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The Long Road to Enlightenment: 
Loss Reserving Models from the Past, with 

Some Speculation on the Future 
 

By Greg Taylor 

 

Editor’s Note: This article is the first in a new series in Expanding Horizons on “The Art of 

Actuarial Science.”  

 

1. The Jurassic Period 
Everyone is familiar with the earliest find in the fossil record, the chain ladder. Though perhaps of 

mysterious provenance, it has been the mainstay of loss reserving for many years and, to a large 

degree, reliance on it continues. 

In its earliest form, it consisted of the computation of age-to-age factors, defined as 

𝑓𝑗 = �̅�𝑗+1 �̅�𝑗⁄  ( 1.1) 
 

 

where �̅�𝑗 is some kind of average of observations 𝑌𝑖𝑗 for accident period 𝑖 and development period 𝑗, 

and �̅�𝑗+1 is the comparable average for development period 𝑗+1. For example, the observation 𝑌𝑖𝑗 

might denote cumulative claim payments to the end of development period 𝑗. 

It was supposed that the factor 𝑓𝑗 measured the development from 𝑗 to 𝑗 + 1. This measurement was 

taken over certain accident periods, and then assumed to apply to others for which development from 

𝑗 to 𝑗 + 1 lay in the future. In this way forecasts of future claim experience, and hence loss reserves 

were formulated. 

The same evolutionary branch contained other variants of this creature, such as the Bornhuetter-

Ferguson procedure (Bornhuetter & Ferguson, 1972), Cape Cod (Bühlmann, 1983, 2016), 

Benktander-Hovinen (Benktander, 1976; Hovinen, 1981), and so on. 

In their original skeletal forms, such as described above for the chain ladder, none of these approaches 

could fairly be referred to as a “model.” They were calculation routines, or algorithms, but this alone 

did not qualify them as models.  
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According to more modern convention, a model requires a set of statements describing the stochastic 

properties of the observations, considered as random variables. For example, these properties might 

include specification of a set of model parameters, and how the mean of each observation is related to 

these parameters. It might include a statement on any stochastic dependencies between observations. 

Ultimately, each of these primitive creatures evolved into a more complex life form, consisting of a 

stochastic model from which well-known forecasts could be derived by rigorous procedure, e.g., 

maximum likelihood. However, there are other reasons to question the evolutionary fitness of the 

denizens of the Jurassic world, reasons which are related to the simplicity of these models. 

The early models included a column effect, as illustrated in ( 1.1), and also a row effect, dependent on 

𝑖. But what if it were considered that data were subject to a diagonal effect, characterized by 𝑖 + 𝑗, 
e.g., superimposed inflation? The models provided no obvious way forward. 

What if the rate of claim settlement changes from one row to another (Fisher & Lange, 1973), so that 

the age-to-age factors from past accident periods are not representative of the future? Such features 

increase parameterization in models that are already crowded with parameters. Their accommodation 

by means of simple row/column/diagonal manipulation is difficult in any event. 

 

2. The Cretaceous Period: Seed-Bearing Organisms Appear 
Jurassic models were gradually succeeded by properly formulated stochastic models. These generally 

take the form 

𝑌𝑖𝑗 = 𝑓(𝑌, 𝛼) + 𝜀𝑖𝑗 , 𝐸[𝜀𝑖𝑗] = 0 ( 2.1) 

where 𝑓 is some real-valued function, 𝑌 denotes the entire set of observations 𝑌𝑘ℓ, 𝛼 some set of 

unknown parameters, and 𝜀𝑖𝑗 a stochastic error. 

The chain ladder ( 1.1) can be extended to a stochastic model in this form. Hachemeister & Stanard 

(1975) introduced an alternative stochastic representation of the chain ladder. Reid (1978) introduced 

a stochastic model of the payments in respect of individual claims, and Hachemeister (1978) a 

stochastic model of development of individual claim incurred costs, including manual estimates. 

Many models of this sort can be accommodated within the framework of a Generalized Linear 

Model (GLM). These are models of form ( 2.1) but with the distribution of the 𝑌𝑖𝑗 restricted to the 

exponential dispersion family (EDF) (Nelder & Wedderburn, 1972).  

This family was convenient because the software package GLIM was introduced in 1977 for 

parameter estimation. The Tweedie sub-family of the EDF was introduced in Tweedie (1984), and a 

number of other GLM packages introduced for models from this more restricted (but still extensive) 

family. Seminal papers (Wright, 1990; Brockman & Wright, 1992) cemented GLMs in the actuarial 

literature. Note, however, the much earlier application (Baxter, Coutts & Ross, 1979). 

The GLM framework has proven useful in modelling claim data sets with many complex and 

overlapping features, e.g.,  

• Taylor & McGuire (2004): Auto liability with rates of claim settlement varying over time, 

superimposed inflation varying with payment quarter and operational time, and legislative 

change causing a shift in claim cost according to accident quarter; 

• Taylor & Mulquiney (2007): a mortgage insurance cascaded model with sub-models for 

healthy policies, in arrears, and properties in possession; 



3 

 

• Taylor, McGuire & Sullivan (2008); a medical malpractice model of individual claim 

development, using covariates such as specialty, geographic area of practice, etc. 

The practical application of GLMs to reserving is described in a monograph by Taylor & McGuire 

(2016). Nowadays, GLM applications are regarded as a subset of predictive modelling. 

3. The Paleogene: Increased Diversity in the Higher Forms 

3.1. Adaptation of species 

It may happen that model parameters shift over time, in which case ( 2.1) requires generalization to 

the following: 

𝑌𝑖𝑗 = 𝑓(𝑌, 𝛼(𝑡)) + 𝜀𝑖𝑗 , 𝐸[𝜀𝑖𝑗] = 0 ( 3.1) 

where 𝛼(𝑡) is the parameter set 𝛼 at time 𝑡 = 𝑖 + 𝑗, i.e. on the diagonal labelled 𝑖 + 𝑗. The parameter 

set is viewed as evolving over time as 𝛼(𝑡)~𝑃(. ; 𝛼(𝑡−1)), where P is some measure that depends on 

the previous parameter set 𝛼(𝑡−1). 

Such models are called evolutionary or adaptive. They are reminiscent of the Kalman filter 

(Harvey, 1989) except that they usually involve stochastic errors other than the Gaussian ones 

required by Kalman. They have been investigated by Taylor (2008) and Taylor & McGuire (2009). 

  

3.2. Miniaturization: parameter reduction 

The Jurassic models were lumbering, with overblown parameter sets. GLMs were more efficient but 

without much systematic attention to the issue. A more recent approach that brings the issue into 

focus is regularized regression, and specifically the least absolute shrinkage and selection 

operator (LASSO) model (Tibshirani, 1996). 

In this model, parameter estimation for model ( 3.1) is effected by minimization of the penalized log-

likelihood 

𝐿(𝑌; 𝛼) + 𝜆‖𝛼‖1 ( 3.2) 

where 𝐿(𝑌; 𝛼) is the log-likelihood of the data set 𝑌 for parameter set 𝛼, ‖𝛼‖1 is the 𝐿1-norm of 𝛼 

(i.e., the sum of the absolute values of all parameters), and 𝜆 > 0 is a discretionary parameter. 

The second member of ( 3.2) is a penalty that increases as the number of model coefficients increases, 

and as their sizes increase. It serves to constrain model complexity. Indeed, a very useful property of 

the lasso is that it typically forces many components of 𝛼 to zero  

 

3.3. Granular (micro-) models 

Granular models (also referred to as micro-models) analyse the fine detail of the claim process. 

Norberg (1993) represented this as a cascade of marked Poisson processes, as in Figure 3-1. 

Figure 3-1 

Norberg’s Claim Process 
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These models are generally regarded as commencing with Norberg (1993, 1999), Hesselager (1994), 

with implementation by Pigeon, Antonio & Denuit (2013, 2014) and Antonio & Plat (2014). Note, 

however, the earlier implementations (Hachemeister (1978, 1980), Taylor & Campbell (2002)). 

A model of this sort would justify itself if it were to produce a loss reserve superior to that produced 

by aggregate methods. But recall that the (aggregate) chain ladder is minimum variance for ODP 

observations (Taylor, 2011), so a granular model would not enhance prediction efficiency in this case. 

Recall also that granular models will often consist of cascaded multiple sub-models, and the 

multiplicity is likely to inflate prediction error (Taylor & Xu, 2016). 

Huang, Wu & Zhou (2016) claim that micro-models outperform aggregate, but their calibration and 

forecast are essentially the same as the Payment per Claim Finalized aggregate model found in the 

literature (Taylor, 1986, 2000), so it is conditioned by more data than their aggregate models. This 

does not seem to compare like with like. 

In summary, it appears that the jury is still out on the value of micro-models. 

4. The Anthropocene Period: The Rise of Roboticus Sapiens 
Recent years have seen the gradual introduction of machine learning (ML) into the loss reserving 

literature. A very early contribution came from Mulquiney (2006), who used an artificial neural net 

(ANN) to model a set of claim finalizations tabulated by accident quarter, development quarter, 

payment quarter, operational time at finalization and season (calendar quarter) of finalization. 

The ANN proved effective in recognizing a number of known eccentricities in the data set. 

Specifically, it detected superimposed inflation that varied over both finalization quarter and 

operational time, and also the effects of a legislative change (accident quarter effect) that occurred in 

the midst of the claim experience. It produced goodness-of-fit superior to that of a parallel GLM. 

More recently, ASTIN has established working parties to investigate the application of ML to loss 

reserving (Harej, Gächter & Jamal, 2017; Jamal et. al, 2018). The scope of the latter study extended 

beyond ANNs, also including random forests and gradient boosting machines. Other recent 

contributions have been made by Kuo (2018) and Wüthrich (2018). 
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5. The Later Anthropocene: The Watchmaker and The Soothsayer 
The future appears to involve a contest between granular models and ML. The user of a granular 

model resembles a watchmaker, manipulating the microscopic components of the mechanism. The 

ANN user, on the other hand, does not specify a model at all, but trusts the neural net to digest all the 

detail of the data, make deductions from it, and speak forth a prophesy without particular explanation, 

as would a soothsayer. 

As the volume of available claim data increases, there is a natural inclination to investigate the detail 

of the claim process in greater depth. This may be justified when the data are demonstrably at 

variance with the simpler forms of model. 

A granular model will be a valuable aid to understanding of the claim process if it can be 

demonstrated effective in explaining the data. However, there are difficulties in formulating such a 

model. Some of these are referred to in Section 3.3.  

But a possibly even greater difficulty arises from dependencies within the model. Consider, for 

example, Figure 3-1. It is unlikely that the amounts of partial payments are stochastically independent. 

If the observed partial payments in respect of a Liability claim consist of a number of small payments, 

followed by a much larger one, it is likely that this last is made in essential satisfaction of the claim, 

and the probability of a further large payment becomes small. 

Consider, as another example, Workers Compensation claims, in which claimants may repeatedly 

move in and out of “Incapacitated” and “Active” states. One might account for this by modelling 

separately the rates of recovery from incapacity in spells 1, 2, etc., of incapacity, and similarly 

different rates of relapse for different spells of activity. However, it is unlikely that, for example, the 

event of relapse in say spell 3 of activity would be independent of the prior history of the claim. 

Relapse is probably more likely if the claim duration is only three weeks, as compared with three 

years. 

The modelling of dependencies of this sort is difficult and laborious, and some models will contain a 

vast multiplicity of possible dependencies requiring investigation. Yet the model might become of 

dubious reliability if they do not receive attention. For these reasons, the potential of granular models 

may be limited. 

The properties of ML are almost diametrically opposed to those of granular models. An ANN, for 

example, uses mainly simple numerical operations to produce an abstract function that matches a data 

set well. This unstructured form of model often yields little, if any, understanding of the claim process 

(the interpretability problem), and care will be required in forecasting because a model that fits well 

to past data does not necessarily predict the future equally well.  

On the other hand, because of the ANN’s abstract nature, it is well able to accommodate dependencies 

of the sort discussed above. There is, in my view, considerable promise in ML, but its main challenges 

will be to develop model interpretability and robustness of forecasts. For the present, the lasso 

discussed in Section 3.2 is a relatively structured form of ML. Its model form is available to the user, 

and is, to a certain extent, interpretable. 

Greg Taylor, Ph.D., FIA, FIAA, FIMA, is an adjunct professor in the School of Risk and Actuarial 

Studies at University of New South Wales in Sydney, Australia. He can be reached at 

gregory.taylor@unsw.edu.au.  
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