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__________________________________________________________________ 

Abstract. Although it is an analytic construct important in its own right, a stationary population 

is an integral component of a life table. Using this perspective, we discuss well-known and not-

so-well known equalities that are found a stationary population as well as a set of inequalities. 

There are two parts to the set of inequalities we discuss. The first (theorem 1) is that at any 

given age x, the sum of mean years lived and mean years remaining exceeds life expectancy at 

birth when x is greater than zero and less than the maximum lifespan (When x = zero or x 

=maximum lifespan, then the sum of mean years lived and mean years remaining is equal to 

life expectancy at birth). The second inequality (theorem 2) is a generalization of the first, 

namely that for the entire population, the sum of mean years lived and mean years remaining 

exceeds life expectancy at birth.  It may be that the inequality we identify as Theorem 1 is 

common knowledge in some circles. However, we have found no formal description of it and 

believe that Theorem 1 represents a contribution to the literature. Similarly, it may be the case 

that one would expect that Theorem 2 would hold, given Theorem 1, but we also have not 

found a formal description of this in the literature and believe that it also represents a 

contribution. Finally, we note we have not found any discussion of an equality we found 

embedded in Theorem 1 (when age = 0 and when age = ω, then λx +ex = e0) and believe that the 

identification of this equality represents a contribution. We provide illustrations of the two 

inequalities and discuss them as well as selected equalities. 
 

Keywords. Carey’s Equality Theorem, Two Inequality Theorems, Mean years lived, mean years 
remaining, life expectancy at birth, sum or mean years lived and mean years remaining, mean age at death, 
variance in age at death 
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1. INTRODUCTION 

Although many of them are apparent and some that are not so apparent have been 

described, equalities represent a defining characteristic of stationary populations (Kintner 

2004). In addition to the obvious equalities such as the crude birth rate and crude death rate, 

research has revealed that: (1) mean years lived is equal to mean years remaining; and (2) the 

distribution of age composition is equal to the distribution of remaining lifetimes(Carey et al. 

2008; Rao and Carey 2014, Vaupel 2009). To these equalities, the following can be added: (1) 

mean age is equal to mean years lived (Rao and Carey 2014); and (2) mean age is equal to mean 

years remaining (Kim and Aron 1989).   

As we show in this paper, mean age can be expressed as a function of total years lived by 

the stationary population and its life expectancy at birth, which implies that for a given 

stationary population, its mean age can be expressed as a function of its crude birth rate as 

well as its crude death rate. In turn, because mean age is equivalent to mean years lived and 

mean years remaining, it also can be expressed as a function of total years lived and, 

respectively, life expectancy at birth, the crude birth rate and the crude death rate.  

To these equalities, we add a set of inequalities by demonstrating: (1) that at any given age 

x, the sum of mean years lived and mean years remaining exceeds life expectancy at birth in a 

given stationary population, where 0 < x < ω (maximum lifespan); and (2) that for a stationary 

population as a whole, the sum of mean years lived and mean years remaining exceeds life 

expectancy at birth. We discuss this set of inequalities and provide an empirical illustrations of 

them.  

Before proceeding, it is worth noting that while a stationary population is an analytic 

construct in its own part, it is an integral component of a life table [1]. As such, the equalities 

and inequalities we identify and discuss apply to life tables and their construction. As our main 

findings, we offer:  (1) Theorem 1 and provide a proof for it that shows that for a given age x, 

the sum of mean years lived (λx) and mean years remaining (ex ) exceeds life expectancy at 

birth where 0 < x < ω;  (2) Theorem 2 as a generalization of  Theorem 1 to all ages and provide 
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a proof for it; and (3)   an equality we found embedded in Theorem 1, namely that when age 

= 0 or when age = ω, then λx +ex = e0. 

1.1 Equalities in a Stationary Population 

Let the size of a stationary population be To 

where  

T0 = ke0 

and 

k = radix of the life table (i.e., k = 100,000) = l0 

e0= life expectancy at birth (Mean years remaining at birth) 

Using the notation used by Vaupel (2009) as a starting point, the age distribution of a 

stationary population of size To can be described by: (1) the probability density function c(a), 

the distribution of years lived; (2) the probability density function λ(a); and (3) the distribution 

of years remaining be described by the probability density function r(a). Note that by 

definition, c(a) = λ(a). Using this notation, we can define the total number of years lived by 

individuals currently alive in the stationary population (Τλ) and the total number of years 

remaining to them (Τr), respectively, as: 

(1) Tλ =    ∫ 𝛼 𝑐(𝛼)
𝜔

𝑛
 = T0μλ   

(2) Τr =   ∫ 𝛼 𝑟(𝛼)
𝜔

0
    =   T0μr  

 

Because, as we noted earlier, c(α) = λ(α ),  

              then          Tc =∫ 𝛼 𝑐(𝛼)
𝜔

0
  = Τλ =  ∫ 𝛼 𝜆(𝛼)

𝜔

0
  

 

Kim and Aron (1989) provide a proof that mean age in a stationary population is equal to 

mean expected years remaining. Because Vaupel (2009) demonstrated that that the mean 

number of years lived in a stationary population is equal to the mean expected years remaining, 

we can see that the three means are equivalent, using the notation just described: 
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(3) μc = μr = μλ 

where   

μc = mean age = ∫ 𝛼 𝑐(𝛼)
𝜔

0
𝑑𝑎  

μr = mean years remaining =  ∫ 𝛼 𝑟(𝛼)
𝜔

0
𝑑𝑎  

and  

μλ = mean years lived =   ∫ 𝛼 𝜆(𝛼)
𝜔

0
𝑑𝑎  

Because T0 = ke0, then it follows that  

(4) Tc/T0 = μc 

Because μc = μr = μλ, then it follows that 

(5)  Tc/T0 = μr = μλ 

And because T0 = ke0, μc can be expressed as 

(6) μc = Tc/ke0 

then it follows that 

(7) Tc = μcke0 

and 

(8) Tc/k = μce0 

In verbal terms, equation (8) states that when divided by the radix of the life table, k, the 

total number of years lived by those alive in the stationary population, Tc, is equal to the 

product of the mean age of the stationary population, μc, and its life expectancy at birth, e0. 

When divided by the radix of the life table, the total number of years lived by those alive in 

the stationary population also is equal to: (1) the product of the mean number of years lived 

by those alive in the stationary population, μλ, and life expectancy at birth, e0; and (2) the 

product of the mean number of years remaining to those alive in the stationary population, μr, 

and life expectancy at birth, e0.   

Further, 
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(9) e0 = Tc/kμc 

and because 1/e0 = b = d 

where  

b = the crude birth rate in the stationary population (k/T0) 

 d = the crude death rate in the stationary population (k/ T0) 

then it follows that the relationship, μc = Tc/ke0 can be expressed as  

(10) μc = (Tcb)/k 

In verbal terms, equation (9) states that when divided by the radix of the life table, k, the 

product of the total number of years lived by those alive in the stationary population, Tc, and 

the population’s crude birth rate, b, is equal to the mean age of the individuals currently alive 

in the stationary population.  This equality is the product of the force of fertility and the total 

years lived by those alive.  Because b = d, the equality can also be viewed as the product of 

the force of mortality and the total years lived by those alive. These equalities should not be 

surprising because for a population to be stationary, the force of increments is equal to the 

force of decrements. Similarly, it should not be surprising that specific values of mean years 

lived, μλ, and mean years remaining, μr , also result from the specific equality of the force of 

increments and the force of decrements acting in concert with the total years lived in a given 

stationary population. 

1.2 A Set of Inequalities 

Theorem 1 

when 0 < x < ω, then  λx + ex > e0 

Definition 

λx = (T0 -Tx)/l0 = mean years lived to age x 

and 

ex = Tx/lx  = mean years remaining at age x 
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Corollary 

when x =0 then λx + ex = e0 since 

(T0 -T0)/l0  + T0/l0  = 0 + e0 = e0 

and when x = ω then λx + ex = e0 since 

(T0  -Tω)/l0  + Tx/lx  =    (T0 -Tω)/l0 + Tω/lω = (T0 - 0)/l0 + 0 = e0 + 0 = e0 

Proof 

Let λx = (T0 - Tx)/l0 = (e0l0 - Tx)/l0 = e0 - Tx/l0 

then λx + ex = e0 - Tx/l0 + Tx/lx 

    and except when x= 0, so that Tx/l0  = T0/l0  = e0 

    and when Tx/lx = T0/l0 so that e0 - T0/l0 + T0/l0 = 0 + e0  = e0 

    and except when x = ω, so that  Tx/l0 = Tω/l0  

    and when Tx/lx = Tω/lω, so that e0 - Tω /l0 + Tω/lω = e0 - 0/l0 + 0/0 = e0 - 0 + 0 = e0 

then Tx/l0 < Tx/lx because l0 >lx when x >0 

Thus, λx +ex > e0  because 

e0 - Tx/l0 +Tx/lx >e0 

 

Theorem 2   

μλ + μr > e0 

Proof 

Because μc = μr = μλ 

then it follows that μλ + μc = 2μc = 2μr = 2μλ 

Because e0 = Tc/kμc 

then it follows that  
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e0/2 = Tc/k2μc 

and since e0/2 < e0 

then  

(μλ + μr)  > e0 

Once we have Tc and μc, both of which are easily obtained when c(α) is determined, we 

can determine life expectancy at birth by dividing total years in the stationary population by 

the product of k (remember k = l0) and the mean age of the population. Because of the 

equalities shown earlier, e0 also can be determined when either r(α) or λ(α) is found. And, of 

course, once e0 is obtained, b and d can be determined, as can T0. 

It is useful to note here that Pressat (1972) examined the relationship between mean age of 

a stationary population and life expectancy at birth and found (in the notation we use): 

(11) μc =  ½(e0  +( σ 2/e0)) 

 where  

  μc  = mean age of the stationary population  

  e0= life expectancy at birth 

  and 

  σ 2 
 = variance in age at death 

 

Pressat’s (1972: 408) identification of equation (11) was independently re-discovered by 

Morales (1989) and identified as a re-discovery by Preston (199).  

Equation (11) is particularly useful here because it provides the basis for an interpretation 

of the inequality given in Theorem 2, namely that μλ + μr > e0. First, recall that as shown 

earlier, the mean age of the stationary population is equal to mean years lived and to mean 

years remaining: μc = μr = μλ  and, therefore = 2μc = 2μr = 2μλ. Thus, if we multiply μc by 2, 

then equation (11) can be restated as  
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(12) 2μc =  2(½(e0  +( σ 2/ e0))) = e0  +( σ 2/e0) 

Because 2μc  =  mean years lived (μλ ) plus mean years remaining (μr ) and because 2μc = e0  

+( σ 2/e0),  we can see that the sum of mean years lived and mean years remaining is equal to 

the sum of life expectancy at birth and the ratio of variance in age at death to life expectancy 

at birth: μλ + μr      = e0  +( σ 2/ e0).  And since e0   + (σ 2/ e0) > e0, it follows that (μλ + μr) > e0. 

Because we also know that life expectancy at birth is equivalent to mean age at death, we also 

can state equation (12) as: 

(13) 2μc   = μd   + ( σ 2/μd)      

where  

     μd  = mean age at death and μc   and σ 2 are defined as before 

Because 2μc   = μλ + μr      we can re-express (13) as: 

(14)  μλ + μr      = μd   + ( σ 2/μd)  

where  

     all of the terms are as previously defined 

Thus, the sum of mean years lived and mean years remaining is equal to mean age at death 

plus the ratio of the variance in age at death to mean age at death. 

1.2.1 Illustration of Theorem 1 

Using a 1990 USA Life Table (both sexes combined) from the Human Mortality Database 

(2009) as an illustration of a stationary population, we examine λx, ex, and λx+ex by age, where 

ω= 110.5 (which we set as the maximum life span; nobody lives beyond this age). Our 

examination is displayed by Figure 1, which provides a scatterplot of the relationship between 

age (x axis) and λx+ex, the sum of mean years lived and mean years remaining (y axis). Life 

expectancy at birth for this population is 75.40 years.  As shown in Figure 1, when age (x) = 

0, λx+ex = e0 and when age (x) = 110.5, λx+ex = e0. The scatterplot shows that λx+ex rises 

non-monotonically from 75.40 years (e0) when age = zero, reaches a maximum of 79.82 years 

at age 78.5, remains at this maximum to age 79.5, then monotonically declines back to  75.40 
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(e0), at the maximum possible age, 110.5. As it increases, the curve is steepest from age 45 to 

age 79 and the decline from age 79 is steep all the way to age 110.5.  

(FIGURE 1 ABOUT HERE) 

1.2.2 Illustration of Theorem 2 

In order to empirically illustrate the inequality provided by Theorem 2 and the relationship 

linking it to variance in age at death (see equations (11) through (14)), we selected a (non-

random) sample of complete USA life tables for years ending in zero and five from the Human 

Mortality Database (2009), which has an online collection of these life tables annually from 

1933 to 2013. Table 1 provides these 16 empirical examples of this inequality, μλ + μr > e0. 

(TABLE 1 ABOUT HERE) 

      As can be seen in Table 1, the difference between μλ + μr, on the one hand, and e0, on the 

other, declines (although not monotonically) as e0 increases from 1935 to 2010. The mean 

difference over all 16 observations is 5.37 years, with a standard deviation of 1.90. Because of 

Theorem 2 we know that the difference will remain positive from the re-expressed form of 

equation (12), namely, μλ + μr      = e0  + (σ 2/e0).  The trend in the sample confirms that the 

relationship is curvilinear as expected from this same re-expressed equation.  To empirically 

illustrate this, we constructed scatter plots of different equations and variable transformations 

that seemed promising using the NCSS package, version 8 (2016) and found that a quadratic 

model of the following form fit well: (difference2 ) = A + B*(ln(e0)) + C*(ln(e0))2, where A = 

25498.4. B = -11685.8 and C = 1339.6, with R2 = .9965. This model was estimated in 21 

iterations with a random seed of 2695.  A scatterplot of the relationship between difference 

and e0 along with the fitted model’s trend line is shown in Figure 2.  

  In verbal terms, the explanation for the empirical illustration of the relationship found 

in Figure 2 and specified in the non-linear equation given by μλ + μr      = e0  + (σ 2/e0), is that 

the sum of mean years lived (μλ ) and mean years remaining (μr ) is equal to the mean age at 

death (μd  ) plus the ratio of the variance in age at death to mean age at death  (σ 2/μd).  Recalling 

that mean age at death is equal to life expectancy at birth (e0 ), we can see that if the variance 

in age at death remained relatively constant (or, relatively speaking,  did not increase as much 

as life expectancy) from 1935 to 2010 while life expectancy increased, then the difference, μλ 
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+ μr    - e0 , would decrease during the same period, which is what is shown in Figure 2.  To 

some extent, the trend found in Figure 2 likely reflects this because other than the initial effect 

of the baby boom (1946-64), the US population aged between 1935 and 2010 and holding all 

else constant, one would expect that variance in age at death would not increase as a population 

ages because deaths become more concentrated in the older population, which, in turn, would 

be reflected in life tables constructed from such a population.  

 

(FIGURE 2 ABOUT HERE) 

2. RESULTS AND DISCUSSION 

Using Carey’s equality Theorem (Carey et al. 2008, Rao and Carey 2014, Müller et al. 2004) 

and a 2005 life table for the United States, Vaupel (2009) estimates that more than 48 percent 

are 41 years or older, which implies that nearly half of the life table population will be alive in 

2050, assuming that the 2005 life table holds to 2009.  Using the same US life table and 

corresponding stationary population, we find that on average the population lived 40.60 years 

and will live another 40.60 years on average. If we assume that the 2005 life table applied to 

2009 as did Vaupel, then on average the members will live to almost 2050, which is in 

agreement with Vaupel’s estimate. Even without such an assumption, it is the case that on 

average the 2005 population lived 40.6 years and will, on average, live an another 40.6 years, 

or 81.3 years in total, which is 3.67 years more than their life expectancy at birth of 77.63  

years. While the actual differences may vary, the proof shown earlier for Theorem 2 shows 

that mean years lived + mean years remaining is greater than life expectancy at birth (μλ + μr > 

e0).  If we apply this line of reasoning to the actual 2010 US life table, we find that on average 

the 2010 population lived 41.14 years and will, on average, live another 41.14 years, or 82.28 

years in total, which is 3.43 years longer than this population’s life expectancy at birth of 78.85. 

Notice that as shown in Figure 2, that this difference is less than the difference found for the 

2005 life table, which is consistent with the model shown in Figure 2 and discussed at the end 

of the preceding section. 

Vaupel (2009) notes that in regard to work by Müller et al. (2004) and Müller et al. (2007) 
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on wildlife population dynamics, Carey’s equality Theorem could be used to estimate 

population age structure. In regard to this application, we add that if a representative age 

structure is obtained for a stationary population (or one that can be made stationary with 

adjustments suggested by Müller et al. (2004) and Müller et al. (2007), through Vaupel’s 

suggestion or from another method, such as a sample, then its mean age, mean years lived, 

and mean years remaining can be determined as can its life expectancy at birth, its crude birth 

rate and its crude death rate. If a representative age structure is obtained from a random sample 

then interval estimates of these parameters can be constructed for the stationary population 

in question.  

In the form of λx and ex, Carey’s Equality Theorem also manifests itself in the data displayed 

as Figure 3, although somewhat imperfectly because the data are discrete rather than 

continuous.1As can be seen in Figure 3, the plotted values of λx by age are nearly a mirror 

image of the plotted values of ex by age. The two curves cross at 39.75 years, which is the 

average number of years lived for this population and, also, the average number of years 

remaining.                  

                                                   (FIGURE 3 ABOUT HERE) 

Theorem 1 shows that for a given age x, the sum of mean years lived (λx) and mean years 

remaining  (ex) exceeds life expectancy at birth where 0 < x < ω. Theorem 2 generalizes 

Theorem 1 to all ages. As shown in equations (12) through (14) and the discussion directly 

related to these equations, we have an explanation for the inequality demonstrated in theorem 

2, which is linked to the variance in age at death. For example, if variance in age at death is 

held constant and life expectancy (mean age at death) increases then the inequality described 

by theorem 2 decreases; if variance in age at death increases and life expectancy is held constant 

then the inequality described by theorem 2 increases.  

The explanation provided for the inequality described by theorem 2 can be extended to 

theorem 1 by looking at the variance in age at death up to and including a given age. For 

example, if we are interested in the inequality found at age x, we will find that if variance in 

age at death up to and including age x is held constant and life expectancy (mean age at death) 

increases, then the inequality described by theorem 1 decreases; if variance in age of death up 
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to and including age x increases and life expectancy is held constant then the inequality 

described by theorem 1 increases.  

One implication of these two related theorems is that the average longevity of all of the 

“living” members of a given stationary population exceeds the average number of years lived 

expected at birth.  This implication suggests that life when a life table is used for planning the 

future, it is worthwhile to keep in mind that life expectancy at birth understates average 

longevity for the “living” members of the life table population.2 As such, it may be preferable 

to use the sum of mean years lived and mean years remaining instead of life expectancy at 

birth in some applications. This also suggests that at a given age, it may be preferable to use 

the sum of mean years lived to that age and mean years remaining at that age instead of simply 

using life expectancy at the age in question. Although it does not directly take into account the 

inequalities we have demonstrated here, work by others such as Canudas-Romo and Zarulli 

(2016) and Canudas-Romo and Engelman (2016) recognizes similar implications involving 

years lived and years remaining.  

 

3. ENDNOTES 

1. Villavicencio and Riffe (2016) provide a complete and formal proof of Carey’s equality in a 

discrete-time framework.  

2.  In addition to Pressat (1972), Morales (1989), and Preston (1991), among others, Canudas-

Romo and Engelman (2016) have examined the sum of mean years lived and mean years 

remaining. However, none of these authors describes the inequalities demonstrated here in 

the forms of theorems 1 and 2.    
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TABLE 1.  DIFFERENCE BETWEEN THE SUM OF MEAN YEARS LIVED & MEAN YEARS 
REMAINING AND LIFE EXPECTANCY AT BIRTH: SELECTED USA LIFE TABLES FOR BOTH 

SEXES COMBINED, 1935 TO 2010 (N=16) 

YEAR 
E0                    

(1) 

MEAN YRS 
LIVED             

(2) 

MEAN YRS 
REMAINING                  

(3) 

TOTAL MEAN YRS 
LIVED & 

REMAINING              
(4) 

DIFFERENCE: 
(4) - (1) 

1935 60.89 35.47 35.47 70.94 10.05 

1940 63.23 35.86 35.86 71.72 8.49 

1945 65.58 36.55 36.55 73.10 7.52 

1950 68.07 37.12 37.12 74.24 6.17 

1955 69.56 37.62 37.62 75.24 5.68 

1960 69.83 37.66 37.66 75.32 5.49 

1965 70.24 37.81 37.81 75.62 5.38 

1970 70.74 38.00 38.00 76.00 5.26 

1975 72.54 38.67 38.67 77.34 4.80 

1980 73.74 39.09 39.09 78.18 4.44 

1985 74.67 39.39 39.39 78.78 4.11 

1990 75.40 39.75 39.75 79.50 4.10 

1995 75.89 39.90 39.90 79.80 3.91 

2000 76.86 40.20 40.20 80.40 3.54 

2005 77.63 40.60 40.60 81.20 3.57 

2010 78.85 41.14 41.14 82.28 3.43 
Source of data discussed in text. Calculations by authors. 
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FIGURE 2. The Difference between the sum of mean years lived + mean years remaining and eo 
(sum – e0) by e0 
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Figure 3. Average Years Lived (λ) and Average Years 
Remaining (e) by Age, 1990 USA Life Table (Stationary 

Population)
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