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Abstract:  Canada’s Federal Insurance Regulator (OSFI) has recently published proposals for a revised set 

of regulatory capital requirements for life insurers in Canada. The new model called LICAT (Life 

Insurance Capital Adequacy Test) is a significant departure from previous Canadian regulatory capital 

models and has some features in common with the Solvency II model when it comes to insurance risk. 

This paper looks at some simple risk margin models that Canadian actuaries should consider if they want 

to engineer risk loadings that are consistent with the cost of capital principle and the new regulatory 

capital model.  We show how the cost of capital method can be implemented by developing a set of risk 

loaded decrement and interest rates. This is significant because it avoids the computational cost of a 

brute force capital projection.   

 There are some conceptual flaws in the new by Canadian model (and Solvency II) that become apparent 

when we look at the model through the lens presented in this paper.  These flaws could be material 

when applied the kind of lapse-supported product that is common in the Canadian retail insurance 

market. The flaw becomes apparent when look at the dual of the capital model. The paper concludes by 

suggesting some simple and practical modifications to the capital model to avoid the flaws. 

Introduction 

When the Solvency II capital model was introduced in 2010, European regulators defined the total 

balance sheet requirement (TBSR) a life insurance liability as the sum of  

1. A best estimate liability 

2. A risk margin 

3. A capital requirement 

Risk margins and capital are tied together in the Solvency II model by requiring that the risk margin be 

determined using the cost of capital method.  The cost of capital rate used is 6.00% in that model.  If 

best estimate assumptions come true, an insurer should see profits emerge equal to 6.00% of required 

capital plus interest on that capital. 

In Canada, risk capital and risk margins have not been tied together in a formal way.  The Canadian 

regulator (OSFI) specifies capital requirements and individual Appointed Actuaries choose best estimate 

assumptions and risk loadings consistent with guidance developed by the Canadian Institute of Actuaries 

(CIA).  This is the Canadian GAAP model that has been in place since 1992. 
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One consequence of risk capital and risk margins being tied together using the cost of capital method is 

that, in theory, a company can be valued without doing an embedded value calculation.  Actuaries have 

known for decades that the risk adjusted present value of distributable earnings coming from a risk 

enterprise is equal to the current statement surplus plus the present value of the mismatch between 

after-tax profits and the cost of capital.  If the mismatch is zero the value of the inforce business is just 

the surplus on the balance sheet1. 

The Canadian accounting/capital model is in the process of changing.  Canada has formally adopted IFRS 

as an accounting standard and OSFI has just announced a new capital model (LICAT).  A new (to Canada) 

feature of this model the need to hold capital for potential changes to actuarial assumptions.   

For vanilla life insurance policies, the new capital model requires capital to cover a 25% increase in best 

estimate mortality rates and, for lapse-supported products, a 30% decrease in best estimate lapse rates. 

The current Canadian GAAP model calls for mortality risk loadings of the form  

𝑞𝑡 → 𝑞𝑡 +
𝑘

𝑒𝑡
. 

Here, 𝑒𝑡 is the expectation of life at attained age 𝑡 and 𝑘  is a factor that reflects the relative risk of the 

business being valued.  The specific choice of the factor 𝑘 is governed by professional guidance from the 

Canadian Institute of Actuaries2.  The high level idea is that blocks of business with well understood 

characteristics would have small values of 𝑘 and less well understood or experimental blocks would 

have larger values of 𝑘. 

When the professional guidance outlined above was developed in the late 1980’s, it made some sense 

because it followed a precedent set out when the 1958 CSO mortality tables were being developed by 

the Society of Actuaries for US regulatory reserve purposes.  At that time, actuaries needed a mortality 

loading process that could guarantee whole life reserves calculated using net premium methods would 

increase.  The loading method described above meets that requirement. 

In a world governed by gross premium reserve calculation methods, such as IFRS and Canadian GAAP 

the net premium loading constraint described no longer applies. We are free to use other risk loading 

methods if they make sense in the current environment. 

A paper outlining how to construct risk loadings that are consistent with modern capital models such as 

Solvency II, LICAT and a number of internal economic capital models, was presented at the 2014 ERM 

Symposium in Chicago3.   In the language used by the current LICAT guideline, it considered two very 

different kinds of risk  

1. Catastrophe risk (called contagion risk in the 2014 paper) 

2. Assumption change risk for both level and trend 

                                                           
1 See the 2011  AAA Practice Note on Embedded Value  
2 See section 2350 of the CIA’s actuarial standards of practice. 
3 Manistre B.J.  “Down but Not Out: A Cost of Capital Approach to Fair Value Risk Margins”.  Proceedings of the 
2014 ERM Symposium. The paper is on the SOA website and in a monograph published by the conference 
organizers. There is also a link on the Actuarial Foundation’s website. 
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The 2014 paper showed that if we want to hold capital for a short-term catastrophe of ∆𝑄 extra deaths 

above our best estimate then we need to hold capital equal to ∆𝑄(𝐹 − 𝑉)  and build in a risk loading 

equal to 𝜋∆𝑄 into our mortality rates i.e.  

𝑞𝑡 → 𝑞𝑡 + 𝜋∆𝑄. 

Here, 𝜋 is the assumed cost of capital rate e.g.  𝜋 = 6.00%.  This particular loading formula ignores any 

potential diversification issues.  The paper calls this a static risk loading. In general, this kind of risk 

loading is smaller than the current  
𝑘

𝑒𝑡
 professional guidance. 

OSFI’s current LICAT requirement for catastrophe risk is  ∆𝑄 = 1/1,000 for Canadian business and ∆𝑄 =

1.5/1,000 for US and European business. 

The 2014 paper also showed that if we want to build in risk margins for assumption changes we need a 

new mathematical tool the author calls a dynamic risk margin.     

If 𝜇0(𝑠) is our best estimate force of decrement and we want to hold capital to cover a potential shock 

to a new level 𝜇0(𝑠) + ∆𝜇(𝑠) then we need to use a risk loaded decrement assumption of the form  

𝜇(𝑡 + 𝑠) = 𝜇0(𝑡 + 𝑠) + 𝛽(𝑠)∆𝜇(𝑡 + 𝑠). 

The quantity 𝛽(𝑠) is zero on the valuation date, i.e. 𝛽(0) = 0, and then grows over time at a rate 

determined by the cost of capital rate 𝜋,  the size and sign of the decrement shock ∆𝜇 and a third 

quantity 𝛼.  The parameter 𝛼 governs how big subsequent assumption shocks might be if we actually 

found ourselves in a world where the best estimate had changed from 𝜇0(𝑠) to 𝜇0(𝑠) + ∆𝜇(𝑠).  For 

example, in the shocked world we may want to hold capital for an assumption change to  

The 2014 paper showed how to calculate 𝛽(𝑠) for the Solvency II model along with some other 

approaches. One of the issues identified there is that, in the Solvency II model,  𝛽 might grow without 

bound if we are dealing with lapse-supported products where ∆𝜇 < 0.  Unfortunately, the same is true 

of the LICAT model. 

Put differently, the LICAT model is so conservative that an insurer might have to use negative lapse rates 

in order to build in enough risk margin to pay for the cost of holding LICAT required capital.  The author 

believes this situation is unreasonable. 

Margin Analysis of the Current LICAT model 

We start with a simplified model of the current LICAT model for assumption change risk.  We assume a 

single decrement rate 𝜇0(𝑠) and a shocked rate 𝜇1(𝑠) = 𝜇0(𝑠) +  ∆𝜇(𝑠).  

The LICAT guideline instructs the insurer to compute capital as the difference between two values 𝑉1, 𝑉0 

each calculated using their respective decrement assumptions and a regulator specified interest 

assumption 𝜌(𝑠)4.   Under reasonable assumptions the two values 𝑉1, 𝑉0 evolve in time according to a 

system of equations like  

                                                           
4 It is the author’s understanding that the reason for fixing an interest assumption in the capital calculation is to 
make the resulting capital more stable as interest rates fluctuate.  This is understandable but has some negative 
unintended consequences detailed later. 
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𝑑𝑉0

𝑑𝑠
= (𝜌 + 𝜇𝑜)𝑉0 − (𝜇𝑜𝐹 + 𝑒 − 𝑔), 

𝑑𝑉1

𝑑𝑠
= (𝜌 + 𝜇1)𝑉1 − (𝜇1𝐹 + 𝑒 − 𝑔). 

Here 𝑒, 𝑔 represent unit expense and gross premium functions respectively. 

Now assume the insurer wants to calculate a reserve 𝑉(𝑠) based on a valuation interest assumption 

𝑟(𝑠), best estimate decrement 𝜇𝑜(𝑠) and the same premium and expense assumptions.  The 

corresponding evolution equation for 𝑉(𝑠) is 

𝑑𝑉

𝑑𝑠
= (𝑟 + 𝜇𝑜)𝑉 − (𝜇𝑜𝐹 + 𝑒 − 𝑔) − 𝜋[𝑉1 − 𝑉0]. 

The idea is to treat the cost of capital 𝜋[𝑉1 − 𝑉0] as an additional expense. 

In order to analyze this system of differential equations we introduce dual variables 𝑝, 𝑝0, 𝑝1  and 

consider 𝑊(𝑠) = 𝑝(𝑠)𝑉(𝑠) + 𝑝0(𝑠)𝑉0(𝑠) + 𝑝1(𝑠)𝑉1(𝑠) 

Then 

𝑑𝑊

𝑑𝑠
=

𝑑𝑝

𝑑𝑠
𝑉 + 𝑝

𝑑𝑉

𝑑𝑠
+

𝑑𝑝0

𝑑𝑠
𝑉0 + 𝑝𝑜

𝑑𝑉0

𝑑𝑠
+

𝑑𝑝1

𝑑𝑠
𝑉1 + 𝑝1

𝑑𝑉1

𝑑𝑠
, 

use the expressions for above for 
𝑑𝑉

𝑑𝑠
,

𝑑𝑉0

𝑑𝑠
,

𝑑𝑉1

𝑑𝑠
  so this becomes 

𝑑𝑊

𝑑𝑠
=

𝑑𝑝

𝑑𝑠
𝑉 + 𝑝[(𝑟 + 𝜇𝑜)𝑉 − (𝜇𝑜𝐹 + 𝑒 − 𝑔) − 𝜋[𝑉1 − 𝑉0]] +

𝑑𝑝0

𝑑𝑠
𝑉0

+ 𝑝𝑜[(𝜌 + 𝜇𝑜)𝑉0 − (𝜇𝑜𝐹 + 𝑒 − 𝑔)] +
𝑑𝑝1

𝑑𝑠
𝑉1 + 𝑝1[(𝜌 + 𝜇1)𝑉1 − (𝜇1𝐹 + 𝑒 − 𝑔)]. 

Rearrange to collect like terms in the primal variables 𝑉, 𝑉1, 𝑉0. 

𝑑𝑊

𝑑𝑠
= 𝑉 [

𝑑𝑝

𝑑𝑠
+ 𝑝(𝑟 + 𝜇𝑜)] − 𝑝[𝜇𝑜𝐹 + 𝑒 − 𝑔] + 𝑉0[

𝑑𝑝0

𝑑𝑠
+ 𝑝𝑜(𝜌 + 𝜇𝑜) + 𝜋𝑝] − 𝑝𝑜(𝜇𝑜𝐹 + 𝑒 − 𝑔)

+ 𝑉1[
𝑑𝑝1

𝑑𝑠
+ 𝑝1(𝜌 + 𝜇1) − 𝜋𝑝] − 𝑝1(𝜇1𝐹 + 𝑒 − 𝑔). 

Choose the dynamics of the dual variables to make the square brackets above vanish i.e. 

𝑑𝑝

𝑑𝑠
= −𝑝(𝑟 + 𝜇𝑜) 

𝑑𝑝0

𝑑𝑠
= −𝑝𝑜(𝜌 + 𝜇𝑜) − 𝜋𝑝 

𝑑𝑝1

𝑑𝑠
= −𝑝1(𝜌 + 𝜇1) + 𝜋𝑝 

We now note that if the initial conditions for the dual system are 𝑝(𝑡) = 1, 𝑝0(𝑡) = 0,  𝑝1(𝑡) = 0 then 

𝑊(𝑡) = 𝑉(𝑡) and, if the ODEs above hold,  
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𝑑𝑊

𝑑𝑠
= −{𝑝[𝜇𝑜𝐹 + 𝑒 − 𝑔]+𝑝𝑜(𝜇𝑜𝐹 + 𝑒 − 𝑔) + 𝑝1(𝜇1𝐹 + 𝑒 − 𝑔)}. 

One approach to using the machinery developed above is to solve the system of ODEs for 𝑝(𝑠), 𝑝0(𝑠),

𝑝1(𝑠) and then use them to compute 𝑊(𝑡) = 𝑉(𝑡) by using  

𝑊(𝑇) − 𝑊(𝑡) = − ∫ {𝑝(𝜇𝑜𝐹 + 𝑒 − 𝑔)+𝑝𝑜(𝜇𝑜𝐹 + 𝑒 − 𝑔) + 𝑝1(𝜇1𝐹 + 𝑒 − 𝑔)}𝑑𝑠
𝑇

𝑡

 

When the contract matures at time 𝑇 all three values 𝑉(𝑇), 𝑉0(𝑇), 𝑉1(𝑇) must be the same so  

𝑊(𝑇) = 𝑉(𝑇)[𝑝(𝑇) +𝑝𝑜(𝑇)+𝑝1(𝑇)]. 

This allows us to write an expression for the risk-loaded value 𝑉(𝑡) as 

𝑉(𝑡) = 𝑉(𝑇)[𝑝(𝑇)+𝑝𝑜(𝑇)+𝑝1(𝑇)] + ∫ {(𝑝+𝑝𝑜)(𝜇𝑜𝐹 + 𝑒 − 𝑔) + 𝑝1(𝜇1𝐹 + 𝑒 − 𝑔)}𝑑𝑠
𝑇

𝑡

. 

The expression above is technically correct, and can be useful for actual calculation, but it sheds little 

light on what is really going on.  A change of variables adds a significant amount of transparency.  

Let  

𝑝𝑇(𝑠) = 𝑝(𝑠)+𝑝𝑜(𝑠)+𝑝1(𝑠) ,    →  𝑝𝑇(𝑡) = 1, 

𝛽 =
𝑝1(𝑠)

𝑝𝑇(𝑠)
,                     → 𝛽(𝑡) = 0, 

𝛾 =
𝑝0(𝑠)+𝑝1(𝑠)

𝑝𝑇(𝑠)
, → 𝛾(𝑡) = 0, 

∆𝜇 = 𝜇1 − 𝜇0. 

A new expression for the risk-loaded value is then 

𝑉(𝑡) = 𝑉(𝑇)𝑝𝑇(𝑇) + ∫ 𝑝𝑇(𝑠)[(𝜇𝑜 + 𝛽∆𝜇)𝐹 + 𝑒 − 𝑔]𝑑𝑠
𝑇

𝑡

. 

At this point, it looks like 𝑝𝑇(𝑠) is a risk loaded discount factor and 𝜇𝑜 + 𝛽∆𝜇 is a risk loaded decrement 

rate.  That this interpretation is reasonable can be checked by calculating the time derivative of 𝑝𝑇(𝑠).   

The result is  

𝑑𝑝𝑇(𝑠)

𝑑𝑠
= −𝑝𝑇(𝑠)[(𝑟 + 𝛾(𝜌 − 𝑟)) + (𝜇𝑜 + 𝛽∆𝜇)]. 

In what follows, we will refer to the quantities 𝛽, 𝛾 as margin variables.  The equation above shows that 

if we know the margin variables we can compute the discount factor as  

𝑝𝑇(𝑠) = exp [− ∫ [(𝑟 + 𝛾(𝜌 − 𝑟)) + (𝜇𝑜 + 𝛽∆𝜇)]𝑑𝑢
𝑠

𝑡

]. 

This confirms the interpretation of 𝜇𝑜 + 𝛽∆𝜇 as a loaded decrement rate, and shows that we also need 

to use a risk adjusted interest assumption given by 𝑟 + 𝛾(𝜌 − 𝑟).   
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We now examine the behavior of the margin variables to see if the model emerging above is reasonable.  

We do this by calculating their time derivatives. The results are 

𝑑𝛾

𝑑𝑠
= (1 − 𝛾)[𝛾(𝑟 − 𝜌) − 𝛽∆𝜇], 𝛾(𝑡) = 0,  

𝑑𝛽

𝑑𝑠
= 𝛽(𝛽 − 1)∆𝜇 + (1 − 𝛾)[𝜋 + 𝛽(𝑟 − 𝜌)],   𝛽(𝑡) = 0. 

Given the key input parameters 𝜋, ∆𝜇, (𝑟 − 𝜌), this is a system of differential equations for the margin 

variable pair (𝛽, 𝛾).  In general, there is no closed form solution for this system but there are some tools 

that can help us understand how this system behaves in both the short and longer term. 

In the short term, the non-linear system above can be approximated by a linear system obtained by 

ignoring all the quadratic terms. This is reasonable because we always start the system at (0,0).  The 

linear approximation is  

𝑑𝛾

𝑑𝑠
≈ 𝛾(𝑟 − 𝜌) − 𝛽∆𝜇,   

𝑑𝛽

𝑑𝑠
≈ 𝜋 − 𝜋𝛾 − 𝛽∆𝜇 + 𝛽(𝑟 − 𝜌). 

The first order behavior of the system is then  𝛽(𝑠) ≈ 𝜋(𝑠 − 𝑡), 𝛾(𝑠) ≈ 0.  

We consider two realistic cases. 

1. If ∆𝜇 is small and positive e.g. ∆𝜇 ≈ 1/1,000, as it would be for many life insurance applications, 

then  cost of capital rate driven growth of 𝛽 will be attenuated or accelerated by the   (𝜌 − 𝑟) 

term.  Over the short to intermediate term, the 𝛾 function will remain small but may become 

negative over longer time scales.  

 

2. If 𝜇 is a lapse decrement and we are dealing with a lapse-supported product, the shock ∆𝜇 will 

be negative and could easily be 100 times larger than a mortality shock.  For example, if our best 

estimate lapse rate is 𝜇0 = .02  then the current (May 2016) LICAT draft says ∆𝜇 = −.30𝜇0.   

In this situation, both 𝛽, 𝛾 have the potential to grow over time and this situation is exacerbated 

if 𝑟 > 𝜌 as the following numerical examples suggest.   

The first numerical example considers a lapse supported situation with a best estimate lapse rate of 

𝑤0 = 2.00% and a shocked lapse assumption consistent with the current LICAT model of 𝑤1 = 1.40%.  

The assumed interest rates are 𝑟 = 4.00% and 𝜌 = 3.00% and the cost of capital rate is 𝜋 = 6.00%. 

The chart below shows what can happen over a 50 year time horizon. 



7 
 

. 

This particular chart shows the input lapse assumptions together with the risk-loaded lapse assumption 

needed to pay for the cost of capital.  The ultimate risk loaded lapse rate is just below 0.50%. 

 The same dual machinery was used to compute a lapse assumption consistent with holding assets equal 

to the Total Balance Sheet Requirement (TBSR)5.   A regulator who is asking for protection down to the 

1.40% lapse level is actually getting a much stronger balance sheet than he realizes.  The ultimate lapse 

rate in both the risk loaded and TBSR scenarios is less than 0.50%.  

The next chart shows the margin variables 𝛽, 𝛾 for the same example.  

 

 

 

                                                           
5 This is done by solving the system of differential equations for 𝑝, 𝑝0, 𝑝1 with initial conditions 𝑝(𝑡) = 1, 𝑝0(𝑡) =
−1,  𝑝1(𝑡) = 1. 
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We see the margin variable 𝛽 has grown to over 250% by the end of the projection.  This is the 

consistent with the first chart. 

Finally, we finish this example with a chart showing what the risk loaded interest rate scenario looks like. 

 

 

Since the margin variable 𝛾 is positive, this shows the effective valuation interest rate grading from 𝑟 =

4.00%  to the capital rate of 𝜌 = 3.00%.   
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The next example shows what happens when we use a small positive decrement shock as would be 

expected in a mortality risk model.  This particular example uses a best estimate mortality rate that 

starts out at 1/1,000 and grades up linearly by 1/10,000 each year.  The decrement shock is +25%. 

 

 

 

By the end of the 50 year projection the best estimate mortality rate has grown to 6/1,000 while the risk 

loaded mortality rate is more than double that value.  The TBSR value is almost 16/1,000.   
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Again, we see far more conservatism than may have been intended by the Canadian regulator.  Since 𝛾 

is small the large growth in 𝛽 is driven mostly by the cost of capital and the interest rate difference 𝑟 −

𝜌 = 1.00%. 

There is one piece of good news for this example captured in the interest rate chart below. 
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The key take away from both examples is that the current LICAT model is very conservative when looked 

at through the cost of capital lens.  The main issue is that the LICAT model (and Solvency II) fail to take 

into account the change in risk margins that should occur when an assumption is changed. 

 A second issue is the use of an interest rate 𝜌 different from the valuation rate 𝑟. This may be well 

intentioned but, in the end, the cure is worse than the disease the methodology is trying to deal with, 

especially when applied to Canadian products like Term to 100. 

Comparison with Solvency II 

We now briefly indicate how the current Solvency II methodology would handle the same simple 

example we introduced above.  In this methodology there are three primal variables 𝑉1, 𝑉0, 𝑀 which 

evolve according to the system of equations 

𝑑𝑉0

𝑑𝑠
= (𝑟 + 𝜃 + 𝜇𝑜)𝑉0 − (𝜇𝑜𝐹 + 𝑒 − 𝑔), 

𝑑𝑉1

𝑑𝑠
= (𝑟 + 𝜃 + 𝜇1)𝑉1 − (𝜇1𝐹 + 𝑒 − 𝑔), 

𝑑𝑀

𝑑𝑠
= (𝑟 + 𝜇𝑜)𝑀 − 𝜋[𝑉1 −  𝑉0 − (1 − 𝛼)𝑀]. 

The interest assumption for 𝑉1, 𝑉0 is 𝑟 + 𝜃. This is intended to be the risk free rate plus a liquidity 

spread 𝜃 specified by the regulator. 

The risk margin 𝑀 is then calculated assuming the required economic capital is (𝑉1 + 𝛼𝑀) − ( 𝑉0 +  𝑀) 

and discounting using only the risk free rate 𝑟. No liquidity premium is used here because European 

regulators think the risk margin cash flows are not as well defined as the basic benefit cash flows used to 

compute 𝑉1, 𝑉0 .  As we will soon see dual analysis shows this is not really the case. 

The parameter 𝛼 is used to capture the idea that the risk margin in a shocked environment could be 

different from the base case.  Solvency II specifies 𝛼 = 1 but that may not be appropriate when valuing 

a lapse supported product where 𝜇1 < 𝜇0.  For lapse supported products it is usually appropriate to 

choose 0 < 𝛼 < 1 for reasons that will be explained shortly. 

The differential equation for the risk margin can be solved by projecting the two base reserves 

𝑉1(𝑠), 𝑉0(𝑠) and then computing the risk margin as the present value of the cost of capital 

𝑀(𝑡) = ∫ 𝑒− ∫ (𝑟+𝜇𝑜+𝜋(1−𝛼))𝑑𝑣]
𝑠

𝑡

∞

𝑡

𝜋[𝑉1(𝑠) − 𝑉0(𝑠)]𝑑𝑠. 

Again, dual analysis can be used to get more actuarial insight into the computational process outlined 

above.  Introduce dual variables 𝑝0, 𝑝1, 𝑚 and consider the linear combination 𝑊 = 𝑝0𝑉0 +

𝑝1𝑉1 + 𝑚𝑀.  The dual equations are  

𝑝0̇ + 𝑝0(𝑟 + 𝜃 + 𝜇
𝑜
) + 𝜋𝑚 = 0,   𝑝0(𝑡) = 1, 

𝑝1̇ + 𝑝1(𝑟 + 𝜃 + 𝜇
1
) − 𝜋𝑚 = 0,     𝑝1(𝑡) = 0, 
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�̇� + 𝑚(𝑟 + 𝜇
𝑜
) + 𝜋(1 − 𝛼)𝑚 = 0,      𝑚(𝑡) = 1. 

The initial conditions have been chosen to bring out the risk-loaded value 𝑉(𝑡) = 𝑉0(𝑡) + 𝑀(𝑡) on 

the valuation date. 

Again we introduce margin variables 𝑝𝑇 = 𝑝0 + 𝑝1, 𝛽 = 𝑝1/𝑝𝑇 , 𝜔 = 𝑚/𝑝𝑇 and ∆𝜇 = 𝜇1 − 𝜇0. It can 

now be shown (Manistre[ 2014])  that the risk loaded value 𝑉(𝑡) can now be calculated as a 

standard actuarial present value using a risk loaded decrement rate 𝜇𝑜 + 𝛽∆𝜇 and the liquidity 

adjusted interest rate 𝑟 + 𝜃. 

𝑉(𝑡) = 𝑒− ∫ (𝑟+𝜃+ 𝜇𝑜+𝛽∆𝜇)𝑑𝑣
𝑇

𝑡  𝑉(𝑇)                                                                                 

+ ∫ 𝑒− ∫ (𝑟+𝜃+ 𝜇𝑜+𝛽∆𝜇)𝑑𝑣
𝑠

𝑡 [(𝜇
𝑜

+ 𝛽∆𝜇)𝐹 + 𝑒 − 𝑔]
𝑇

𝑡

. 

The evolution equations for the margin variables 𝛽, 𝜔 can be derived from the dual equations and 

are 

𝑑𝛽

𝑑𝑠
= 𝛽(𝛽 − 1)∆𝜇 + 𝜋𝜔,                  𝛽(𝑡) = 0, 

𝑑𝜔

𝑑𝑠
= 𝜔(𝜃 + 𝛽∆𝜇 − 𝜋(1 − 𝛼)),     𝜔(𝑡) = 1.     

These equations have the unfortunate property that if ∆𝜇 < 0 and 𝛼 = 1 then inappropriate behaviour 

of the margin variable 𝛽 is possible. The resulting risk loaded decrement 𝜇𝑜 + 𝛽∆𝜇 rate can become 

negative. In the author’s opinion this is a serious conceptual flaw if lapse supported products are a 

material issue.  

A simple way to correct the issue identified above is to use an 𝛼 parameter less than one.  A practitioner’s 

rule of thumb is to choose  𝛼 so that the inequality  𝜇𝑜 +
∆𝜇

1−𝛼
≥ 0 is satisfied.  The actuarial intuition 

behind this inequality is this is that, if 𝛼 < 1, then 
1

1−𝛼
 is an approximate upper bound for the margin 

variable 𝛽 in both the Solvency II and LICAT models. Note that if ∆𝜇 is expressed as a fraction 𝜑𝜇𝑜 then 

the inequality above becomes 𝛼 ≤ 1 + 𝜑.  The general rule is therefore to choose 𝛼 ≤ min (1,1 + 𝜑). 

A Suggested Alternative for LICAT 

OSFI’s LICAT model only specifies the capital calculation. It is silent on the issue of risk margins since that 

is the domain of the Canadian Institute of Actuaries.  However, we have shown that if an actuary tried to 

compute risk margins using the cost of capital method then he will run into issues with lapse supported 

products.  In the author’s opinion, the Canadian regulator could address these issues by  

1. Modifying the capital calculate to take into account the change in risk margins that can be 

appropriate when a best estimate assumption is changed.  See below for details. 

 

2. Negotiating with the Canadian Institute of Actuaries to modify the existing risk loading guidance 

in the standards of practice to be more consistent with the cost of capital concept as outlined 

here.  
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Suppose we have a best estimate decrement rate 𝑞[𝑥]+𝑡 using standard select and ultimate 

notation.  Assume also that we want to hold capital for a shock 𝑞[𝑥]+𝑡 → (1 + 𝜑)𝑞[𝑥]+𝑡 then the 

process we recommend is as follows: 

 

1. If 𝜑 < 0  

Compute a fair value 𝑉 (best estimate plus risk margin) using the decrement assumption 

𝑞{[𝑥]+𝑡}+𝑠 = (1 + 𝜋)𝜑𝑠𝑞[𝑥]+𝑡+𝑠. 

Compute a shocked fair value �̂� (shocked best estimate plus shocked risk margin) using the 

decrement assumption 

�̂�{[𝑥]+𝑡}+𝑠 = (1 + 𝜑)𝑞{[𝑥]+𝑡}+𝑠,  

                                   = (1 + 𝜑)(1 + 𝜋)𝜑𝑠𝑞[𝑥]+𝑡+𝑠. 

Report capital as the difference �̂� − 𝑉.   

 

2. If 𝜑 ≥ 0 choose a second parameter  0 < 𝛼 ≤ 1   

Compute a fair value  𝑉 using the decrement assumption    

𝑞{[𝑥]+𝑡}+𝑠 = 𝑞[𝑥]+𝑡+𝑠 {1 +

𝜑

1 − 𝛼
(1 − (1 + 𝜋)−𝑠(1−𝛼))   𝛼 < 1

(1 + 𝜑𝜋𝑠)                                    𝛼 = 1
}. 

Compute a shocked value �̂� using the decrement assumption  

�̂�{[𝑥]+𝑡}+𝑠 = (1 + 𝜑)𝑞[𝑥]+𝑡+𝑠 {1 +

𝛼𝜑

1 − 𝛼
(1 − (1 + 𝜋)−𝑠(1−𝛼))   𝛼 < 1

(1 + 𝛼𝜑𝜋𝑠)                                    𝛼 = 1
}. 

Report capital as the difference �̂� − 𝑉.   

 

The model in method (2) above coincides with method (1) if 𝛼 = 1 + 𝜃.  The parameter 𝛼  has been 

introduced in method (2) to control the otherwise explosive growth that could occur in the risk loaded 

decrement value. 

Both models have the desirable property that, as time unfolds, the risk margin released into income as 

the risk loading process evolves is close to the amount needed to provide an investor an incremental 

return 𝜋  on the required capital �̂� − 𝑉. 

The high-level rationale behind method (1) above is that if we found ourselves in a world where the 

assumption had changed to (1 + 𝜑)𝑞[𝑥]+𝑡 then, in that world, we would need to hold capital for a 

change to  (1 + 𝜑)2𝑞[𝑥]+𝑡  etc.   Method (2) assumes that if we were in the shocked world we would 

need to hold capital for a move to  (1 + 𝜑 + 𝛼𝜑)𝑞[𝑥]+𝑡.  For more details on theory behind this proposal 

see the 2014 ERM paper by Manistre. 
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 Conclusion 

This paper has shown that it is possible and practical to build risk loadings into decrement assumptions 

that are consistent with the cost of capital approach to risk margins.  The technicalities are not onerous.  

The methods proposed here overcome a number of conceptual flaws in both the Solvency II approach 

and the current LICAT guideline.   

To be sure, this paper does not cover all of the issues that would need to be considered if one wanted to 

fix the current LICAT model and, at the same time, modify the CIA’s current approach to risk loadings so 

that is consistent with an appropriate capital model.  Nevertheless, the author hopes the current work is 

a step in that direction.   

 

 

 

 

 

 

 

 


