
5 Degrees
of Freedom

Log-t with
3 Degrees
of Freedom

Skewness
Excess Kurtosis

3.30
79.67

0.24
7.53

0
0

0
6

0

TABLE 4
Kolmogorov-Smirnov (KS) and Kuiper (KP) Test Statistics

for Hypotheses Regarding the Distribution of Daily Stock Returns

Distribution
KS Test
Statistic

P-Value of KS
Test Statistic

KP Test
Statistic

P-Value of KP
Test Statistic

Lognormal
Log-t w/5 Degrees of Freedom
Log-t w/3 Degrees of Freedom

0.083
0.049
0.018

0.0001
0.0001
0.1306

0.153
0.086
0.028

0.0001
0.0001
0.0310

October’s Market Demons
continued from page 5

are now much more likely than they were
under the lognormal distribution.  When
the t-distribution has 5 degrees of free-
dom, the probability that the minimum
daily return observed over 100 years is
less than 20.5% is about 1.52%—still a
relatively unlikely event.  For a t-distribu-
tion with 4 degrees of freedom (not
graphed), the crash probability is 8.93%,
still a low number.  In contrast, when the
t-distribution has 3 degrees of freedom,
the same probability jumps to
43.41%—nearly even odds of a crash
over 100 years!

Our answer to the question “Was the
crash of ‘87 unusual?” is thus somewhat
tentative.  When the crash is viewed not
in isolation but as the worst outcome of a
number of draws from the same
lognormal distribution, then its likelihood
increases—but not to a level that makes it
very likely to happen.  On the other hand,
when we consider fat-tailed distributions
(e.g., the log-t distribution), we see that a
market crash becomes more likely to oc-
cur.

We have confined ourselves to a
study of the distribution of the minimum
daily return over various horizons, using
a variety of assumptions regarding the
distribution of daily stock returns.  In
principle, this analysis can be extended to
a study of the likelihood of the worst K
returns (K=1,2, …) over the past 100
years.  For example, the second smallest
daily return on the S&P 500
Index over the past 100 years
was 12.3%,  on October 28,
1929.  Using the distribution
function of order statistics, we
can extend the above analysis
to study the likelihood that the
two smallest returns on the
S&P 500 are 20.5% and

12.3%

Alternative Return 
Distributions 
Compared
Given our results, a natural
question to ask is: What is the
true unconditional distribution
of stock returns?  Table 2
sheds some light on this ques-
tion by tabulating selected
theoretical and empirically
observed percentile points for
daily returns on the S&P 500
Index.  The theoretical distri-

butions have been calibrated to have the clues.  Table 3 presents the skewness and
same mean and standard deviation as the excess kurtosis coefficients for the ob-
sample mean (0.066%) and sample stan- served time series of returns and the val-
dard deviation (0.96%). ues implied by the theoretical distributions

An inspection of Table 2 reveals that considered above.
the empirically observed mid-range per- Table 3 shows the dramatic effect of
centile points (e.g., the 25th and 75th the crash on the sample skewness and
percentiles) are closer to the theoretical excess kurtosis coefficients.  When the
values for the two t-distributions, while crash is included, it is clear that it is 
the extreme percentiles (e.g., the first and
99th percentiles) are closer to those of the continued on page 7, column 1
lognormal distribution.  The values in
Table 2 do not offer clear evidence on the
appropriate distributional form for index
returns.  It would be useful to look at
higher order moments to get some more
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TABLE 5
Daily GARCH-Forecast-Standardized Residuals

for the Days Surrounding the October 1987 Crash

Date

Return on
S&P 500 Index

(%)

GARCH-Predicted
Standard Deviation

(%)

GARCH-Forecast-
Standardized

Residual

10/13/87
10/14/87
10/15/87
10/16/87
10/19/87

1.66
2.95
2.34
5.16

20.47

1.06
1.08
1.20
1.25
1.55

1.51
2.78
2.01
4.17

13.25

10/20/87
10/21/87
10/22/87
10/23/87
10/26/87

5.33
9.10
3.92
0.01
8.28

4.01
4.04
4.28
4.25
4.15

1.31
2.24
0.93
0.02
2.01

TABLE 6
Monthly GARCH-Forecast-Standardized Residuals

for the Months Surrounding the Crash in October 1987

Month

Return on
S&P 500 Index

(%)

GARCH-Predicted
Standard Deviation

(%)

GARCH-Forecast-
Standardized

Residual

September 1987
October 1987
November 1987
December 1987

2.20
21.52
8.16
7.35

4.36
4.34
7.41
6.93

0.75
5.20
1.25
0.91

October Market Demons
continued from page 6

difficult to reconcile the sample higher
order moments with the theoretical mo-
ments of any single distribution consid-
ered above.  On the other hand, when the
crash is excluded, the log-t distribution
with 5 degrees of freedom appears to
have predicted moments that match the
empirically observed moments closely. 
However, since the crash did occur, it is
debatable whether it should be dropped
from the analysis simply because it repre-
sents an inconvenient data point!

We now turn to more formal tests of
the distribution of daily stock re-
turns—namely, the Kolmogorov- Smirnov
test and the Kuiper test. Table 4 presents
the test statistics and the associated signif-
icance levels.

The test statistics in Table 4 strongly
reject the null hypotheses that daily re-
turns arise from a lognormal distribution
or from a log-t distribution with 5 degrees
of freedom.  The null hypothesis of log-t
with 3 degrees of freedom fails to be re-
jected by both tests at the 1% level but is
rejected by the Kuiper test at the 5%
level.  The results of the formal tests are
thus consistent with our earlier findings
and strongly suggest that the uncondi-
tional distribution of daily returns is
fat-tailed with very large (possibly infi-
nite) higher-order moments.

II. GARCH Forecasts Around
Periods of Extreme Market
Movements

In Part I of this article we studied the un-
conditional distribution of stock returns
over the last 100 years with special focus
on the likelihood of a market crash.  Our
conclusion was that a market crash has
nearly even odds of occurring over a pe-
riod of 100 years if the unconditional dis-
tribution of daily stock returns arises
from a fat-tailed distribution with very
large (possibly infinite) higher-order mo-
ments.  It has been widely documented
that such an unconditional distribution is
consistent with each period’s returns be-
ing conditionally lognormally distributed
with time-varying conditional variances. 
In this section, we focus on a particular
parameterization of the conditional vari-
ance structure—namely, the GARCH
(1,1) model—and study the behavior of 

this model around periods of extreme had been about a week before the
market movements. crash.

GARCH Applied to October 1987
To perform this study, we estimated sepa-
rate GARCH(1,1) models using daily and ber 19, 1987, in contrast to the
monthly returns on the S&P 500 Index. 20-sigma characterization of the
The daily model was estimated using re- crash using unconditional moments of
turns over the period March 1980 through the distribution of daily returns.
September 1987 (1,906 days), and the
monthly model used data from January
1973 through September 1987 (177
months).  Table 5 presents the
GARCH-forecast- 
standardized residuals and other numbers
of interest for the days surrounding the
crash in October 1987.  As the estimation
period for the models excluded October
1987, our reported results are
out-of-sample.

Table 5 documents a number of in-
teresting facts:

In response to sharp market moves in
the days immediately preceding the
crash, the GARCH forecast of the
standard deviation for October 19,
1987, was about 50% higher than it

The crash return constitutes a
13-sigma event relative to the
GARCH forecast volatility for Octo-

After the crash, GARCH forecast
volatility rises to a level of over 4%
per day, which causes many of the
sharp post-crash market movements
to be classified as “normal” events
that are plausible even if daily returns
are conditionally lognormally distrib-
uted.
A look at the time series of GARCH

forecasts shows that the predicted volatil-
ity continues to be very high for several
weeks after the crash.  For example, the
daily GARCH forecast as of the end of
December 1987 (using data through De-
cember 1987 to estimate 

continued on page 8, column 1



Figure 6:  S&P500 level and SPX-option-implied volatility over the last one year
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October Market Demons
continued from page 7

the GARCH parameters) was 1.60%—a
number that is about 50% higher than
pre-crash forecasts.  This is a manifesta-
tion of the well-known high degree of
persistence in daily GARCH forecasts. 
Table 6 shows GARCH-standardized re-
siduals using the monthly GARCH
model.  The monthly GARCH forecasts
also rise sharply following the month of
the crash and continue to remain high for
a few months after the crash.

The fundamental intuition built into
GARCH models is the notion of volatility
clustering—i.e., periods of high volatility
are likely to be followed by more periods
of high volatility.  If historical volatility is
low, then GARCH models will continue
to forecast low volatility.  Although
“outliers” are not ruled out even when
using GARCH forecasts, the distinguish-
ing feature of an accurate GARCH model
is that these outliers would be randomly
distributed in time, in contrast to the fore-
casts of naïve models where outliers
would appear clustered together.  Judged
by this metric, Tables 5 and 6 provide
anecdotal evidence that, although the
crash itself appears as an outlier,
GARCH models are at least partially suc-
cessful in explaining the sharp movements
around the period of the market crash.

Can We Predict an Abrupt Market Tran-
sition?
Since GARCH models use a weighted
average of historical realized volatility to
predict future volatility, in times of a
transition from a low-volatility regime to
a high-volatility regime the first few sharp
movements may appear as outliers that
are unanticipated by the GARCH model. 
An interesting question we might ask is:
Are there other techniques that might be
used to predict extreme market move-
ments?  This question is of clear interest
in the current regime since popular debate
in the weeks leading up to October 27,
1997, centered on comparisons with Oc-
tober 1987 and on the likelihood of an-
other market crash.

One obvious answer is to look at
S&P 500 Index option-implied volatility
forecasts.  Figure 6 shows the time-series
evolution of the S&P 500 Index level over
the past one year and the S&P 500 Index
(SPX) option-implied volatility at the be-
ginning of each month from July 1996
through July 1997.  The annualized aver-
age implied volatility using near-term

(less than one month to maturity), In summary, our study of GARCH-
near-the-money options has risen from standardized residuals around the period
approximately 13.29% on July 1, 1996, of the crash of October 1987 shows that,
to about 20.25% on July 1, 1997.  Over while the crash itself was an outlier, most
the same time period, the S&P 500 Index of the market volatility subsequent to the
has risen from 670 to 885.  Somewhat crash can be fully accounted for using
surprisingly, over a number of months GARCH forecasts. GARCH models use
(e.g., May and June 1997) increases in the presence or absence of outliers to pre-
the S&P 500 Index have been accompa- dict subsequent increases or decreases in
nied by increases in option-implied vola- volatility.  Hence, while outliers may ex-
tility, an observation which is at odds ist even when using GARCH forecasts,
with the “leverage effect” (i.e., the usu- these outliers are likely to be randomly
ally negative relationship between price dispersed through time.  In the current
movements and volatility). regime, we saw that option-implied vola-

One explanation for Figure 6 is that tility as of July 1, 1997, appeared to be
options market participants expected the much higher than GARCH forecasts. 
S&P 500 Index to have higher short-term One explanation for this finding is that
volatility in the coming weeks and options market participants expected to
months.  In contrast to the high implied see higher volatility in the coming
volatility forecasts, the conditional vari- weeks/months for the S&P 500 Index. 
ance prediction of GARCH models ranges Since the expected increase in volatility
from approximately 14.10% as of July 1, has been realized, we would expect that
1996, to approximately 15.55% as of July GARCH forecasts will also respond.
1, 1997.  Since the sharp movements that
were anticipated by options market partic-
ipants were realized in October 1997, we
would expect that GARCH forecasts
would have also risen subsequent to the
first few sharp movements in the market.

Our study of option-implied volatility
over the past one year suggests that we
can incorporate “forward-looking” infor-
mation in volatility forecasts by combin-
ing option-implied volatility with GARCH
forecasts.  For example, we could esti-
mate a GARCH model using op-
tion-implied volatility as one of the vari-
ables in the conditional variance equation. 
Studies by Day and Lewis [3] and
Lamoureux and Lastrapes [4] suggest that
these two sources of information are com-
plementary.

III. Impact of the Crash on
Backtesting and Performance
Evaluation

In the previous sections we have studied
issues relating to the likelihood of a crash
(unconditional study) and the behavior of
GARCH forecasts of the S&P 500 Index
volatility around the period of the crash
(conditional study).  In this section, we
provide some thoughts on 

continued on page 9, column 1



Figure 7:  Annualized Sharpe ratio for S&P500 index (over various 
horizons) including and excluding October 1987
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October Market Demons
continued from page 8

the influence of the crash on backtesting
investment strategies and on performance
evaluation.

The Importance of Time Period Choice
The first point to note is that the time ho-
rizon over which backtesting and/or per-
formance evaluation are conducted will
determine the extent to which excluding
the crash will affect the reported results. 
Figure 7 plots the ex-post Sharpe ratio on
the S&P 500 Index over horizons of 1, 5,
10, and 20 years, including and excluding
the crash.  As the horizon lengthens, we
see that the Sharpe ratio when the crash is
included gradually approaches the Sharpe
ratio excluding the crash.  We should
point out that because we need very large
sample sizes to estimate mean returns
accurately, the two sets of Sharpe ratios
are not statistically distinguishable from
one another (i.e., they are within two
standard errors of each other).

The second point is that excluding the
crash can have dramatic implications for
the profitability of certain types of strate-
gies.  For example, Sheikh [5] demon-
strates that a strategy of buying the S&P
500 Index plus writing out-of-the-money
puts on the index was a profitable strategy
(relative to buying the S&P 500 Index)
over periods strictly before and strictly
after the crash.  The post-crash period
that Sheikh studied was August 1988
through February 1995.  In contrast, a
similar strategy that was put in place
starting in September 1987 lagged the
cumulative return on the S&P 500 Index,
even after over seven years (as of Febru-
ary 1995).  In other words, the loss suf-
fered in the month of the crash was more
than the gains made by the strategy over
the next seven years!

The third point is that it is a good
idea to run backtests over historical peri-
ods that represent different regimes—
e.g., bull and bear markets, periods of
low volatility and high volatility, etc. 
Figure 8 shows the cumulative return on
the S&P 500 Index over the 10-year pe-
riod January 1987 through December
1996.  It is evident from the figure that
there have not been too many bad
months, especially over the past five
years.  The crash represents a useful ob-
servation precisely because it was a par-
ticularly bad month.  Including this obser-
vation in backtests serves as a check on
the robustness of proposed investment

strategies.

Should the Crash Be Included 
in Performance Studies?
Finally, we consider performance evalua-
tion in the presence of the crash.  As the
above analysis of the Sharpe ratio sug-
gests, the total risk/return picture, espe-
cially over smaller horizons, differs sig-
nificantly depending on whether or not the
crash is included in the sample.  For an
active manager who is usually fully in-
vested in equities, including the crash
does not bias performance results since
the active manager is evaluated based on
his or her active risk/return profile (i.e.,
risk and return net of the market).

Let us consider the more difficult
question of an active manager who aims
to achieve superior returns by forecasting
the returns on the S&P 500 Index (that is,
by timing the market).  Let r  be theB,t
excess return on the S&P 500 Index in
period t and let  denote the per-period
long-run expected excess return on the
index.  Each period, the market timer has
a forecast of the excess return on the in-
dex over its long-run average.  In sym-
bols, for each period the market timer has
a forecast f  of the value of r .  LetB     B,t B

 denote the risk aversion coefficient ofBT
the investor for benchmark timing and let  
          be the investor’s forecast of the
variance on the index over period t. 
Then, the optimal active beta position for
the investor is given by:

Grinold and Kahn [6] discuss the appro-
priate objective function for an active
manager and derive the optimal active
beta policy stated above.  We conducted a
simulation study using the actual history
of realized market returns over the period
January 1987 through December 1996. 
The market timer is assumed to make
monthly forecasts of the index return. 
Each month, the market timer receives a
signal g  as follows:B,t

IC = the information coefficient of the
manager

m = the average excess return on theB
index over the 10-year sample
period

s = the sample standard deviation of
the excess return on the index,
and

u = a random number drawn from at
distribution with zero mean and
unit standard deviation.

continued on page 10, column 1



Figure 8:  Cumulative return on the S&P500 index since January 1st, 1987
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TABLE 7
Ex-post Information Ratios (IR) for Market Timing 

Over the Period January 1987 through December 1996
(Average over 100 Simulations)

Information
Coefficient

Average Ex-post IR
(including October 1987)

Average Ex-post IR
(excluding October 1987)

0.05
0.10
0.15

0.191
0.396
0.467

0.195
0.377
0.448

October Market Demons
continued from page 9

r = is set equal to the observed ex-B,t
cess return on the S&P 500 In-
dex in month t.

Given this signal, the manager con-
structs an optimal forecast of the excess
return on the index as follows:

For simplicity, we assume that the
investor’s forecast of the variance of the 

index return in month t,         is equal to
s  for all months.  For a given sequence2

of signal realizations, we can derive the
corresponding time series of active beta
positions.  Using the actual history of
market returns, we can then compute the
ex-post information ratio for the investor. 
We considered three different IC levels;
0.05, 0.10, and 0.15.  For each IC, we
ran 100 simulations of the entire 10-year
history from January 1987 through De-
cember 1996.  Table 7 reports the aver-
age ex-post information ratios across
these simulations.

Table 7 shows that there are no sig-
nificant differences between the two col-
umns of information ratios.  In other
words, including the crash does not ap-
pear to make a difference for the perfor-
mance evaluation of a market timer.

Summary
In this article, we have presented some
perspectives on the crash of October
1987.  We found that the likelihood of a
market crash increases dramatically if the
unconditional distribution of stock returns
is fat-tailed with very large (possibly infi-
nite) higher-order moments.  Our study
of GARCH forecasts showed that, with
the exception of the crash itself, these
forecasts were at least partially successful
in capturing sharp movements around the
period of the crash.  We found that op-

tion-implied volatility has increased dra- Index Options,” Journal of Econo-
matically over the past one year, suggest- metrics, v.52, 1992, pp.267–287.
ing that the market expects higher volatil-
ity in the weeks/months ahead.  Finally,
we offered some thoughts on the impact
of the crash on backtesting and perfor-
mance evaluation.  We showed via a sim-
ulation study that including the month of
the crash does not have a significant ef-
fect on the ex-post information ratios of a
market timer.
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