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The recent low interest rate environment
has created a challenging situation for
insurers.  Products with fund balances
which grow at a crediting rate, at least
equal to some contractual minimum, face

profitability pressures and some tricky asset-liability
management issues, as well.  Examples of such are
deferred annuities, universal life and settlement
options.

Actuaries are familiar with asset-liability manage-
ment (ALM) as a technique to protect surplus against
changes in interest rates.  The essential idea is to
measure the price sensitivity to interest rate changes
of both liabilities and the assets
supporting them, using the well-
known duration measure.
Duration is defined as the
price sensitivity of an
asset or liability portfo-
lio to small changes
in current interest
rates.  By measuring
and equating asset
and liability
durations (or,
more properly,
duration dollars), the
price sensitivity of
surplus to interest rates
becomes small.

Product actuaries must consider
duration in many aspects of their work, including
product design and development, pricing, setting
new money and old money crediting rates, forecast-
ing and communicating with asset managers.  The
actuary must understand the drivers of duration and
the methodology used to calculate it.

There are many versions of the duration measure,
with the two oldest, and perhaps best-known, being
Macauley and modified duration.  Both versions do a
fine job of measuring price sensitivity to interest rates
when the cash flows of an asset or liability do not
vary with interest rates.  However, when a change in

rates can alter the cash flows, a more robust measure
is needed.  This measure is called effective 
duration, and it is the product of option-adjusted
analysis (OAA).  The
m e t h o d o l o g y  
of OAA originally 
was developed for
assets, such as callable
bonds, mortgage-
backed securities and
CMO securities, but it
is equally valuable for
insurance liabilities.
Today’s low-interest-rate environment makes this an
opportune time for actuaries to learn or brush up on
the basics of OAA.

With this goal in mind, we’ll explore OAA in this
paper and apply it to a challenge that arises
when the supportable crediting rate on a fund
accumulation product falls below the minimum,
namely, the lengthening of the liability duration.
Working with the example of a deferred annuity
and using OAA, we will show that the duration
of the annuity with a minimum crediting rate
can be longer than that of a similar annuity with-
out the minimum.  We will show that it is helpful
to decompose the product into two parts, an annu-
ity without a crediting rate minimum and an
interest rate floor.  In this way we will attribute the
additional duration to the embedded derivative that
is the interest rate floor that results from the crediting
rate floor.

Duration and insurance liabilities

Interest rate changes pose potential risks to insurers,
since interest rate movements can change the valua-
tion of insurance liabilities and the fixed-income
assets that the insurer holds to support them.  The
measure that actuaries and asset managers use to
quantify this relationship is duration.  Duration can
be defined in words as the percentage change in
value per change in interest rates, and is written
symbolically as:

D = - (∆P/P) / ∆i
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When interest rates are the key driver of the value of
both liabilities and the assets that back them, dura-
tion matching is a valuable tool for protecting surplus
against rate movements.  Defining “duration dollars”
of a portfolio of assets or liabilities as its duration
times value by managing asset duration dollars to
equal liability duration dollars, the level of surplus is
unaffected by modest rate changes.  In order to more
effectively protect surplus, a company should review
additional measures such as convexity, but in any
event duration makes a powerful starting point.

We should note that when we say “price” or “value”
we mean a market value.  Since insurance liabilities
do not trade frequently, it often makes sense to think

in terms of the fair value,
a concept which is gaining
popularity in the actuarial
profession because of its
focus on the underlying
economics.  Consequently,
when a company seeks to

protect surplus by matching asset and liability dura-
tions, it is protecting economic surplus, and because
of timing differences, such a strategy may not be
enough to ensure a steady pattern of earnings under
GAAP or statutory reporting.

Now consider two characteristics common in 
liabilities that shorten duration:
•  crediting rate resets,
•  withdrawals,

and one that lengthens duration: 
•  crediting rate floors

To see how crediting rate resets shorten duration,
consider the extreme example of a deferred annuity
maturing in three years, where the crediting rate is
reset annually to equal current interest rates less a
100 bp spread.  Furthermore, assume the reset is next
week.  If we immediately increase interest rates by,
say, 10 bp, then upon the reset the crediting rate will
also increase 10 bp, offsetting the effect of the higher
discount rate in the present value calculation.  We can
see intuitively that we essentially get a duration of
zero.  This means that, at least in the week before the
rate reset, the annuity’s value is not sensitive to inter-
est rates.  Of course, after the reset date passes, the

duration would lengthen to the amount of time until
the next reset (in this case, one year), since cash flows
for that period, but not after, would be invariant to
interest rate changes.

Withdrawals shorten duration because the average
life of the cash flows decreases.  The risk of disinter-
mediation under rising market rates poses an
additional ALM challenge, one that insurers attempt
to lessen through surrender charges and other prod-
uct design features.

Crediting rate floors lengthen duration because they
offset some of the effect of resets.  The higher the
floor, the more duration is lengthened.  We can see
this by considering extreme examples of a very low
and very high floor.  With a low floor, the crediting
rate will usually be set off of current rates, so the floor
has little effect on crediting rates or duration.  With a
high floor, the crediting rate essentially is fixed at the
floor, and as in the example of a GIC or a zero-coupon
bond, duration is close to the time to maturity.

Option-adjusted analysis and interest
rate trees

In all our examples, we will use a three-year 
maturity date, and all interest rates will be stated on
an annual basis (usually semi-annual, or bond-equiv-
alent, interest rates are used with bonds, but we’ll
simplify the math with annual rates).  We will use the
three-year yield curve shown in Table 1.  The table
gives the yields converted to spot rates and to
forward rates.  In our calculations of duration, we
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Crediting rate floors lengthen
duration, because they offset
some of the effect of resets. 
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will shock the yield up and down by 10 bp, so Table 2
shows these yields and the resulting spot and
forward rates.

We implement OAA through a binomial tree, shown
in Figure 1.  This tree represents the yield curve of
Table 1, but models the uncertainty of future interest
rates.  The tree starts at time t=0 with a single node,
since we know with certainty the current one-year
spot rate (which equals the one-year forward rate at
time zero).  Going forward, however, interest rates
are uncertain, so the starting node branches out to
two nodes at time t=1, representing a pair of possible
one-year rates at that time.  In moving forward to the
next period, each of the two nodes at t=1 branch out
to two nodes at t=2.  Our tree is “recombining,”
however, which means that by moving up in the first
period and then down in the second, we reach the
same node as moving down then up, so that time t=2
has just three nodes, not four.  Each of these nodes
represents a possible one-year rate at t=2.

We write HH to represent the path taken by taking
the up move at t=0, and another up at t=1.  Path HH
represents the set of forward rates 3.00%, 4.82%,
6.17%.  Likewise, path HL is an up move followed by
a down move, and represents the forward rates
3.00%, 4.82%, 4.14%.  Paths LH and LL are the other
two possibilities in our three-year tree with one-year
time periods.

We choose a probabilistic process to move from
nodes in earlier to later periods, whereby we assume
there is a 0.5 probability of either an up or down
move leaving any node.  For an assumed standard
deviation σ, we require the relationship rH = e2σ∗ rL to
hold for the pair of forward rates leading from a
node.  For example, in Figure 1 we use σ = 20%, and
for the two rates leading out of the node at t=0, we
have 4.82% = (e.4)*3.23%.

To calculate the value of an asset or liability using the
tree, we determine the cash flows along each possible
path of up and down moves and discount the cash
flows with the set of forward rates found along that
path.  Since we assume up and down moves are
equally likely at each node, every possible path is
equally likely, so the value of an instrument is simply
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Table 1: Example Yield Curve

Table 3: Valuing Payment of 100 at t=3

With spot rate:
P = 100 / (1.03766^3) = 89.50

With binomial tree:
P(HH) = 100 / { (1.0300)*(1.0482)*(1.0617) } = 87.24
P(HL) = 100 / { (1.0300)*(1.0482)*(1.0414) } = 88.94
P(LH) = 100 / { (1.0300)*(1.0323)*(1.0414) } = 90.31
P(LL) = 100 / { (1.0300)*(1.0323)*(1.0277) } = 91.51

P{P(HH) + P(HL) + P(LH) + P(LL) } / 4 = 89.50

Maturity
1-year 2-year 3-year

Yield 3.00% 3.50% 3.75%

Spot rate 3.00% 3.51% 3.77%

Forward rate 3.00% 4.02% 4.28%

All rates are annual

Table 2: Example yield curve with +/- 10 bp shock

Maturity
1-year 2-year 3-year

+10 bp shock

Yield 3.10% 3.50% 3.75%

Spot rate 3.10% 3.51% 3.77%

Forward rate 3.10% 4.02% 4.28%

+10 bp shock

Yield 2.90% 3.40% 3.75%

Spot rate 2.90% 3.51% 3.77%

Forward rate 2.90% 4.02% 4.28%

Figure 1: Interest Rate Tree

 



the average present value of cash flows across all the
paths.

An important point is that the set of forward rates on
the tree must produce the same present value for a
set of cash flows as do the true forward rates.  This
requirement is commonly called fitting the model to
the term structure of the yield curve.  The rates in
Figure 1 have been chosen with this intent.  We verify
this in Table 3, where we discount a payment of 100
at t=3 with the three-year spot rate, and by averaging
the discounted values along the four possible paths,
we see that we get the same price each way.

Evaluating crediting rate floors

An interest rate tree is invaluable when the cash
flows of an asset or liability can vary with interest
rates.  We will explore how to use the tree to analyze
a deferred annuity with a crediting rate floor.

Assume we have a three-year deferred annuity that
credits each year the one-year market rate less a 100
bp spread, subject to a 3.0% crediting rate floor.  To
focus our attention on the effect of floors, we will
assume there are no withdrawals before the maturity
date.  At each node of Figure 2, the crediting rate is
the greater of 3.0% and the one-year rate associated
with the node less 100 bp.  For the node at t=0, this is
CR0 = max { 3.0%, 3.00% - 1.00% } = 3.00%, meaning
that the floor rate is higher than the supportable cred-
iting rate.  

At t=1, there are two nodes, representing an up move
and down move in rates in the first year.  Under the
up move, we have CR1H = max { 3.0%, 4.82% -
1.00%} = 3.82%, so the current rate determines 
the crediting rate.  However, for the down move, we
have CR1L = max { 3.0%, 3.23% - 1.00% } = 3.00%, so
the floor rate gives us the crediting rate.  In a similar
fashion, at t=2 we have CR2HH = 5.17%, CR2HL =
CR2LH = 3.14%, and CR2LL = 3.00%.

In Table 4, we show the initial fund of 100 growing to
an ending fund under each of the four possible inter-
est rate paths, and the associated present value of
each.  We average the four present values to obtain
the price of the contract, 98.76.

We then value the contract under the upwards
shocked tree, shown in Figure 3. The binomial tree
again has been calibrated to preserve the term struc-
ture of the yield curve.  The resulting price is 
P+ =98.61.  We show this in Table 5.

If we shock the tree downward (recalibrating the
tree) and revalue, we get P- = 98.91.  This gives a
duration of 1.5, as shown in Table 6.

Earlier we discussed a three-year deferred annuity
which each year credits the current one-year market
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Table 4: 3-year deferred annuity, with 3% crediting rate floor

Table 5: 3-year deferred annuity, with 3% crediting rate floor,
+10bp yield curve shock

Figure 2: Deferred annuity with 3.0% crediting rate floor
Crediting rate is greater of 3.0% and current rate less 100 bp
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Premium = 100
Crediting rate current rate less 1%, subject to 3% floor

P(HH) = 100 * { (1.0300)*(1.0382)*(1.0517) } / { (1.0300)*(1.0482)*(1.0617) } = 98.11
P(HL) = 100 * { (1.0300)*(1.0382)*(1.0314) } / { (1.0300)*(1.0482)*(1.0414) } = 98.09
P(LH) = 100 * { (1.0300)*(1.0300)*(1.0314) } / { (1.0300)*(1.0323)*(1.0414) } = 98.82
P(LL) = 100 * { (1.0300)*(1.0300)*(1.0300) } / { (1.0300)*(1.0323)*(1.0277) } = 100.00

P= {P(HH) + P(HL) + P(LH) + P(LL) } / 4 = 98.76

Premium = 100
Crediting rate current rate less 1%, subject to 3% floor

P(HH) = 100 * { (1.0300)*(1.0394)*(1.0532) } / { (1.0310)*(1.0494)*(1.0632) } =  98.02
P(HL) = 100 * { (1.0300)*(1.0394)*(1.0323) } / { (1.0310)*(1.0494)*(1.0423) } =  98.00
P(LH) = 100 * { (1.0300)*(1.0300)*(1.0323) } / { (1.0310)*(1.0331)*(1.0423) } =  98.65
P(LL) = 100 * { (1.0300)*(1.0300)*(1.0300) } / { (1.0310)*(1.0331)*(1.0284) } =  99.76

P = { P(HH) + P(HL) + P(LH) + P(LL) } / 4 =  98.61

 



rate less 100 bp, and argued that immedi-
ately before its rate reset it has a duration
of zero.  This example is an identical annu-
ity with a crediting rate floor added, and
we see that adding the floor adds dura-
tion.  A higher floor lengthens the duration
further.  For example, a floor of 4.0%
results in a duration of 2.6.  When cash
flows do not vary with interest rates—
either because the crediting rate over three
years is fixed, or because the floor is
extremely high—we get a duration of 2.9,
close to the time to maturity.  In this
manner, we see that the more the floor
affects crediting rates, the more sensitive
the price of the liability becomes.

The embedded derivative—
an interest rate floor

We gain further insight into the effect of a
crediting rate floor on price sensitivity by
decomposing the contract into compo-
nents—the underlying contract and the
embedded derivative.  In our example, the
annuity can be decomposed into a three-
year deferred annuity without a floor and
an interest rate floor derivative.  This
derivative has a three-year maturity, a
notional of 100, a strike rate of 4 percent,
and an annual reset.  Each year it pays any
excess of the strike rate over the current
one-year rate, times the notional.  Note
that 4 percent less the current one-year
rate is equivalent to the excess of 3 percent
over the current one-year rate less the 100
bp spread. The reason this decomposition
works is that the cash flows of the annuity
with floor equal the sum of the cash flows
of the two components.  Not surprisingly,
when we value the interest rate floor
derivative on the binomial tree (Table 7),
we get a value of 1.61, which is the differ-
ence between the values of the deferred
annuities with (98.76) and without (97.14)
a crediting floor.
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Figure 3: Deferred annuity with 3.0% crediting rate floor
+10bp yield curve shock 

Crediting rate is greater of current rate less 100 bp and 3.0% 

Table 6: Calculating the duration
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Table 7: Interest rate floor derivative

Notional 100
Maturity 3 years
Strike rate 4%

P(HH) = 100 * { max[0,0.0400 – 0.0300] / (1.0300)
+ max[0,0.0400 – 0.0482] / (1.0300*1.0482)
+ max[0,0.0400 – 0.0617] / (1.0300*1.0482*1.0617) } = 0.97

P(LL) = 100 * { max[0,0.0400 – 0.0300] / (1.0300) 
+ max[0,0.0400 – 0.0323] / (1.0300*1.0323)
+ max[0,0.0400 – 0.0277] / (1.0300*1.0323*1.0277) } = 2.82

In similar manner, P(HL) = 0.97 and P(LH) = 1.69

P = { P(HH) + P(HL) + P(LH) + P(LL) } / 4 = 1.61
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We can take this a step further by considering dura-
tion dollars.  The duration dollars of an instrument is
its price times its duration, and by equating the dura-
tion dollars of assets and liabilities, managers can
insulate surplus from interest rate movements.  Just
as the price of the deferred annuity with crediting
rate floor equals the sum of the prices of its two
components, its duration dollars equal the sum of the
duration dollars of the components.

After computing the duration of
the interest rate floor derivative
with our OAA approach to be
94.4, we can summarize the
decomposition as shown in
Table 8.

Actuaries should be aware of
the effect of crediting floors on

duration when designing and managing products.  It
is also important to keep in mind that interest rate
floors, and therefore liabilities with embedded floors,
have high convexity, which adds a further challenge
in managing interest rate risk.  These challenges are
especially important in the low rate environment that
we continue to experience.�
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Table 8: Decomposition of annuity with crediting rate floor

Annuity w/ floor = Annuity w/o floor + interest rate floor

P(Ann w/ floor) = P(Ann w/o floor) + P(int rate floor)
98.76 = 97.14 + 1.61

Dur$(Ann w/ floor) = Dur$(Ann w/o floor) + Dur$(int rate floor)
1.5*98.76 = 0*97.14 + 94.4*1.61
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