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0 The underlying theme of this session is the use of simulation, or Monte
Carlo, techniques to analyze complex insurance models. Areas to be
addressed include:

--  Estimating reserves
--  Solvency considerations
- Estimation of mortality

--  Distribution of aggregate losses

MR. ARNOLD F. SHAPIRQO: We have three speakers who will be dealing
with simulation from different perspectives. Mr. Farrokh Guiahi is from
Hofstra University, and he will be talking about computer simulation with a
specific package. Mr, Edward Frees from Wisconsin will be talking about
working backwards from the probability of ruin to the initial reserve,
reversing in a way what we generally do. Mr. Aaron Tenenbein from New
York University will be talking about muiltivariate distributions and simulat-

ions involving those.

MR. EDWARD (JED) W, FREES: I would like to talk about a little trick I
discovered for helping me to capture very complicated simulation models in a
much easier way. The formal title of the paper I wrote on this subject is
"Approximation of the Initial Reserve for Known Ruin Probabilities." It has
appeared in the July 1986 edition (Volume 5, Number 3) of Insurance Mathematics

and Economics. It is a rather technical paper to read, so I will give an
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overview of some of the ideas behind it. I am going to remind you about a
problem that is particularly actuarial in nature -- the ruin problem. Every-
body has seen it on the Part 5 syllabus. It’s one of those few problems that

the Society is not willing to make an elective at this point. I would like to

use a particular kind of methodology entitled "Stochastic Approximation." Now
I am not assuming that anyone is familiar with it, and that would probably
include the panelists as well, but I would like to give an overview. It is the
kind of techniques that you have seen before. Another example is the compound
Poisson, not because that is is a good approximation to reality, but just

because it is something we have seen at some points in our lives.

Historically, we're used to thinking of modeling an insurance enterprise bascd
on a generic nct liability model. It might start with a particular known valuc
and go out over time t. One of the nice things that has been going on in the
last 10 years in the literature is that we used to work with particularly

simple models like compound Poisson and then maybe enhance them a little.
Beard, Pentikainen and Pesonen [1] wrote about putting something in that model
to handle autocorrelation and so they are getting a little bit closer. In
particular, some of the English actuaries now are working very hard on trying
to incorporate the asset side into the model. I am going to be assuming that

we have a generic net liability process, simply claims minus assets or claims
minus premiums minus investment income -- anything you can put on a computer.
Recmember we have a lot of ideas of what should be going on in the real world,
but we could never analyze them. We can only analyzc very simple things using

probabilistic technigues.

When you try to summarize a really hard, hard problem like modeling an
insurance enterprise, there are a lot of different ways to summarize the
output. One particular way that people are used to talking about, is this
notion of a probability of ruin. It is not that the enterprise actually goes
bust or anything, but the probability of ruin is a kind of indicator. That’s
when we think that this risk bearing enterprise is in trouble, and perhaps a
solvency guarantee association would want to take over at that point. The
probability of ruin is to find when ruin would begin. It is defined to be the
first time or the event that the u of t exceeds a particular value, and I'm

going to call that particular value the initial reserve, the initial surplus,
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the start of capital, or however you would like to think of it. In particular,

a lot of the literature has looked at not a particular 10 year or 20 year

period, but at an infinite horizon time. Again, that has been for mathematical
convenience and not a good approximation to reality. So, I will be thinking of
T as a horizon time. We are just looking for the event that at some point this
process exceeds this u which is fixed. It is hard to calculate this probabil-

ity of ruin. It has not been used much in North America just because it is so
difficult to calculate.

Another way of restating the problem that I'd like to do for simulation pur-
poses is to talk about not the whole liability process but just to look at the
biggest point of process. If we look at the largest value of the process, the
probability that that’s exceeding the number u, it is the same thing as looking
at the entire process. I'll call that event z. That is the largest value of

u(t) or another way of describing it is the supremum up to that particular time
point. One particular kind of summary measure that people are used to looking
at is the odds of or the probability of that event occurring. Now that is not
the only kind of summary one would look at, and indeed you can look at a lot of
other ones besides that. It is useful though, because European actuaries have

a good interpretation, or good idea of what this notion means. It has, at

least sometimes, been used in regulation. Again, one of the reasons it hasn’t

been used is it is very hard to calculate in general.

I would like to pose perhaps another interesting but very different mathemat-
ical problem, which is to do the calculation for a fixed probability of ruin
that we have some idea should be, perhaps 1% or 1/10%. Then, what height or
how much initial surplus should be required so that we achieve this probabil-
ity, alpha? I am not going to be a statistician at the moment. I am going to
assume that in a sense I am a probabilist in that I know something about the
distribution function of z. That is, I'm sitting here on my micro-computer,
and I can say whether this is going to be a compound Poisson or any one of
several types of processes, so we can set that. Now we only set that up

stochastically, so that is known.

Now I'd like to remind you about some techniques in numerical analysis.

Recalling from numerical analysis, if you have a function of a certain height,
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g(x), you would like to find that value theta so that g(theta) is a certain

height. In particular, we usually use alpha as equal to zero, but since we are
assuming that this is a known constant, it really doesn’t matter. This is the

same kind of problem, at least from numerical analysis, as finding a minimum or
maximum, because, if g is known, as we’re assuming it to be, you can just take

a first derivative and then go for minimums and maximums,

Here it is a minimization problem. For most probiems that even approximate the
real world, g is a very complicated thing. It doesn’t lend itself to going

back and looking at an inverse type of thing, but we can solve it numerically
though iteration -- a Newton-Raphson procedure. You take your current best
guess and evaluate it at g(xn). So if you are a little high, then you go down, and
if you're a little low, then you go up. It turns out that the derivative value

at that point is the right scaling factor to make the amount of change good.
Many times this derivative is very difficult to calculate, so you just put in
something -- a numerical equivalent or anything - just to make this algorithm
go. All you need is several positive constants that only need to be decreas-

ing. This idea is important.

I want to apply g to this probability calculation, but one of the hard things,

and indeed in the actuarial literature it has been a hard problem for the last
30-35 years, is calculating probabilities of ruin. That is why they are not

used very much. We can approach this kind of problem where g is only observed
with error. For example, the statistical literature describes a situation in

which someone might be interested in saying that so much level of a drug is
administered and the response that you see to that drug, for instance blood
pressure, will not be exactly a certain height but around that height, plus or
minus. So it is the same kind of problem except g can only be observed with
error. With another kind of problem you might think about applying certain
levels of fertilizer to the land. Instead of a2 minimum for that problem you
want to maximize that problem, that is, you would like to maximize that amount

of crop yield,
The g that we will be using, though, in this particular kind of approxima-

tion procedure is the following: All I would like to do now is find that

particular level of surplus so that this function is equal to zero. That is
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the equivalent kind of the problem. Now if you just stopped at this, you could
apply a Newton-Raphson type argument, iterating and then using this kind of g
function. The function g which represents these probabilities is very hard to
calculate. But what’s not hard is to put an approximation of the function in
there. The notation that I am using is an indicator function (I for indica-

tor). If this event occurs, then it is equal to 1, and it is equal to 0, other-

wise. What 3 is meant to be is a proxy for g. It’s very easy to do, and in
the example we’ll be thinking about this z as a computer realized event.

Either it will exceed u or it won’t exceed u. It is wrong because it is just

an approximation, but if we do it long enough, then indeed it will work just
like a Newton-Raphson kind of argument. But that’s a little foreshadowing. 1
am calling theta to be that best surplus level, and we would like to find that
number theta so that the probability of this maximum height, random variable,
exceeding that variability, is equal to the prespecified alpha. That’s the
equivalent to find g -- g(theta) being equal to 0.

That’s really kind of the key idea behind this whole algorithm. That is what I
am calling thetan’s. They’re meant to be approximations of theta that work just
like the xn’s for the Newton-Raphson. Because of the minus signs, it works out
that, instead of a positive sequence of decreasing constants, we want to use f
times fn, so it is more like a steepest descents method rather than a
Newton-Raphson. Theta1 is the initial guess to the algorithm. The z i’s are
computer simulated realizations of the u(t) process. We have g divided by

g prime which works out that, when you do some of the calculations, that we
want to put in a proxy for g prime. If you take a probability and take a
derivative of that, that’s a density. This 2 is an estimate of this

density of the random variable z at theta.

When you write a technical paper, you have an algorithm and you think it works,
but usually you have to go through a few steps of justification and those
justification steps come in two layers. First, you have to do an analysis that

says at least theoretically, if you do something long enough, it will work.

That’s what this first result says, that is, if you do this thing long enough,

the limit of these approximations will be the right value. You need something
like that.
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A second level is you would like to have an example in the results in Section 4
of the Appendix to show people that not only does this thing work in the limit,
but it also works within an hour or two for most problems. Also what is nice
for these kinds of arguments is you give not your best guess theta n at any
particular stage, but you can also give an interval estimate. That is, you can
give a range for how well you think you are doing and indeed this is a fairly
standard confidence interval. A confidence interval will be my best guess
thctarl and down 1.96, there are some central limit theorems coming in here
(alpha1 minus alpha). There is the usual square root of n, and the { n is tending

towards a constant, These are justifications of the procedure. (Sce Appendix.)

1 tried this on a couple of different things I was interested in. Gerber [2]
introduced the idea of autoregressive moving average models. He was interested
in actuaries. They work with problems that often don’t correspond to reality,
and correlation in data is on¢ problem that a lot of times people say, "Of

course claims are correlated. How could they not be between financial
periods?" So he introduced the autoregressive mode! to overcome that. Another
nice paper by Waters and his student Paptriandafylou [3] introduced the idea of
stochastic discounting where interest rates are random variables. That’s a
rather important model that we don’t see very much on the Socicty syllabus
right now. Typically, we've been letting forces of decrements be random
variables, but keeping interest rates deterministic. This is one step in that
direction. The example I'm going to talk about now, not because it is interest-
ing or because it is practically useful, but because everybody has seen it at
some point in his life, is the compound Poisson model. I'll be taking the
simplest possible compound Poisson model, that is one where claims are

distributed exponentially. So in thinking about the number of claims n_ being

the Poisson process driven by something, the amount of claims are expor:cmial
and of a constant premium force. For this example, we've assumed that we are
in fairly stable interest periods, and we’re not explicitly worrying about
interest right now. Here’s a typical realization in Appendix Section 5, that

is it goes down for a while and then all of a sudden we get a claim and it
jumps up by that amount, etc. One reason is that this is one of the few models
you can actually do calculations on, and you can actually get infinite time
horizon calculations. We know that the probability of this process exceeding

21.91 is about 1%. It’s known in this case, one of the few cases where it is
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known. The types of things included in the tables from my paper are time
horizons, known ruin probabilities, approximation of the best reserve, and
density estimates (not that they ar¢ useful for this, but it gave me a lot of
insight into it and so I thought it might help other people as well.) These

are upper and lower bounds of the confidence intervals. As the probability of
ruin increases, the amount of reserve required decreases. As the time horizon
increases, the amount of reserve increases; there is more chance for ruin. The
upper bounds by definition are centered about the best guess theta. It turns
out that for this kind of procedure, just like Newton-Raphson, it very much
matters where you start the procedure theta 1 and I’ve given some recom-
mendations in the paper. In particular, quantal estimation was used. It’s not
too hard to estimate densities, if you know the right statistical literature to
look at. Basically, we are estimating densities by slicker versions of a

histogram, but I’ve also given some references in the paper.
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APPENDIX
Section 1. Ruin Problem

Define U(t) to be the net liability at time t. We can think of U(t) as the

cumulative excess of claims over assets by time t.
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Figure 1

U (t)

time t

We define
P(ruin) = P{U(t) exceeds u at some time t < T)
where T is the horizon time. A useful auxiliary random variable is

4

largest value of U(t) over t £ {0,T]
= suPts‘TU(t)’

Here, sup stands for the supremum over a set.

Statement of the Problem

Find the initial surplus 'u' so that P{ruin) = P(Z > u). Here, the
probability of ruin, P(ruin) = a, is considered known as is the stochastic

structure, symbolized by 'P'.

Section 2. Stochastic Approximation

Recall a problem in numerical analysis. Find 8 so that

g(8) = a = known constant.
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Figure 2

Two types of problems in numerical analysis

7(?) e
x x
e e
-
root-finding function minimization

Two standard methods for solving this problem ares

(1) Newton-Raphson:

Xpap = Xg - 8(Xp) /8" (X))

{2) Method of Steepest Descent:

Xoel = X5~ 3 8(Xy)

where {an} is a decreasing sequence of positive constants. Suppose g(-) can

only be observed with "error."

Examples

1) A patient is administered a dosage X of a drug. We would like the
response (e.g., blood pressure) to be kept at a certain level.
2) X lbs. of fertilizer is applied to a plot of land. Would like to

find the amount 6 to maximize the crop yield.

2541



PANEL DISCUSSION

Section 3. The Approximation Procedure

We wish to calculate the function
g{x) = a = P(Z > x).

This is hard to calculate, but an unbiased estimator
8, =a- I(Zn > x)

is easy to calculate. Here I is the indicator function of a set, that is,
(Z > x) = 1 1€ Z > x and = 0, otherwise. Also, {Zi} is an i.i.d. computer
simulated sequence of realizations of the largest value of U(t).

Let © be the desired surplus level, defined by
P(Z > @) =a

which is equivalent to g(8) = 0. The approximation of 8 is a stochastic

h

version of those defined in Section 2. At the n'® stage, 8 is recursivel
ge, n y

+1
defined by

Section 4,

- -1 _
84 =0, * 0 {1z >0 -a}l/f.

Here 8, is an arbitrary initial value and f_ is an estimate of the density of

Z at 8.

Results of the Procedure:

1. lim Bn = 6 with probability one.
n+o

1
2. o ¢ 1.96{a(1-a)/(n fn)}’i is an approximate 95% confidence interval

for 8.
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Section 5. Example - Compound Poisson

Let {N(t)} be a Poisson process independent of {Xk}, an i.i.d. sequence
of exponential random variables. Define © to be a fixed premium per unit
time. Define the associated Compound Poisson process

N(t)

U(e) = § X -m¢
1 Gy

Figure 3.

Poisson Exponential Liability Process

U, (t)

As a reference point, it is well-known that in this special case that

P(ruin) = P(sup Ul(t) > 21.91) = .01,
t>0
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MR. FARROKH GUIAHI:

SIMULATING AGGREGATE CLAIMS
Introduction

Determining the distribution of aggregate claims of an insurance portfolio is a
subject of immense interest to actuaries. The distribution of aggregate claims
may be used to price insurance products, particularly pricing excess-of-loss
reinsurance treaties. The fluctuation of aggregate claims over a time horizon

is related to the ruin problem.

A large body of literature exists on the subject of aggregate claims. For a
recent account, refer to Panjer and Willmot (1984). The focus of that paper
{(and many other papers cited in its references) is to provide analytic expres-
sions for the distribution of aggregate claims and its moments. The distribu-
tion of aggregate claims involves computation of an infinite series where the
n-th term in the series is the n-fold convolution of the severity (claim

amount) distribution weighted by the probability of having n claims. To
evaluate the series, in the special cases where the n-fold distribution of

severity can be worked out, onc has to resort to numeric methods. Expressions
for the moments of the aggregate claims, in terms of the moments of claim count

and moments of severity (claim amount), can be relatively easily derived.

This paper emphasizes the simulation approach, which requires generating many
aggregate claim values by recourse to simulation. The distribution of aggre-
gate claims is approximated by the empirical (simulated) distribution based on
simulated aggregate claim values, provided the size of the simulated sample is
sufficiently large. By using a simulation language, one can dispense with
programming efforts and concentrate on the modeling and sensitivity aspects of
the problem. With current trends toward using software packages as a vehicle
for a Decision Support System, GPSS (General Purpose Simulation System), a

popular simulation language, was chosen to achieve this end.
In the next section is a brief overview of GPSS. The interested reader should

refer to Schriber (1974) or Gordon (1975) for a comprehensive treatment of the

subject.
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An Overview of GPSS

GPSS is a language used to present models for many systems as well as being a
computer program (i.e., a processor). It is particularly suited for simulating
queueing systems. Modeling in GPSS means constructing a block diagram for
the system to be simulated. The blocks are selected from a set of some 40 pre-
defined block types, which are connected together by directed lines. The
inclusion of a given block depends on the logical structure of the problem to
be simulated. For each block, one has to provide block information, which
consists of Location, Operation, and Operands. Location (optional) is the name
given to a block, used when a reference is made to that block from another
block. Operation indicates the type of action to be performed by the block.
Activation of a block corresponds to the occurrence of events to be simulated
by the system. Operands provide the data for the action to be executed by the
block.

In GPSS, dynamic entities are called transactions or units of traffic. Trans-
actions are created, moved in the model (i.e., through the blocks), and eventu-
ally removed. Initially there are no transactions in the model; at later times
transactions are brought into the model and moved through the blocks. As a
transaction moves into a block, it causes the occurrence of the event to be
simulated. The GPSS processor schedules the future movement of transactions,
one at a time, in the model. It performs the actions associated with entries

of a transaction into a block, and collects as well as updates statistics of
interest to the model builder.

The static entities in GPSS are called equipment. The equipment represents
the entities that are permanent during the simulation period. In simulating a
one-line, one-server toll station, cars would be the transactions, and the

ticket attendant would be the equipment (called a Facility in GPSS termin-
ology). By analyzing simulation outputs, one obtains an understanding of
behavior of the real system to be simulated. By changing the input parameters

to the model, one can experiment with the system.
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The GPSS Model
A block diagram of the GPSS model to simulate distribution of aggregate
claims is presented in Exhibit 1. The input specifications are (i) claim count
distribution, (ii) severity (claim amount) distribution, (iii) format for the
frequency table of simulated aggregate claims, and (iv) number of aggregate
claims to be simulated.

EXHIBIT 1

GPSS Block Diagram for Simulating Aggregate Claims

(YZERO)

(YZERO)
SAVEVALUE

(NZERO)

{NZERO)

(NEXT)
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A transaction, here a counter, is created in every unit of time through the
GENERATE block. This transaction has a numeric characteristic called
Parameter 1. After entering the model, the transaction moves immediately from
the GENERATE block to the ASSIGN block, where a value to its Parameter 1, P1,
is assigned according to claim count distribution. At the ASSIGN block, the
value assigned to P! is chosen according to the function FN$COUNT. P1 denotes
the number of claims. After the number of claims have been determined for the
transaction, it moves to a TEST block. At the TEST block, Pl is tested for

value of zero. If the claim count is zero, the transaction moves to the
nonsequential block YZERO. YZERO is a SAVEVALUE block; its purpose

is to store a value in the user-defined SAVEVALUE variable AGG (aggregate
claims), the value of zero corresponding to the case of no claims. Then the
transaction moves to the unconditional TRANSFER block, which directs it to
block NEXT. If the claim count is not equal to zero, the transaction moves to

the next sequential block NZERO, which is a SAVEVALUE block. Here a value from
the severity distribution is added to the current value of SAVEVALUE variable
AGG, initially zero. A claim amount is determined that is added to the

existing value of the variable AGG. The claim amounts are generated by the
function FNSAMT.

The transaction next moves to a LOOP block. At the LOOP block, the current
value of Pl (number of claims) is decremented by one; then it is tested for
value of zero. If P1 (current value) is zero, the transaction moves immedi-
ately to the next sequential block NEXT. NEXT is a TABULATE block,
whose purpose is to record a computed value of AGG for the frequency table
associated with aggregate claims. After leaving the TABULATE block, the
transaction enters another SAVEVALUE block in order to reinitialize the value
of variable AGG to zero for the next transaction entering the model. Finally,
the transaction moves to the TERMINATE block, where it is removed from the

model.

If the P1 (current value) is not zero, the transaction moves immediately to

block NZERO. At block NZERO, another claim amount is generated and added

to the existing value of SAVEVALUE variable AGG. Then the transaction moves to
the LOOP block and proceeds from there. After looping a number of times, the
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value of P1 is eventually decremented to zero, causing the transaction to exit
the LOOP block for the next sequential block.

Applications

As a first illustration, we consider the example provided by Wooddy (1973).
Here, the claim count distribution is Poisson with mean 2, and the severity
values are 1, 2, 5, 7 and 9 with corresponding probabilities .15, .30, .10,

.25, and .20. Exhibit 2a gives GPSS statements for Wooddy’s example. Columns
1 and 4 of Exhibit 2b give the simulated values of the cumulative distribution
function of aggregate claims. There is close agreement, using 3 decimal

places, between the simulated cumulative distribution function values of
Exhibit 2b, column 4, "Cumulative Percentage,” and the theoretical values
{using convolutions) derived by Wooddy (1973), on page 33, Table 5, column (9).
The GPSS output also provides sample (simulated) values for the mean and
variance of aggregate claims. The exact values of means and standard
deviations are 9.6 and 8.037. These values correspond closely to the simulated

values 9.632 and 8.062, respectively.

The second example considers the case where claim count is Poisson with mean
50, and the severity is Lognormal with parameters mu = 891, and 0 = 1.78.
This severity distribution was fitted to medical malpractice closed claim data;
see Miccolis (1981). In this case, working out the theoretical distribution of
aggregate claims would be extremely difficult as compared to the Wooddy
example. Exhibit 3a gives the GPSS statements for the program, and Exhibit 3b
provides the simulated cumulative function for the aggregate claims in this
case. To estimate the probability that the aggregate claims in this case are

less than or equal to 2,000,000, see the lower table of Exhibit 3b to find the
value .713. Exhibit 3b has two output tables. The upper table provides the
estimate of distribution of aggregate claims at specified values in the first
column for a simulated sample of 1,500, The lower table gives the same
estimates based on a simulated sample of 2,000. One’s confidence in estimates
of aggregate claims distribution is sharpened by considering different sample

sizes.

2548



SIMULATION METHODOLOGY FOR ACTUARIES

EXHIBIT 2a

GPSS Statements For The Wooddy Example

SIMULATED AGGREGATE DISTRIBUTION USING GPSS
1973 SOA PART 5 STUDY NOTES BY JOHN C. WOODDY
SECTION 3.3, PAGE 31

GPSS INPUT REQUIREMENTS :
(1) SPECIFICATION OF CLAIM COUNT DISTRIBUTION
(2) SPECIFICATION OF CLAIM AMOUNT DISTRIBUTION
(3) PARAMETERS FOR THE AGGREGATE TABLE
(4) SIMULATED SAMPLE SIZE

¥ N F K F % %k % % ¥

SIMULATE
*

COUNT FUNCTION RN1,Dl0 CLAIM COUNT DISTRIBUTION
0.1353,0/.4060,1/.6767,2/.8571,3/.9473
0.9834,5/.9954,6/.9988,7/.9997,8/.9999,9
*

AMT  FUNCTION RN1,D5 CLAIM AMOUNT ( SEVERITY ) DISTRIBUTION
0.15,1/.45,2/.55,5/.80,7/1,9
*

*

GENERATE 1 CREATE A COUNTER
ASSIGN 1,FNSCOUNT DETERMINE THE NUMBER OF CLAIMS
TEST NE P1,K0,YZERO TEST IF THE NO. OF CLAIMS IS NON-ZERO
NZERO SAVEVALUE AGG+,FN$AMT ACCUMULATE CLAIM AMOUNTS
LOOP 1,NZERO PROCEED WITH THE LOOP
NEXT TABULATE DISTN TABULATE AGGREGATE CLAIM
SAVEVALUE AGG,KO REINITIALIZE AGGREGATE CLAIM AMOUNT
TERMINATE 1 REMOVE THE COUNTER
*
YZERO SAVEVALUE AGG,KO IF CLAIM NO. IS 0 THEN AGG CLAIM IS O
TRANSFER , NEXT CONTINUE
*
*
DISTN TABLE X$AGG,0,1,60 TABLE SPECIFICATION FOR AGGREGATE CLAIMS
*
START 10000 NUMBER OF SIMULATED AGGREGATE CLAIMS
END
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EXHIBIT 2b

Descriptive Simulated Statistics for the Wooddy Example
TABLE DISTN
ENTRIES IN TABLE 10000 MEAN ARGUMENT 9.632 STANDARD DEVIATION 8.062

UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE
LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER
0 1338 13.37 13.3 86.6
1 421 4.20 17.5 82.4
2 894 8.93 26.5 73.4
3 251 2.50 29.0 70.9
4 254 2.53 31.5 68.4
5 358 3.57 35.1 64.8
6 156 1.55 36.7 63.2
7 822 8.21 44.9 55.0
8 248 2.47 47.4 52.5
9 1029 10.28 57.7 42.2
10 330 3.29 61.0 38.9
11 627 5.26 66.2 33.7
12 289 2.88 69.1 30.8
13 205 2.04 71.2 28.7
14 394 3.93 75.1 24.8
15 145 1.44 76.6 23.3
16 508 5.07 81.6 18.3
17 157 1.56 83.2 16.7
18 365 3.64 86.9 13.¢
19 147 1.46 88.3 1.6
20 179 1.78 90.1 9.8
21 132 1.31 91.4 8.5
22 78 0.77 92.2 7.7
23 172 1.71 93.9 6.0
24 51 0.50 94.4 5.5
25 135 1.34 95.8 4.1
26 62 0.61 96.4 3.5
27 55 0.54 97.0 2.9
28 51 0.50 97.5 2.4
29 31 0.30 97.8 2.1
30 35 0.34 98.1 1.8
31 20 0.19 98.3 1.6
32 34 0.33 98.7 1.2
33 10 0.09 98.8 1.1
34 30 0.29 99.1 0.8
35 14 0.13 99.2 0.7
36 16 0.15 99.4 0.5
37 12 0.11 99.5 0.4
3s 8 0.07 99.6 0.3
39 10 0.09 99.7 0.2
40 4 0.03 99.7 0.2
41 6 0.05 99.8 0.1
42 2 0.01 99.8 0.1
43 4 0.03 99.8 0.1
44 2 0.01 99.9 0.0
45 2 0.01 99.9 0.0
46 1 0.00 99.9 0.0
47 1 0.00 99.9 0.0
48 2 0.01 99.9 0.0
49 2 0.01 99.9 0.0
50 0 0.00 99.9 0.0
51 1 0.00 100.0 0.0

REMAINING FREQUENCIES ARE ALL ZEROS
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EXHIBIT 3a

GPSS Statements For The Second Example

Claim Count Distribution : Poisson with mean 50
Severity Distribution : Lognormal with parameters p= 8.91 and o = 1.78

SIMULATED AGGREGATE DISTRIBUTION USING GPSS

GPSS INPUT REQUIREMENTS :
(1) SPECIFICATION OF CLAIM COUNT DISTRIBUTION
(2) SPECIFICATION OF CLAIM AMOUNT DISTRIBUTION
(3) PARAMETERS FOR THE AGGREGATE TABLE
(4) SIMULATED SAMPLE SIZE

R B 2 2 2 3

SIMULATE

*

POI50 FUNCTION RN1,C13 CLAIM COUNT DISTRIBUTION
0,0/.0125,34/.0881,40/.1144,41/.182,43/.3721,47/.6986,53/.7873,55
0.858,57/.9309,60/.9796,64/.9972,68/1,70
*

LNORM FUNCTION  RN1,C27 CLAIM AMOUNT ( SEVERITY ) DISTRIBUTION
0,14.59/.0013,35.52/.0035,55.42/.0062,86.49/.0122,134.96/,0228,210.61
0.0401,328,65/,0668,512.86/.1056,800.31/.1587,1248.88/.2266,1948.86
0.3085,3041.18/.4013,4745,72/.5,7405.66/.5987,11556.45/.6915,18033.73
0.7734,28141.44/.8413,43914.48/.8944,68528.06/.9332,106937.30
0.9599,166874.60/.9772,260406.50/.9878,406361.60/.9938,634123.2

0.9965,989542.80/.9987,1544172.00/1,3760259.0
*

GENERATE 1 CREATE A COUNTER
ASSIGN 1,FNSPOI50 DETERMINE THE NUMBER OF CLAIMS
TEST NE P1,K0,YZERO TEST IF THE NO. OF CLAIMS IS NON-ZERO
NZERO SAVEVALUE AGG+, FN$LNORM ACCUMULATE CLAIM AMOUNIS
LOOP 1,NZERO PROCEED WITH THE LOOP
NEXT TABULATE * DISTN TABULATE AGGREGATE CILAIM
SAVEVALUE AGG, K0 REINITIALIZE AGGREGATE CLAIM AMOUNT
TERMINATE 1 REMOVE THE CQUNTER
*
YZERO SAVEVALUE AGG,;KO IF CLAIM NO. IS 0 THEN AGG CLAIM IS O
TRANSFER +NEXT CONTINUE
*
DISTN TABLE X$AGG, 500000,500000,40 TABLE SPECIFICATION FOR AGGREGATE
* CLAIMS
START 500
START 500
START 500
START 500
END
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TABLE DISTN

ENTRIES IN TABLE
1500

UPPER
LIMIT
500000
1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000
5500000
6000000
6500000
7000000
7500000
8000000

PANEL DISCUSSION

EXHIBIT 3b

GPSS Partial Output For The Second Example

MEAN ARGUMENT

1771258.000
OBSERVED PER CENT
FREQUENCY OF TOTAL
12 0.79
229 15.26
485 32.33
344 22.93
194 12.93
94 6.26
51 3.39
29 1.93
25 1.66
18 1.19
9 0.59
2 0.13
2 0.13
4 0.26
1 0.06
1 0.06

REMAINING FREQUENCIES ARE ALL ZERO

TABLE DISTN

ENTRIES IN TABLE
2000

UPPER
LIMIT
500000
1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000
5500000
6000000
6500000
7000000
7500000
8000000

MEAN ARGUMENT

1779362.000
OBSERVED PER CENT
FREQUENCY OF TOTAL
19 0.94
306 15.29
639 31.94
463 23.14
248 12.39
124 6.19
67 3.34
47 2.34
37 1.84
22 1.09
14 0.69
3 0.14
2 .09
5 0.24
2 0.09

2
REMAINING FREQUENCIES ARE ALL ZERO

0.09
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STANDARD DEVIATION

962048.000
CUMULATIVE CUMULATIVE
PERCENTAGE REMAINDER

0.7 99.1
16.0 83.9
48.3 51.6
71.3 28.6
84.2 15.7
90.5 9.4
93.9 6.0
95.8 4.1
97.5 2.4
98.7 1.2
99.3 0.6
99.4 Q.5
99.5 0.4
99.8 0.1
99.9 0,0

100.0 0.0
STANDARD DEVIATION

986624.000
CUMULATIVE CUMULATIVE
PERCENTAGE REMAINDER

0.9 99.0
16.2 83.7
48.1 51.8
71.3 28.6
83.7 16.2
89.9 10.0
93.2 6.7
95.6 4.3
97.4 2.5
98.5 1.4
958.2 0.7
99.4 0.5
99.5 0.4
99.7 0.2
99.8 0.1

100.0 0.0
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Conclusions

This presentation emphasizes the simulated approach to computing distribution
of aggregate claims. By using a simulation language such as GPSS, one
dispenses with programming efforts and concentrates on modeling and analysis
aspects of the problem. The simulation facilitates sensitivity analysis, and
computation n-fold convolutions of the severity distribution is not required,
nor is summation of an infinite series. The GPSS processor is available for
both mainframe computers and microcomputers. Although not attempted here,
one can easily extend the GPSS model to price excess-of-loss reinsurance
treaties. Because reasonably accurate cstimates of the distribution of
aggregate claims can easily be obtained by GPSS, more use of the aggregate

claims distribution may be made in pricing insurance products.
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MR. AARON TENENBEIN: Johnson and Tenenbein (1981) presented general
procedures of generating bivariate distribution involving two random variables
whose marginal probability distributions and rank correlations coefficients are
specified in advance. In this paper, a specific procedure, called the normal

method, is discussed. An extension of this method to generating multivariate
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distributions involving more than two random variables is briefly discussed.
Applications of these methods to simulation models, which involve the
determination of surplus reserves for life insurance companies, are discussed.

1. Introduction

A model, which can be used to describe the surplus requirements for a life

insurance company, is as follows:

K
Re = Reoy + Py + jz Xty

1 (LD
where
Rt = Surplus at the end of period t.
Pt = Planned Contribution to Surplus during period t.
th = Random variable representing increment (or decrement) to surplus

during period t for line of business j.
This model can be utilized to answer a number of questions such as:

L. What is the probability of ruin for given strategies regarding planned

contributions to surplus?

2. How should the strategy for planned contributions to surplus be designed

so as to keep the probability of ruin at a sufficiently low level?

In order to answer such questions, assumptions must be made concerning the
joint distribution of the random variables th , X FREEEE th in each period.
The specification of a joint distribution is difficult for a number of reasons.
First, there is usually limited information available on the increments for the
different lines of business (such as bond investments, stock investments,
individual insurance, and group pensions). Second there is a limited number of

theoretical multivariate distributions which are available (see Johnston and
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Kotz (1972)). At best we may be able to specify the marginal distributions of
th, th, ...,and th and a measure of dependence between cach pair of
variables. These distributions and measures of dependence may remain the same

or may change over time.

In this presentation we will present methodology for constructing multivariate
distributions which have given marginal distributions and specified measures of
dependence between pairs of variables. These multivariate distributions can
then be generated by Monte Carlo Simulation for use in the model given by
equation (1.1) or in any model involving the use of two or more non-independent

variables.
2. Joint Multivariate Distributions Involving Two Variables

The problem can be stated as follows. We wish to construct a joint distribu-

tion of two variables, f( and XZ’ which has the following 3 properties.

I.  Marginal cumulative distribution function of X, is
Fl ( Xl ) .
2. Marginal cumulative distribution function of X5 1is

Fz(Xz).

3.  Spearman Rank Correlation Coefficient between Xy and Xq is
s(-1= s = 1)

Procedures for generating a bivariate distribution with these three properties were
discussed by Tenenbein and Gargano (1979) and Johnson and Tenenbein (1981). One
such procedure, called the normal method, involves the following steps:

t ]
1. Generate 2 numbers from a standard normal distribution: 1 ,V

2. Let u=u

v = cu' + (l—c)v'
3. Let xi = $(u')
[ V'
}(2 = ¢ ]
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4 Let a) a) x; = Fil(xy): and

b i) x5 = F3l(xy) or

i) x5 = F31(1-x3).

Here ®(t) is the cumulative distribution function of the standard normal

distribution.
1t 2
&(t) = — e"2%/2 gy
/7ij-m

The parameter ¢ is chosen so as to yield a given value of the rank correlation
s for0<s<l. Using 3b(i) yields a rank correlation of s, whereas using

3b(ii) yields a rank correlation of -s, The relationship between ¢ and s is:

2sin{ns/6)
Zsin(ns/6)+/l—4sin2(ns/6)

The values of ¢ as a function of s are given in Table 1.

c =

TABLE 1

Values of ¢ for Fixed Values of s
for the Normal Method

Rank Correlation s Value of ¢

0 0
A 095
2 176
3 248
4 314
5 377
.6 440
7 .507
.8 583
5 684
1.0 1.000

NOTE:

[}
1. For positive correlations use: X5 = Fil(xz)
2. For negative correlations use:. X3 = F-z'l(l-'xé)
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The Spearman’s Correlation Coefficient is sometimes called the rank correlation
coefficient and is discussed by Kendall (1962). This rank correlation
coefficient is, as the name suggests, the Pearson product moment correlation
coefficient between the ranks of the two variables. The use of the Pearson

product moment coefficient p , defined as:

COV(xl IXZ)
p =
9102 (2.1)

is not used because it will not remain constant over the various
transformations in steps 2, 3, and 4 of the normal method. There are other
disadvantages of the use of p , which are discussed by Johnson and Tenenbein
(1981).

The normal method begins with generating random numbers from a normal
distribution, Other procedures involve generating numbers from other
distributions, such as the uniform, exponential and double exponential
distributions. These methods are discussed by Johnson and Tenenbein (1981)
along with the effects on the specifications of the resulting bivariate

distribution.
3. An Example Involving Stock and Bond Returns

Suppose we wish to generate a bivariate distribution for stock and bond returns

with the following properties.
1. The stock return variable, Xj , is lognormal, with &n(l+xj) havinga
normal distribution with mean .12 and standard deviation .10. The mean

and standard deviation of X3 will be 13.31% and 11.36% respectively,

2. The bond return variable, X2 , is uniform over the interval .05 to .12,
The mean and standard deviation will be 8.50% and 2.02% respectively,

3. The rank correlation coefficient s = -.4.

To generate the joint distribution of Xy and Xy , we proceed as follows:

2557



PANEL DISCUSSION

4 t
1. Generate 2 numbers from a standard normal distribution: u and v .

v =ocu + (l-c)v‘
(from Table 1, ¢ = .314)
3. Let xp = &(u)
Xy = 0 )
c?+(1-c)?
4 (@ Let &n{l+xy) = .12 + L1087l (xg) = w
Let x = exp(w) - 1
(b) Let x5 = .05 + .07(1l-xg)
By repeating these steps, the joint distribution will have the three properties

stated above.

4. Extensions to Joint Multivariate Distributions

Involving More than Two Variables

The normal method can easily be extended to cover the case of k variables, In
k(k-1)
2

this case k different cumulative distributions and rank correlations must

be specified.

The steps would involve the generating of k normally distributed random
variables. Then the random variables would be correlated to form a
multivariate normal distribution with the specified rank correlation
coefficients. After that, the variables would be transformed to conform to the

specified marginal distributions.
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MR. SHAPIRO: This session was put together, in part at least, by the Committee
on Relations with Statistical Associations of which I am the Chairman and Jed
is the Vice-Chairman. We are very interested in any areas in statistics that
people might like to see pursued and presented at these kinds of sessions. So

if anyone has some interest we would be very happy to hear about it.

MR. THOMAS P. EDWALDS: I was curious as to what techniques are available
for determining the optimal number of iterations that should be utilized in a
simulation and does this depend on your hardware or particular software
package?

MR. GUIAHI: 1 would look at the simulated distribution to see whether it

stabilizes, but there might be other techniques.

MR. TENENBEIN: It depends on what your aim is. There are methods if you
are for instance trying to do what Farrokh had been doing in cstimating the
average value. If he was estimating the average value of stock claims above

a given level, then there are various confidence intervals that you can use.
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For instance, you might be calculating the mean and also calculating the
standard deviation of all those numbers, then using a sampling theory in order
to determine how close you are to the "right answer" if you were able to
simulate say millions upon millions of times, I was being very facetious when
1 said millions upon millions of times, but if you do it thousands upon thou-
sands of times say for 2,000 simulations, how close are you to the theoretical
average value you would have if you had unlimited money in your computer
budget, unlimited time to wait, and boredom wasn’t a factor? I don’t know if
that relates to your guestion, but that is basically within the realm of

confidence intervals,

MR. STUART KLUGMAN: Jed, we’ve learned that you could successfully
simulate the aggregate distribution. I could plot that distribution and
physically extract the 95th percentile or whatever you might be looking for. 1
presume your approach is designed to get me to that point more efliciently.
Can you give me some idea of what the advantage in efficiency is so that I’ll

want to learn how you do it?

MR, FREES: I call the 95th percentile approach the naive approach and I didn’t
go over that. I didn’t want to waste your time too much on the naive approach.
This is indeed the method that one should use for an initial start-up procedure
to get you in the ball park. Specifically, I designed the algorithm in mind

with a micro-computing environment where one does not have vast amounts of
working storage and what you’ll like to do is just like a Newton-Raphson
technique to keep a few values around, in particular, your latest guess. Just
like in Newton-Raphson you’d like to update things as they go, and if you are
worried about storage capacity, then you would want to go with the stochastic
Newton-Raphson technique. I would say that was the big advantage over the
first approach that you outlined.

MR. ALBERT K. CHRISTIANS: I think we talked about this once before. When
you go through your normal method, you seem to be imposing some kind of
normality assumption on your joint distribution. I am concerned that, in the
problems that we work with, that may be the most well behaved of the joint
distributions, when in fact you want to evaluate what some upper limit on a

proability of ruin is or where the variables are not well behaved. It seems
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like you are imposing certain amounts of order on things, and I'm not sure you
thought about this problem, but maybe you could explain whether it is inherent
in what you’ve done. An alternative that I would like to suggest or evaluate

in comparison would be to just generate the uniform values directly and then do
some kind of either rejection/acceptance with one more random variable or just
switching the pairs of u’s and v’s based on one additional uniform random

variable.

MR. TENENBEIN: That’s an excellent suggestion. I think I do remember

that suggestion from before. Basically, with respect to the way the method
started with two normal distribution random variables, it didn’t matter what

you started with. I could have started with two uniform random variables which
I have in the Tenenbein-Gargano paper referred to in my presentation, which
instead of normallly distributed random variables starts with uniform; it takes

the weight of linear combinations and goes through the process.

We went a step further and took a look at a whole family of ways of doing it.
That is the subject of the 1981 paper, and we took a look at specific examples
where you start with exponential variates, also with double exponential vari-

ates and work that out. With respect to the normality assumption, the fact

that you start with a normal distribution doesn’t impose that the distribution

that you end up with is normal. As a matter of fact, the distributions

weren’t, and in the example I did, I took great pains to make sure that we
weren’t ending up with the normal. We ended up with a bivariate distribution
whose marginals were lognormal and also uniform, and it could be anything. The

normal distribution is just a way of getting to the marginal distributions.

You start with any distributions you care to name. There is no unique way of
generating your distribution because the point is you’re starting with limited

information anyway so you know exactly what the joint distribution is. There
shouldn’t be any surprise that you end up with joint distribution which is not

unique. So that’s a problem that I have wrestled with quite a bit.
We have talked about how to discuss how the different results of your risk ruin

model or the probability of ruin and how sensitive the results are to starting

with the assumption of whether it’s normal or uniform or double exponential or
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any other distributions. The problem you have is that, when you get to more
than two variates, trying to hypothesize a uniform gets to be very difficult.
The idea that you mentioned about the rejection criterion I think might have
some merit. I hadn’t thought about it in quite that way, but that might have
some merit in the way of generating the distributions. The problem we get to
is how do we get back to the uniform distribution? That gets into very diffi-
cult integration problems where, for the normal distribution, it means just
iooking into the table of normal distribution random variables. But for
uniforms and for the others you get into very complex integration problems.
What was interesting about it is the types of integration problems that we had
were so horrendous that we reported to a program called maxima which was
developed by the Massachusetts Institute of Technology which actually goes
through algebraic manipulation of integrals. That was basically the inherent

problem that was involved, and it gets kind of horrendous.

I gucss my own suggestion would be to, at least in the bivariate case, take a
look at the different ways of doing it and see how sensitive your risk prob-
ability of ruin is to the specification of these different distributions. If

it is fairly insensitive to the specifications, which we found was the case in
the work I had done at Equitable, then we would hope when you get into the

multivariate cases the same thing would carry through.

MR. CHARLES S. FUHRER: [ just wonder if Mr. Guiahi could e¢xplain why it
is such a good idea to use simulation methods at all? It just seems to me
there are all kinds of good approximation methods for coming up with the final

distributions given the initial unconvoluted ones.

MR, GUIAHIL: Some of the approximation techniques might only evaluate the
distribution of certain specified values. With the simulation you can get the
approximation for the entire distribution. I would say in my case using GPSS
would be to enlarge this model and solve bigger problems that you would be
interested in as the insurer, this would be only part of it. If you can extend
this to a bigger model, that solves other problems not just simulation of IDS
claims because there are many ways to do this and one has to evaluate the

merits of cach one. As to model building this is a good approach.
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MR. TENENBEIN: I found at least in work that I’ve been involved with

that simulation was a very neat approach in the case of trying to hypothesize
the joint distributions. You can’t even get at the joint distributions. You

can simulate them, but it is very difficult to try to get the joint distribu-

tion and do anything analytical with respect to it. [ found it of great use to
use simulation. I think with respect to the number of simulations you have to
carry out, is that simulation, though theoretically should give you the exact
answer, it will not, because practically you are limited to the number of
simulations that you can carry out. I think the question you had raised was
very important, and you should be concerned with how much error is involved in
the simulation. I think that is quite an important thing to be concerned with,
and unfortunately a lot of pecople aren’t. But what you find here are the
results; no attempt is made to get the errors. There is a very simple way to
get at the errors especially if you're dealing with means. It goes back to
sampling theory, and it is really confidence interval estimations, It is
probably one of the most useful areas or applications of confidence interval
estimations that I know of.

MR. SHAPIRO: I guess the question is the uniqueness of your result.
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