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Abstract 
 
The two major sources of uncertainty are randomness and fuzziness, and they are 
complementary.  This article extends this perspective to an integrated model where both types of 
uncertainty exist concurrently, and where each of the randomness and fuzziness components, 
while necessary, is not sufficient, in and of itself, to formulate the model.  Many actuarial 
applications are of this sort. 
 
Such integrated models have come to be known as probabilistic fuzzy systems (PFSs).  
Essentially, the PFS is a methodology that is built on a fuzzy inference system, which has been 
modified to accommodate a probabilistic fuzzy rule base.  This provides a stochastic input-output 
mapping between the input fuzzy sets associated with the antecedent part of the rule base and the 
output fuzzy sets associated with the consequent part. 
 
The purpose of this article is to present some preliminary observations with respect to PFSs, with 
the goal of introducing ARCH readers to the topic.  To this end, some basic concepts that are 
pertinent to PFSs are presented, as is an introduction to PFSs, a discussion of their architecture, 
and a review the key features of their methodology. The article concludes with a commentary on 
PFSs and suggestions for further studies. 
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1 Introduction 
 
The two major sources of uncertainty are randomness, or probabilistic uncertainty, and fuzziness, 
which embodies the imprecision on account of vagueness or lack of knowledge, and they are 
complementary.  This article extends this perspective to an integrated model where both types of 
uncertainty exist concurrently, and where each of the randomness and fuzziness components, 
while necessary, is not sufficient, in and of itself, to formulate the model.  In this way, fuzziness, 
which has been regarded as heuristic, has a clear connections to randomness.  Many actuarial 
applications are of this sort. 
 
Such integrated models have come to be known as probabilistic fuzzy systems (PFSs).  
Essentially, the PFS is a methodology that is built on a fuzzy inference system (FIS), which has 
been modified to accommodate a probabilistic fuzzy rule base.  That is, a probabilistic 
framework is applied to an existing fuzzy model, under which the fuzzy and probabilistic 
uncertainties are simultaneously dealt with.  This provides a stochastic input-output mapping 
between the input fuzzy sets associated with the antecedent part of the rule base and the output 
fuzzy sets associated with the consequent part. 
 
The purpose of this article is to present some preliminary observations with respect to PFSs, with 
the goal of introducing ARCH readers to the topic.  It begins with the Zadeh (1968) 
conceptualization of the original model.  Then, before proceeding, some basic concepts that are 
pertinent to PFSs are discussed. Following that is an introduction to PFSs and a discussion of 
their architecture.  Finally, we review the key features of their methodology.  The article 
concludes with a commentary on PFSs and suggestions for further studies. 
 

2 Basic concepts 
 
Before proceeding, we present some basic concepts that are pertinent to the PFSs discussion. 
Topics covered include notation, the normalized MFs and k-th order MF centroids, the 
probability of a crisp event, fuzzy variables, the probability of a fuzzy event, the estimated 
probability of the fuzzy event, conditional fuzzy probability, the conjunction of fuzzy sets, and 
proper fuzzy partitions. 

2.1 Notation 

The following notation is used in this article: 
 
X ≡ a finite set, a continuous sample space 
A ≡ a compact subset of X (defines an event) 
Ã ≡ a fuzzy event 
x1, x2, ..., xK ≡ a random sample on the domain X 
x ≡ a scalar variable 
f(x) ≡ the pdf of x 
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GOM ≡ grade of membership 
J ≡ the number of MF in the consequent part of the rule base 
K ≡ the number of MF in the antecedent part of the rule base 
MF ≡ membership function 
P(A) ≡ the probability of A 
P̂(A) ≡ the estimated probability of the fuzzy event Ã 
P(A | B)  ≡ the conditional fuzzy probability of Ã, given B  
Q ≡ the number of rules in the rule base 
χΑ(x) ≡ characteristic function 

A (x)µ


≡ a membership function, which gives the GOM of x∈X in Ã 

2.1.1 Normalized MFs and k-th order MF Centroids 

For convenience, two types of normalized MFs will be used in what follows.  The first, which is 
associated with the antecedent part of the rule base, will be denoted as

k

(1)
A (x),µ


and takes the 
form: 
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k
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The second, which is associated with the consequent part of the rule base, will be denoted 
as

j

(2)
C (y),µ


and takes the form: 

 

 j

j

j

C(2)
C

C

(y)
(y)

(y) dy
∞

−∞

µ
µ ≡

µ∫






 (2) 

 

Moreover, the k-th order MF Centroid will be denoted as { }j

k (2)
CE y | µ


 and take the form: 

 

 { }j j

k (2) k (2)
C CE y | y (y) dy

∞

−∞
µ ≡ µ∫ 

 (3) 

 

2.2 Probability of a crisp event 

 
The probability of a compact crisp subset A of X is:  [van den Berg et al (2011, p. 5)] 
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The probability of the crisp event A can be estimated as: [Viertl (2011, p. 43)] 

 
K

A k
k 1

1P̂(A) (x )
K =

= χ∑  (5) 

2.3 Fuzzy variables 

Linguistic variables, which are the building blocks of fuzzy variables, may be defined (Zadeh, 
1975, 1981) as variables whose values are expressed as words or sentences.  Average future 
lifetime for a life aged x, for example, may be viewed both as a numerical value ranging over the 
interval [0, ω -x], where ω is the limiting age1, and a linguistic variable that can take on values 
like short, medium, and long.  Each of these linguistic values may be interpreted as a label of a 
fuzzy subset of the universe of discourse [0, ω -x], whose base variable is the generic numerical 
value future lifetime. 

Fuzzy numbers, which are the focus for the current analysis, are numbers that have fuzzy 
properties, examples of which are the notions of “around 5 years” and “relatively short”.  The 
general characteristic of a fuzzy number (Zadeh, 1975 and Dubois and Prade, 1980), referred to 
as its membership function, MF, and denoted by the symbol µÃ(x), where µ, Ã and x denote a 
MF, fuzzy set and location, respectively, frequently is represented as shown in Figure 1. 

Figure 1:  Trapezoidal Fuzzy Number 

This shape of a fuzzy number is referred to as trapezoidal or “flat” and its MF often is denoted as  
(a1,a2,a3,a4) or (a1/a2, a3/a4); when a2 is equal to a3, we get a triangular fuzzy number (TFN).  The 
intervals between a1 and a2, and a3 and a4, are known as the left spread and right spread, 
respectively.  When the two spreads are equal, the TFN is known as a symmetrical TFN (STFN).  
A fuzzy number is positive if a1 ≥ 0 and negative if a4 ≤ 0, and, as indicated, it usually is taken to 

                                                 

1 The limiting age, ω, is the lowest age such that the probability of reaching that age, or older, is zero. 



ARC2017_Shapiro_Wang_PFS_D_00f1.doc 5 

be a convex fuzzy subset of the real line, i.e.,  

A 1 2 A 1 A 2μ (λ x (1 λ) x ) min(μ (x ),μ (x )), λ [0,1]+ − ≥ ∈ . 

Other MF classes, such as the S-shaped and reverse-S-shaped, which are discussed below, can 
also serve as a fuzzy number, depending on the situation. 

Finally, we note that a fuzzy measure [Dubois and Prade, (1980, p. 126)] is a monotonic non-
additive set function g taking values in [0,1]. For fuzzy sets A and B , it holds that:  
 
 ( ) { }A B max (A),g(B)≥  

g g  (6) 

 ( ) { }A B min (A),g(B) .≤  

g g  (7) 
Obviously, a probability measure is a fuzzy measure, however, a fuzzy measure is not a 
probability measure. 
 

2.4 Probability of a fuzzy event  

Let Ã be a fuzzy event and µÃ(x): X → [0,1] , the GOM of x∈X in Ã. 
 
Then, following Zadeh (1968, p. 424), the probability of the fuzzy set Ã is2: 

 

 

( )

n

A

A

A

A

P(A) dP

(x)dP

(x) f (x)dx

E (x)

∞

−∞

=

= µ

= µ

= µ

∫
∫
∫













 (8) 

 
From the last line, we see that the probability of a fuzzy event is the expectation of its MF. When 
A is crisp, the usual probability for A is obtained. 
 
By way of example, Figure 23 shows a representation of the essence of this idea, where the 
random variable is minor collision damage and the MF is with respect to low damage.   
 

                                                 
2 There is not universal agreement on the appropriateness of (8). See, for example, Singpurwalla and Booker (2004, 
870-71), who argue that P(Ã) is not a valid probability measure.  Such concerns notwithstanding, we incorporate 
Zadeh’s formulation of P(Ã) for the remainder of this article, noting that Dubois and Prade (1980, p. 141), and 
Nguyen and Wu (2006: 18), among others, do likewise. 
3 Adapted from van den Berg et al (2013) Fig. 1, Moura and Roisenberg (2015) Fig. 2, and Shapiro (2013) Fig. 11. 
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Figure 2: The PFS idea 

The magnitude x of the collision damage is assumed to be the stochastic variable f(x) = pdfdamage, 
while the fuzzy notion of low damage is defined by the membership function µlow(x).  The 
product f(x) µlow(x), which has been characterized by van den Berg et al (2013, p. 871) as a 
“fuzzy pdf”, is used in (8) to calculate the probability that the collision damage is small.  Thus, 
the probabilistic uncertainty is merged with the fuzzy uncertainty. 
 

2.4.1 Estimated probability of the fuzzy event 

 
Let Ã be a fuzzy event, xk be a sample value, and K be the number of samples. 
 
Then, the estimated probability of the fuzzy event Ã, P̂(A) , is given by: [van den Berg et al 
(2011, p. 7)] 

 

 
K

kA
k 1

1P̂(A) (x )
K =

= µ∑ 

  (9) 

 

2.5 Conditional fuzzy probability 

Let A and B  be fuzzy events. 
 
Then, the conditional fuzzy probability of A,given B,  is: [van den Berg et al (2011, pp. 6-7)] 
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The estimate of the conditional fuzzy probability of A,given B,  is: 
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=
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=

µ
∑

∑
 



   (11) 

2.5.1 The conjunction of fuzzy sets A and B 

In the foregoing, using the product operator, ⊗, to implement the conjunction operator,  , 
guarantees that the sum of the conditional probabilities for a given fuzzy event equals 1. 
[Kaymak et al (2003, p. 332)] 
 
Figure 3 shows the conjunction of fuzzy sets A and B,  based on the intersection operator, 

BAmin{ (x), (x)},µ µ
 

and the product operator, BA (x) (x).µ ⊗µ
 

 
 

 
Figure 3: Conjunction of fuzzy sets A and B  

 

2.6 A proper fuzzy partition 

 
An underlying assumption in this article is that if Ã 1, Ã 2, ..., Ã K are fuzzy events in sample 
space X, then these fuzzy events form a proper fuzzy partition if, for all x∈X, [van den Berg et al 
(2011, p. 6)] 
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k

K

A
k 1

(x) 1
=

µ =∑ 

    (12) 

 
This definition can be traced to Ruspini (1969, p. 29) and is what Dubois and Prade (1980, p. 13) 
refer to as the orthogonality condition. 
 
A simple example of a proper fuzzy partition is shown in Figure 4, where at each point on the 
horizontal axis, the sum of the GOM of each MF at that point is one. 
 

 
Figure 4: Example of a proper fuzzy partition 

 

2.6.1 A well-defined fuzzy partition  [van den Berg et al (2011, pp. 6-7)] 

A proper fuzzy partition will be characterized as "well defined" if  

 
K

k
k 1

P(A ) 1
=

=∑  . (13) 

Moreover, under the concept of the conditional probability, a proper fuzzy partition, given B,  is 
well defined, since: 
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3   The Mamdani Fuzzy Inference System (FIS) 
 
In this article we use the Mamdani FIS, a representation of which is shown in Figure 54: 
 

 
Figure 5: The Mamdani FIS 

In this case, there are two crisp inputs, x0 and y0, and three sets of membership functions, jA and 

jB , which constitute the antecedent part, and jC , which constitutes the consequence part, j=1,2, 
each set of which is a component of the rule 

Rule i: if x is iA and y is iB  then z is iC , 

where the conjunction "and" is interpreted to mean the fuzzy intersection.  The minimum of the 
fuzzy inputs in the first two columns gives the levels of the firing (shown by the dashed lines) 
and their impact on the inference results (shown by the shaded areas in the third column).  
Taking the union of the shaded areas of the first two rows of column three results in the fuzzy set 
show in the third row, which represents the overall conclusion. 

Defuzzification converts the fuzzy overall conclusion into a numerical value that is a best 
estimate in some sense.  A common tactic in insurance articles is to use the center of gravity 
                                                 
4 Adapted from Shapiro (2004: 404). 
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(COG) approach, which defines the numerical value of the output to be the abscissa of the center 
of gravity of the union.  In practice, this is computed as Σj wj xj, where the weight wj is the 
relative value of the membership function at xj, that is, wj = µ(xj) / Σj µ(xj). 
 

3.1 Probabilistic fuzzy viewpoint 

The probabilistic fuzzy viewpoint is illustrated in Figure 65. 
 

 

Figure 6: Probabilistic fuzzy view 

Here, on the one hand, the vertical axis represents the fuzzy logic perspective, and is concerned 
with GOM, which extends the classical crisp (binary) notion.  On the other hand, the horizontal 
axis represents the probability perspective, and shows the probability of a given GOM.  Thus,  
GOM and probability of GOM are simultaneously addressed under the probabilistic fuzzy point 
of view. 
 

3.2 Rule 1 of a Probabilistic Mamdani FIS 

The probabilistic Mamdani FIS derives from merging the Mamdani FIS and the probabilistic 
fuzzy view, an example of which is shown in Figure 7. 

                                                 
5 Adapted from Meghdadi and Akbarzadeh-T (2001) Figure 1. 
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Figure 7: Rule 1 of a probabilistic Mamdani FIS 

As indicated, Rule 1 of this probabilistic Mamdani FIS takes the form: 

Rule 1: if x is 1A and y is 1B  then z is 1jC with probability P( 1jC ), j= 1,2. 
 

4 The Probabilistic Fuzzy System6 
 
This section presents an introduction to PFSs, a discussion of their architecture, and a review of 
the key features of their methodology.  The topics covered include: conceptualizing the 
relationship between the MFs, the conditional pdf of the output distribution, and the mean and 
variance of the output distribution. 

4.1 Conceptualizing the relationship between the MFs 

We begin the PFS discussion with Figure 87, which provides a representation of the relationship 
between the antecedent and consequent MFs, given Rule q. 

                                                 
6 Much of the material of this section is based on van den Berg et al (2013). 

7 Adapted from van den Berg et al (2011) Figure 5. 
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Figure 8: The relationship between the MFs 

From Almeida et al (2012), we note that the estimated j qP̂(C | A )  is given by 
 

 j q
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=
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µ
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   (15) 

 

4.2 The conditional pdf of the output distribution 

 
A probabilistic fuzzy system consists of a system of rules R𝑞, q = 1, ... , Q, of the type:  

 
 q q qR : If x is A , then f (y) is f (y | A )   (16) 
 
We follow van den Berg et al (2013, p. 873), and write that a reasonable formulation of the 
output of the fuzzy system is 
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In practice, the system of rules takes the form  
 
 q q q

ˆR̂ : If x is A , then f (y) is f (y | A )   (18) 
 

from which the estimate of the conditional fuzzy probability of y, given x, is: 
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4.3 The mean and variance of the output distribution 

We end this section with a statement of the estimates of the mean and variance of the conditional 
pdf. [van den Berg et al (2013, p. 874)] 

The estimated expected output   
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where 
k

(1)
A (x)µ


is the normalized MF associated with the antecedent part of the rule base, and 

{ }j

k (2)
CE y | µ


 is the k-th order MF centroid of the fuzzy set jC .  

 
The estimated conditional variance of the output distribution is 
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5 Assigning MFs to fuzzy variables 
 

A number of articles have discussed methods for assigning MFs to fuzzy variables.  An excellent 
overview of the different approaches during the first 25 years following Zadeh’s 1965 seminal 
article are given by Dombi (1990).  He segregated the approaches into: heuristically based MFs; 
MFs based on reliability concerns with respect to the particular problem; MFs based on more 
theoretical demand, such as axiomatically justified or a probability distribution; MFs related to 
control, where either one defines the functions and identifies the system parameters, or works 
with a given system and identifies the MF; and MFs as a model for human concepts.  More 
recent reviews on the topic include those of Bilgic and Turksen (1995) and Smithson and 
Verkuilen (2006). 

A catalogue of methods for the development of MFs appears in Sivanandam et al (2007, chapter 
4), where it is noted that the assignment of MFs to fuzzy variables can be done intuitively or by 
using some algorithms or logical procedures.  Among the methods they listed and discussed 
were: intuition, where the development of the MF is based on the human’s own intelligence and 
understanding, and requires the thorough knowledge of the problem and the linguistic variable; 
inference, which involves the knowledge to perform deductive reasoning, and forms the MF 
from the facts known and knowledge; and rank ordering, where the polling concept and pairwise 
comparisons are used to assign membership values by a rank ordering process.  They also 
mention the role of the other soft computing methodologies, neural networks and genetic 
algorithms, in the MF assignment process. 

Other notable articles that addressed the development of MFs , but were not mentioned  in the 
foregoing, include Chen and Otto (1995), who presented methods for constructing MFs using 
measurement theory and constrained interpolation, where the former offers a suitable framework 
for constructing a MF in cases where the membership is based on subjective preferences, and 
Buckley (2005 §2.8), who showed how to develop triangular-shaped fuzzy MFs based on 
confidence intervals. 
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5.1 Using cluster analysis to develop membership functions 

Figure 9 shows a representation of how cluster analysis may be used to induce a fuzzy model8, 
where the context is the relevance of health to longevity. 

 

Figure 9: Using cluster analysis to obtain MFs 

Starting with the data, clusters are formed, which are used to coordinate the MFs.  Specifically, 
the data is clustered using a clustering algorithm.  In this case, there are two clusters.  Then, MFs 
are projected from the clusters: here, good and poor health, on the horizontal axis, and high and 
low longevity, on the vertical axis.  As a final step, the MFs are used to develop fuzzy rules with 
respect to each cluster.  Almeida et al (2008) provide a detailed discussion of this methodology. 

6 Comments 
 
The purpose of this article has been to present some preliminary observations with respect to 
PFSs.  To this end, we presented some basic concepts that are pertinent to the PFSs dialogue, 
discussed the Mamdani Fuzzy Inference System (FIS) and a probabilistic Mamdani FIS, and 
gave an overview of PFSs, which included its conceptualization, the conditional pdf and the 
mean and variance of the output distribution, and the assigning MFs to fuzzy variables.   
 
There were a number of topics that were not addressed.  Some of the topics include: the best FIS 
model to use, the most appropriate clustering algorithm to use, the efficiency of the PFS model, 
and the question of optimal design.  Moreover, while some simple applications were mentioned, 
there are a number of application areas that can be explored, including such topics as 
underwriting, financial planning, and measurement error, where fuzzy variables and random 
variables both contribute to the uncertainty.   
 
The foregoing limitations notwithstanding, to the extent that this article provides an impetus for 
further study in this area, it will have served its purpose. 
 
                                                 
8 Adapted from van den Berg (2004) Slide 21. 



ARC2017_Shapiro_Wang_PFS_D_00f1.doc 16 

7 References 
 
Almeida, R. J., Baştürk, N., Kaymak, U., Milea, V. (2012) "A multi-covariate semiparametric 

conditional volatility model using probabilistic fuzzy systems," in: IEEE Conference on 
Computational Intelligence for Financial Engineering Economics (CIFEE), 1-8. 

 
Almeida, R. J., Kaymak, U. (2009) "Probabilistic fuzzy systems in Value-at-Risk estimation," 

Intelligent Systems in Accounting, Finance & Management 16, 49-70 
 
Almeida, R. J., Kaymak, U., Sousa, J. M. C. (2008) "Fuzzy Rule Extraction From Typicality and 

Membership Partitions," IEEE International Conference on Fuzzy Systems, 1964-1970. 
 
Bilgiç, T., Türkšen, I. B. (1995) "Measurement of membership functions: theoretical and 

empirical work," in: Dubois, D., Prade, H. (Eds.), Fundamentals of Fuzzy Sets 1, Kluwer 
Academic, Boston, 195-200. 

 
Buckley, J. J. (2005) Fuzzy Probabilities. Physica-Verlag, Berlin Heidelberg. 
 
Chen, J. E., Otto, K. N. (1995) "Constructing membership functions using interpolation and 

measurement theory," Fuzzy Sets and Systems 73, 313-327. 
 
Dombi, J. (1990) "Membership function as an evaluation," Fuzzy Sets and Systems 35, 1-21. 
 
Dubois, D. and Prade, H. (1980) Fuzzy sets and systems - Theory and Application, Chestnut 

Hill, MA: Academic Press, Inc. 
 
Kaymak, U., van den Bergh, W.-M., van den Berg, J. (2003) "A fuzzy additive reasoning scheme 

for probabilistic Mamdani fuzzy systems," in: Proceedings of the 2003 IEEE International 
Conference on Fuzzy Systems 1, 331-336. 

 
Meghdadi, A. H., Akbarzadeh-T, M.-R. (2001) "Probabilistic fuzzy logic and probabilistic fuzzy 

systems,"  IEEE International Conference on Fuzzy Systems 3, 1127-1130. 
 
Moura, G., Roisenberg, M. (2015) "Probabilistic Fuzzy Naive Bayes," Brazilian Conference on 

Intelligent Systems, 246-251 
 
Nguyen, H. T., Wu, B. (2006) Fundamentals of Statistics with Fuzzy Data, Springer-Verlag 

Berlin Heidelberg 
 
Ruspini, E. H. (1969) "A new approach to clustering," Inf. Control 15, 22-32. 
 
Shapiro, A. F. (2004) "Fuzzy logic in insurance," Insurance: Math. Econom. 35, 399-424. 
 
Shapiro, A. F. (2013) "Modeling future lifetime as a fuzzy random variable," Mathematics and 

Economics 53 (2013) 864–870 
 



ARC2017_Shapiro_Wang_PFS_D_00f1.doc 17 

Singpurwalla, N. D., Booker, J. M. (2004) "Membership functions and probability measures of 
fuzzy sets," Journal of the American Statistical Association 99 (467), 867-877. 

 
Sivanandam, S. N., Sumathi, S., Deepa, S. N. (2007) Introduction to Fuzzy Logic Using 

MATLAB. Springer-Verlag, Berlin Heidelberg. 
 
Smithson, M., Verkuilen, J. (2006) Fuzzy Set Theory: Applications in the Social Sciences. Sage 

Publications, Thousand Oaks, CA. 
 
van den Berg, J., Kaymak, U., Almeida, R. J. (2011) "Function Approximation Using 

Probabilistic Fuzzy Systems," ERIM Research Program, ERS-2011-026-LIS, 
http://hdl.handle.net/1765/30923 

 
Van Den Berg, J., Kaymak, U., Almeida, R. J. (2013) "Conditional density estimation using 

probabilistic fuzzy systems," IEEE Transactions on Fuzzy Systems 21(5), 869-882. 
 
Van Den Berg, J., Kaymak, U., Van den Bergh, W.-M. (2004) "Financial markets analysis by 

using a probabilistic fuzzy modelling approach," International Journal of Approximate 
Reasoning  35(3), 291-305. 

 
Viertl, R. (2011) Statistical Methods for Fuzzy Data, John Wiley & Sons, Ltd.  
 
Zadeh, L. A. (1965) "Fuzzy sets," Information and Control 8 (3), 338-353. 
 
Zadeh, L. A. (1968) "Probability measures of fuzzy events," Journal of Mathematical Analysis 

and Applications 23, 421-427. 
 
Zadeh, L. A. (1975) "The concept of linguistic variable and its application to approximate 

reasoning (parts 1–3)," Information Sciences 8, 199-249. 301-357, 1976, 9, 43-80.  
 
Zadeh, L. A. (1981) "Fuzzy systems theory: a framework for the analysis of humanistic 

systems," in: Cavallo, R.E. (Ed.), Recent Developments in Systems Methodology in Social 
Science Research. Kluwer, Boston, 25-41. 


	1  Introduction
	2 Basic concepts
	2.1 Notation
	2.1.1 Normalized MFs and k-th order MF Centroids

	2.2 Probability of a crisp event
	2.3 Fuzzy variables
	2.4 Probability of a fuzzy event
	2.4.1 Estimated probability of the fuzzy event

	2.5 Conditional fuzzy probability
	2.5.1 The conjunction of fuzzy sets A and B

	2.6 A proper fuzzy partition
	2.6.1 A well-defined fuzzy partition  [van den Berg et al (2011, pp. 6-7)]


	3    The Mamdani Fuzzy Inference System (FIS)
	3.1 Probabilistic fuzzy viewpoint
	3.2 Rule 1 of a Probabilistic Mamdani FIS

	4 The Probabilistic Fuzzy System5F
	4.1 Conceptualizing the relationship between the MFs
	4.2 The conditional pdf of the output distribution
	4.3 The mean and variance of the output distribution

	5 Assigning MFs to fuzzy variables
	5.1 Using cluster analysis to develop membership functions

	6 Comments
	7 References

