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Polaris Choice IV

The “Polaris Choice IV” VAs are recently issued by the subsidiary insurance
companies of the American International Group.

Three riders are structured into the Polaris:

Polaris Income Plus Daily

Polaris Income Plus

Polaris Income Builder

Pricing the Polaris Income Plus Daily is the major focus of our work.
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Polaris Income Plus Daily

The Polaris Income Plus Daily has several distinguishing features:

1 Withdrawal-dependent step-up: the income base can step up to the
high water mark of the investment account over certain monitoring
period depending on policyholder’s age at first withdrawal.

2 Withdrawal-dependent protected income: the guaranteed withdrawal
amount depends on the first withdrawal time.

These provisions encourage the policyholder not take excess withdrawal dur-
ing the early phase of the contract life.
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Step-up of Income Base

Figure 1: Step-up mechanism of the income phase before first with-
drawal (Resource: Page 9 of the client brochure.)
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Step-up of Income Phase

Figure 2: Step-up mechanism of the income phase after first withdrawal
(Resource: Page 10 of the client brochure.)
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Withdrawal-dependent Income Payment

17

* With Income Options 1 and 2, if withdrawals begin before age 65 and your Income Base increases to a new Step-up Value on a contract 
anniversary on or after your 65th birthday, the protected income payment will automatically increase to 4% of your Income Base.

Additional terms used in this section and important information
• Age at time of first withdrawal: When determining the maximum annual withdrawal percentage, as well as the feature’s protected income 

payment percentage, the age at the time of first withdrawal is based on the age of the older individual if the contract is jointly owned for the 
Single Life option; age of younger individual for the Joint Life option. This age criteria is also used when evaluating eligibility for an increase 
to the protected income payment percentage, if applicable.

Polaris
INCOME PLUS DAILY

17

A choice of income options
Polaris Income Plus Daily offers you a choice of income options to help you secure an income stream that’s right 
for you. At the time of purchase, you can choose Income Option 1, 2 or 3.

Maximum Annual Withdrawal Amount (MAWA)
(as a percentage of your Income Base)

Income Option 1 Income Option 2 Income Option 3

Age at 1st 
Withdrawal

Covered  
Persons MAWA PIP MAWA PIP MAWA/PIP

45-59
Single Life 3.75% 2.75%* 3.75% 2.75%* 3.00%  for life

Joint Life 3.25% 2.75%* 3.25% 2.75%* 2.75%  for life

60-64
Single Life 4.75% 2.75%* 4.75% 2.75%* 3.50%  for life

Joint Life 4.25% 2.75%* 4.25% 2.75%* 3.25%  for life

65-71
Single Life 6.0% 4.0% 7.0% 3.0% 5.00%  for life

Joint Life 5.5% 4.0% 6.5% 3.0% 4.50%  for life

72+
Single Life 6.5% 4.0% 7.5% 3.0% 5.25%  for life

Joint Life 6.0% 4.0% 7.0% 3.0% 4.75%  for life

The protected income payment (PIP) will be paid in the event the contract value is completely depleted due  
to market volatility, deduction of fees and/or withdrawals taken within the feature’s parameters, provided the 
Income Base is greater then zero. The PIP is calculated as a percentage of the Income Base. 

R5544CON.5 (12/16)

Figure 3: Calculation scheme of MAWA and PIP (Resource: Page 17
of the client brochure.)
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Model formulation

The pricing model should capture the following features of the Polaris:

Dynamic withdrawals ⇒ stochastic optimal control framework

Path-dependent payoffs

⇒ auxiliary state and control variables should be introduced:

one state variable to record the step-up value

one state variable to record the first-withdrawal time

one state variable to record the death benefits

one control variable to model the decision of starting withdrawal

Five-dimensional state process and a bivariate control process.
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Stochastic Control Framework

The minimal super-hedging cost of the writer:

V1(x) = sup
π1

E

[
N−1∑
k=1

ϕ(k − 1)Hk(Xk;πk) + ϕ(N − 1)G(XN )

]
.

π1 = (πk)1≤k≤N−1: policyholder’s decisions

ϕ(k): discount factor

Hk(Xk;πk): intermediate liability = death benefits + withdrawal

G(XN ): terminal liability

The standard DPP argument implies the Bellman equation:

VN (x) = GN (x),

Vn(x) = sup
πn∈Dn

Hn(Xn;πn)︸ ︷︷ ︸
withdrawal value

+e−r∆t Eπn
n,x [Vn+1(Xn+1)]︸ ︷︷ ︸

continuation value


n = N − 1, N − 2, . . . , 1.
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Major Challenges and Results

The pricing problem poses challenges in two aspects.

Complex optimization problem ⇒ no guarantee for global optimizer.

Large dimensionality of state process: ⇒ computationally prohibitive.

Our major results are summarized as follows:

1 Show the existence of the Bang-bang solution for a synthetic contract.

2 Solve for the Bang-bang solution: Monte Carlo + regression.

3 Use the Bang-bang solution as an upper bound for the hedging cost of
the real contract.
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Bang-bang Analysis

Theorem 1 (Bang-bang Analysis)

Assume the periodical rider charge is proportional to the investment account.
The optimal withdrawal strategies are limited to three choices:

1 non-withdrawal,

2 withdrawal at Maximal Annual Withdrawal Amount or

3 complete surrender.

In real contract specifications, the rider charge is proportional to the income
base and deducted from the investment account. This would break the
argument for proving Theorem 1.

We first make a compromise by assuming the insurance fee is proportional to
the investment account and call this modified contract as synthetic contract.
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Pricing Bounds

Theorem 2 (Pricing Bounds)

Let V̄0 be the minimal super-hedging cost of the real contract that charges
the insurance fees proportional to the income base. Let V0 be the minimal
super-hedging cost of the synthetic contract that charges the insurance fees
proportional to the investment account. Then we have V̄0 ≤ V0.

Remark (Economic Insight)

Charging the fees against the income base reduces the insurer’s risk exposure.

V0 is relatively easier to solve due to the existence of Bang-bang solution.

A lower-bound for V̄0 can be easily obtained.
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Least-Squares Monte Carlo (LSMC) Method

The LSMC method was first proposed to price American options.

The price process is not influenced by the excise rule
⇒ forward simulation of sample paths [Longstaff & Schwartz 2001].

Approximating the conditional expectation by regression.

Extending the LSMC to general stochastic control problem is nontrivial.

The state process depends on the optimal controls unknown in prior
⇒ sample paths cannot be simulated.

One possible strategy: guess a initial control sequence, simulate the paths
and update the control policies backwards [Huang & Kwok 2016].

Convergence to the global optimal solution is not clear.

This strategy cannot generate variations in certain state variable.
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Our Approach: Pseudo Simulation & Backward Updating

(Xn, πn)T Xn+

Qn(·; ·) EQ
[
Vn+1(Xn+1)

∣∣∣X+
n

]
(Continuation value)

C(·)

Simulated from certain
artificial distribution

Recovered by regression
over a compact support

Transition function
(explicitly given)

Conditioning on Xn+ , Xn+1 can be simulated directly.

The regression is conducted once to recover C(·) per time-step.

C [Qn(Xn;πn)] can be computed for different pairs of (Xn, πn)T.
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Regression Technique: Shape-Restricted Sieve Estimation

Primary criteria for the choice of nonparametric regression technique:

1 avoid computationally costly tuning parameters selection

⇒ local methods are not good candidates;

2 avoid or mitigate the undesirable overfitting

⇒ the space of basis functions shouldn’t be too complex;

3 ensure the regression estimate inherit the convexity and monotonicity

⇒ shape-restricted regression problem.

Shape-restricted sieve regression is a suitable choice [Wang & Ghosh 2012].

Multivariate Berstein polynomials are chosen as basis functions.

Linear constraints are imposed on the regression coefficients

⇒ constrained Least-Squares (CLS) estimation
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Model Parameters

Table 1: Parameters used for numerical examples.

Parameter Value

Volatility σ 0.19

Interest rate r 0.04

Attained age t0 65

Mortality DAV 2004R (65 year old male)

Withdrawal times Yearly

Initial purchase payment 1 unit

Time periods N 30

Rider charge rate ηn 200 bps

Withdrawal penalty kn n = 1 : 8%, n = 2 : 7%, n = 3 : 6%,

n = 4 : 5%, n > 4 : 0%

MAWA percentage G(ξ) 1 ≤ ξ ≤ 6 : 5%, ξ > 6 : 5.5%

PIP percentage P (ξ) 1 ≤ ξ ≤ 6 : 5%, ξ > 6 : 5.5%
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Ordinary Least-Squares (OLS) Estimate
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Figure 4: Fitted curves of marginal continuation function
using OLS method.

Overfitting.

Sensitive to maximal
degree.
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Constrained Least-Squares (CLS) Estimate
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Figure 5: Fitted curves of marginal continuation function
using CLS method.

Mitigate overfitting.

Robust to maximal de-
gree.

Economically sensible.
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Performance of Pricing Bounds

Table 2: Numerical results of the validation test. The initial purchase payment is
1 unit. The mean and standard deviation are obtained by running the algorithm
40 times.

# of Simulation
Lower Bound Upper Bound

Mean S.d. Mean S.d.
1× 104 1.0199 0.0140 1.0380 0.0041
3× 104 1.0207 0.0087 1.0380 0.0029
1× 105 1.0195 0.0033 1.0379 0.0016

“Upper Bound” is the minimal super-hedging cost of the synthetic contract.

“Lower Bound” is obtained by discretizing the feasible set of control and
then solving a similar stochastic control problem associated with the real
contract.
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Summary of Numerical Results

The numerical result produced by our Monte-Carlo-based algorithm tends
to be stable as the number of simulation increases.

The shape-restricted regression technique has four primary merits:

1 Mitigating undesirable overfitting problem.

2 Avoiding computational intensive tunning parameter selection.

3 Producing economically sensible results.

4 Good finite-sample performance: less volatile result.

The pricing bounds are rather sharp: the gap between sub and super hedging
costs is less than 3%.
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Conclusions

A risk-neutral pricing framework for the “Polaris Income Plus Daily” rider
is established.

Bang-bang solution is proved to exist for a synthetic contract.

A new Monte-Carlo-based numerical approach is developed.

The minimal super-hedging cost of the synthetic contract is shown to be a
sharp upper bound for the hedging cost of the real contract.
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Thank you!
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