Pricing Bounds and Bang-bang Analysis of the Polaris Variable Annuities

Zhiyi (Joey) Shen

Department of Statistics and Actuarial Science University of Waterloo

Based on a joint work with Chengguo Weng (Waterloo)

52nd Actuarial Research Conference Robinson College of Business Atlanta, Georgia, July, 2017

Polaris Choice IV

- The "Polaris Choice IV" VAs are recently issued by the subsidiary insurance companies of the American International Group.
- Three riders are structured into the Polaris:
 - Polaris Income Plus Daily
 - Polaris Income Plus
 - Polaris Income Builder
- Pricing the Polaris Income Plus Daily is the major focus of our work.

∃ ⊳

Polaris Income Plus Daily

- The Polaris Income Plus Daily has several distinguishing features:
 - **Withdrawal-dependent step-up**: the income base can step up to the high water mark of the investment account over certain monitoring period depending on policyholder's age at first withdrawal.
 - **Withdrawal-dependent protected income**: the guaranteed withdrawal amount depends on the first withdrawal time.
- These provisions encourage the policyholder not take excess withdrawal during the early phase of the contract life.

The Polaris

Pricing Model Numerical Approach Numerical Studies Conclusion

Step-up of Income Base

Figure 1: Step-up mechanism of the income phase before first withdrawal (Resource: Page 9 of the client brochure.)

3 •

The Polaris

Pricing Model Numerical Approach Numerical Studies Conclusion

Step-up of Income Phase

Figure 2: Step-up mechanism of the income phase after first withdrawal (Resource: Page 10 of the client brochure.)

.⊒...>

The Polaris

Pricing Model Numerical Approach Numerical Studies Conclusion

Withdrawal-dependent Income Payment

Maximum Annual Withdrawal Amount (MAWA)

		Income Option 1		Income Option 2		Income Option 3
Age at 1st Withdrawal	Covered Persons	MAWA	PIP	MAWA	PIP	MAWA/PIP
45-59	Single Life	3.75%	2.75%*	3.75%	2.75%*	3.00% for life
	Joint Life	3.25%	2.75%*	3.25%	2.75%*	2.75% for life
60-64	Single Life	4.75%	2.75%*	4.75%	2.75%*	3.50% for life
	Joint Life	4.25%	2.75%*	4.25%	2.75%*	3.25% for life
65-71	Single Life	6.0%	4.0%	7.0%	3.0%	5.00% for life
	Joint Life	5.5%	4.0%	6.5%	3.0%	4.50% for life
72+	Single Life	6.5%	4.0%	7.5%	3.0%	5.25% for life
	Joint Life	6.0%	4.0%	7.0%	3.0%	4.75% for life

(as a percentage of your Income Base)

Figure 3: Calculation scheme of MAWA and PIP (Resource: Page 17 of the client brochure.)

Model formulation

- The pricing model should capture the following features of the Polaris:
 - $\bullet~$ Dynamic withdrawals \Rightarrow stochastic optimal control framework
 - Path-dependent payoffs
 - \Rightarrow auxiliary state and control variables should be introduced:
 - one state variable to record the step-up value
 - one state variable to record the first-withdrawal time
 - one state variable to record the death benefits
 - one control variable to model the decision of starting withdrawal

∃ >

• Five-dimensional state process and a bivariate control process.

Stochastic Control Framework

• The minimal super-hedging cost of the writer:

$$V_1(\mathbf{x}) = \sup_{\boldsymbol{\pi}_1} \mathbb{E}\left[\sum_{k=1}^{N-1} \varphi(k-1) H_k(\mathbf{X}_k; \boldsymbol{\pi}_k) + \varphi(N-1) G(\mathbf{X}_N)\right].$$

- $\pi_1 = (\pi_k)_{1 \leq k \leq N-1}$: policyholder's decisions
- $\varphi(k)$: discount factor
- $H_k(\mathbf{X}_k; \pi_k)$: intermediate liability = death benefits + withdrawal
- $G(\mathbf{X}_N)$: terminal liability
- The standard DPP argument implies the Bellman equation:

$$\begin{cases} V_N(\mathbf{x}) &= G_N(\mathbf{x}), \\ V_n(\mathbf{x}) &= \sup_{\pi_n \in D_n} \left\{ \underbrace{H_n(\mathbf{X}_n; \pi_n)}_{\text{withdrawal value}} + e^{-r\Delta t} \underbrace{\mathbb{E}_{n,x}^{\pi_n} \left[V_{n+1}(\mathbf{X}_{n+1}) \right]}_{\text{continuation value}} \right\} \\ n = N - 1, N - 2, \dots, 1. \end{cases}$$

< ∃⇒

Major Challenges and Results

- The pricing problem poses challenges in two aspects.
 - Complex optimization problem \Rightarrow no guarantee for global optimizer.
 - Large dimensionality of state process: ⇒ computationally prohibitive.
- Our major results are summarized as follows:
 - **()** Show the existence of the Bang-bang solution for a synthetic contract.
 - **2** Solve for the Bang-bang solution: Monte Carlo + regression.
 - O Use the Bang-bang solution as an upper bound for the hedging cost of the real contract.

Bang-bang Analysis

Theorem 1 (Bang-bang Analysis)

Assume the periodical rider charge is proportional to the *investment account*. The optimal withdrawal strategies are limited to three choices:

- non-withdrawal,
- 2 withdrawal at Maximal Annual Withdrawal Amount or
- Output in the surrender.
 - In real contract specifications, the rider charge is proportional to the income base and deducted from the investment account. This would break the argument for proving Theorem 1.
 - We first make a compromise by assuming the insurance fee is proportional to the investment account and call this modified contract as synthetic contract.

-∢ ⊒ ▶

Pricing Bounds

Theorem 2 (Pricing Bounds)

Let \bar{V}_0 be the minimal super-hedging cost of the real contract that charges the insurance fees proportional to the income base. Let V_0 be the minimal super-hedging cost of the synthetic contract that charges the insurance fees proportional to the investment account. Then we have $\bar{V}_0 \leq V_0$.

Remark (Economic Insight)

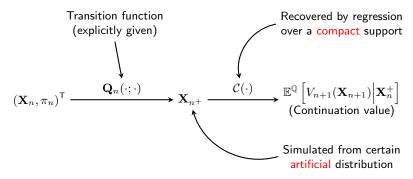
Charging the fees against the income base reduces the insurer's risk exposure.

- V_0 is relatively easier to solve due to the existence of Bang-bang solution.
- A lower-bound for \bar{V}_0 can be easily obtained.

Least-Squares Monte Carlo (LSMC) Method

- The LSMC method was first proposed to price American options.
 - The price process is not influenced by the excise rule \Rightarrow forward simulation of sample paths [Longstaff & Schwartz 2001].
 - Approximating the conditional expectation by regression.
- Extending the LSMC to general stochastic control problem is nontrivial.
 - The state process depends on the optimal controls unknown in prior \Rightarrow sample paths cannot be simulated.
- One possible strategy: guess a initial control sequence, simulate the paths and update the control policies backwards [Huang & Kwok 2016].
 - Convergence to the global optimal solution is not clear.
 - This strategy cannot generate variations in certain state variable.

Our Approach: Pseudo Simulation & Backward Updating



- Conditioning on \mathbf{X}_{n+} , \mathbf{X}_{n+1} can be simulated directly.
- \bullet The regression is conducted once to recover $\mathcal{C}(\cdot)$ per time-step.
- $C[\mathbf{Q}_n(\mathbf{X}_n; \pi_n)]$ can be computed for different pairs of $(\mathbf{X}_n, \pi_n)^{\mathsf{T}}$.

Regression Technique: Shape-Restricted Sieve Estimation

- Primary criteria for the choice of nonparametric regression technique:
 - avoid computationally costly tuning parameters selection
 - \Rightarrow local methods are not good candidates;
 - avoid or mitigate the undesirable overfitting
 - \Rightarrow the space of basis functions shouldn't be too complex;
 - ensure the regression estimate inherit the convexity and monotonicity
 - \Rightarrow shape-restricted regression problem.
- Shape-restricted sieve regression is a suitable choice [Wang & Ghosh 2012].
 - Multivariate Berstein polynomials are chosen as basis functions.

∃ ⊳

- Linear constraints are imposed on the regression coefficients
 - \Rightarrow constrained Least-Squares (CLS) estimation

Model Parameters

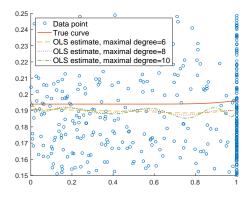
Table 1: Parameters used for numerical examples.

Parameter	Value		
Volatility σ	0.19		
Interest rate r	0.04		
Attained age t_0	65		
Mortality	DAV 2004R (65 year old male)		
Withdrawal times	Yearly		
Initial purchase payment	1 unit		
Time periods N	30		
Rider charge rate η_n	200 bps		
Withdrawal penalty k_n	$n = 1:8\%, \ n = 2:7\%, \ n = 3:6\%,$		
	$n = 4:5\%, \ n > 4:0\%$		
MAWA percentage $G(\xi)$	$1 \le \xi \le 6:5\%, \ \xi > 6:5.5\%$		
PIP percentage $P(\xi)$	$1 \le \xi \le 6:5\%, \ \xi > 6:5.5\%$		

イロン イ団と イヨン イヨン

Ξ.

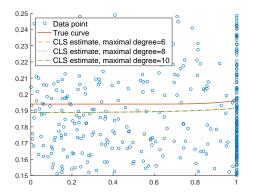
Ordinary Least-Squares (OLS) Estimate



- Overfitting.
- Sensitive to maximal degree.

Figure 4: Fitted curves of marginal continuation function using OLS method.

Constrained Least-Squares (CLS) Estimate



- Mitigate overfitting.
- Robust to maximal degree.
- Economically sensible.

Figure 5: Fitted curves of marginal continuation function using CLS method.

Performance of Pricing Bounds

Table 2: Numerical results of the validation test. The initial purchase payment is 1 unit. The mean and standard deviation are obtained by running the algorithm 40 times.

# of Simulation	Lower	Bound	Upper Bound		
# or simulation	Mean	S.d.	Mean	S.d.	
1×10^{4}	1.0199	0.0140	1.0380	0.0041	
3×10^4	1.0207	0.0087	1.0380	0.0029	
1×10^{5}	1.0195	0.0033	1.0379	0.0016	

- "Upper Bound" is the minimal super-hedging cost of the synthetic contract.
- "Lower Bound" is obtained by discretizing the feasible set of control and then solving a similar stochastic control problem associated with the real contract.

< ∃ →

Summary of Numerical Results

- The numerical result produced by our Monte-Carlo-based algorithm tends to be stable as the number of simulation increases.
- The shape-restricted regression technique has four primary merits:
 - Mitigating undesirable overfitting problem.
 - Avoiding computational intensive tunning parameter selection.
 - Producing economically sensible results.
 - Good finite-sample performance: less volatile result.
- The pricing bounds are rather sharp: the gap between sub and super hedging costs is less than 3%

∃ >

Conclusions

- A risk-neutral pricing framework for the "Polaris Income Plus Daily" rider is established.
- Bang-bang solution is proved to exist for a synthetic contract.
- A new Monte-Carlo-based numerical approach is developed.
- The minimal super-hedging cost of the synthetic contract is shown to be a sharp upper bound for the hedging cost of the real contract.

Thank you!

イロン イ団と イヨン イヨン

æ