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I n the past two years we have certainly heard a 
great deal about banks and brokerage firms in 
distress. Financial institutions such as insurance 

companies were also receiving serious scrutiny, 
something that they otherwise would not receive 
under most periods of economic turmoil. In 2008 

the news (particularly emanating from the United States) was dominated by the spectre of bank failures due to 
excessive investment in sub-prime mortgages and other lower quality investments. In 2009, through a variety 
of mechanisms including government assistance and accounting changes, the banking industries throughout the 
world began to recover.

In conjunction with this environment, a number of propositions have been put forward on how to prevent this 
crisis from ever happening again. Some have criticized the practice of keeping many financial transactions “off-
book,” and that process is now being reversed in conjunction with deleveraging. Others have attacked regulation 
and internal risk management practices, and both of these are now being reviewed and are receiving heightened 
and intense scrutiny, both within public and private circles.

Some have also attacked the large U.S. banking institutions, claiming that the “too big to fail” principle was in 
part behind the creation of this financial mess. A similar attack has been levied against many financial institu-
tions around the world. The idea is that a “too big” institution knows that it is critical to an economy, and there-
fore expects a bailout when aggressive risk taking does not work out. Hence government intervention through 
legislation has been considered as an option to break up the dangerously big financial institutions.



Rewards
&ss

2010  SECTION LEADERSHIP
Andrew Dalton, Chairperson
Edwin Martin, Vice Chairperson
Donald Krouse, Secretary
Gary Hatfield, Treasurer
William Babcock, Council Member
Richard Faw, Council Member
Frank Zhang, Council Member
Chad Hueffmeier, Council Member
Jonathan Hobbs, Council Member
Thomas Terry, Board Partner
Donald Krouse, Web site Coordinator
Donald Krouse, Life & Annuity Symposium
Frank Zhang, Annual Meeting Representative 

Nino A. Boezio, Newsletter Editor 
(Chief Editor of this issue) 
TD Bank Financial Group 
161 Bay St. 32nd Floor 
Toronto, ON M5J 2T2
ph: 416.308.3036 f: 416.983.9701 

Joseph Koltisko, Newsletter Editor 
(Chief Editor of next issue) 
New York Life Insurance Co
51 Madison Avenue
rm 1113
New York, NY 10010
ph: 212.576.5625  f: 212.770.3366 

SOA STAFF
Sam Phillips, 
Staff Editor
e: sphillips@soa.org

Robert Wolf,
Staff Partner
e: rwolf@soa.org

Jill Leprich, 
Section Specialist
e: jleprich@soa.org

Julissa Sweeney, 
Graphic Designer
e: jsweeney@soa.org

ISSUE 55 FEBRUARY 2010

CHAIRPERSON’S 
CORNER

I t has certainly been an interesting year for investment actuaries. As I write this article, 
it has been slightly more than a year since the Dow Jones Industrial Average declined 
precipitously and, in the United States, the Troubled Asset Relief Program (or TARP) 

was passed with the first installment of funds disbursed to eligible recipients. Of course, the 
insurance industry has not been immune to the volatile markets of the last year. Indeed, we 
have all been impacted in some way—from our employer’s and/or clients’ investment port-
folios with which we work to our own personal investments. On a positive note, I am happy 
to say that the actuarial profession has responded remarkably well to the financial crisis and 
that, once again, our approach as a profession to investment risk, and enterprise risk more 
broadly, has been validated.

I am also happy to report that the Investment Section has had a very successful year. In this 
brief article, I would like to highlight just a few of our many accomplishments over the past 
year: 

•  Towards the end of 2008, we published a collection of papers on the financial crisis. 
The feedback I’ve received suggests this publication was timely, insightful, and thought-
provoking. I hope that many of you have had a chance to read this collection of articles.

•  We continued to develop and sponsor a number of continuing education opportunities. In 
particular, we contributed to the 2009 Investment Symposium, the 2009 Spring Meeting 
and the 2009 Annual Meeting. Again, the feedback we received has been very positive for 
all of these events.

•  We sought out new opportunities to fund research related to investment work in the actuar-
ial field. In particular, we provided sponsorship to the 44th Actuarial Research Conference, 
hosted by the University of Wisconsin School of Business. I am happy to say that some of 
the material you will read in this newsletter is a direct result of presentations made at that 
conference. I think you will find that the high quality of these articles speaks volumes about 
the success of that event.

Of course, it goes without saying that the success of our Section is ultimately dependent 
upon the contributions of our members. For that, I thank each and every one of you for a 
successful year. Whether you spoke at one of our sessions, attended one of our continuing 
education events at Society of Actuaries’ meetings, or simply kept abreast of developments 
in our profession through reading this newsletter, I thank you for your involvement. I am 
anticipating another successful and busy year and, to meet that goal, your contributions will 
continue to be vital.

We are currently developing our strategic agenda for this year. In a lot of ways, I expect that 
our key goals will be very similar to last year. We will continue to focus on:
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• Communications
• Networking
• Education
• Research
• Integration with non-SOA organizations

Most importantly, we will focus on what you—as a Section member—tell us we should. Your 
input and feedback is critically important to ensuring that our Section council stays focused 
on important issues that are of interest to our members. We would love to hear from you. This 
Section is a member-driven organization. If you have any thoughts on important issues we 
should be addressing this year, please do not hesitate to contact me.

I would also like to take this opportunity to ask for your support as a volunteer. As I men-
tioned above, our success over the past year has been due to your efforts. We will again be 
looking for speakers, authors, and other volunteers over the next year. If this is something 
you’re interested in, please let me hear from you.

I started this article by noting that the past year has been an interesting one. Given the nature 
of our work, I suspect that my successor as Chair of the Investment Section Council will be 
able to make similar comments in next February’s Risk & Rewards newsletter. I’m looking 
forward to an interesting and exciting year—and am expecting a few surprises along the way. 
Our goal as a Section council is to support your work as investment actuaries during these 
interesting, and often challenging, times. I am optimistic that our work as a Section is add-
ing value to the profession and, more generally, helping to elevate the actuarial profession in 
the larger investment community. Again, please let us hear from you if there’s anything we 
should be doing in support of those goals. 

Andrew Dalton

Learn more at www.soa.org.

May 31-June 1, 2010
Tokyo, Japan

This seminar is designed to give professionals with limited-to-moderate experience 

an understanding of how to better quantify, monitor and manage the risks 

underlying the VA and EIA products.

Equity-Based Insurance Guarantees Conference
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book, “Unwarranted Intrusions: The Case Against Government 
Intervention in the Marketplace” 2 (written in 2006 before this 
financial crisis was gathering momentum), made a number of 
observations which I found rather insightful:
•  Deposits were insured through the creation of the Federal 

Deposit Insurance Corporation (FDIC) via the Banking Act 
of 1933. The FDIC has unfortunately encouraged weak banks 
to exist by allowing them to continue in operation rather than 
fail. Fridson cites that for bank losses, “the deposit insurer 
has transformed them into costs that include payments to 
depositors, assumptions of bad loans, financial assistance 
to the troubled institutions, and the insurer’s operating and 
administrative expenses.”

•  Fridson cites the findings of an economist, Eugene White, 
who performed a study of the FDIC for the period 1945 to 
1994. White concluded that, “the tab has probably exceeded 
the cost of bank failures that would have occurred if deposit 
insurance had not been adopted.” White also concludes that, 
“the destruction of weak banks and the formation of larger 
banks would have produced a stronger banking system with 
fewer losses.” Fridson remarking on these findings states, “by 
enabling small, weak banks to continue attracting deposits 
despite their precarious financial state, the innovation halted 
the trend of merger and consolidation of the nation’s highly 
localized banking industry.”

•  Fridson also makes the following observation, “In reality, the 
impetus behind deposit insurance was the preservation of small 
banks. These institutions were highly prone to failure. Not only 
were their financial resources limited, but small banks’ loan 
portfolios were heavily concentrated in their local economies. 
A single major employer’s failure could financially devastate 
the small businesses to which a local bank had lent money. The 
small banks knew that they could survive any business down-
turn, however, if only the government would agree to insure 
their deposits. That way, depositors wouldn’t withdraw their 
money, no matter how shaky the little banks became.”

“TOO BIG TO FAIL” VERSUS “TOO SMALL 
TO SUCCEED”
In testimony before the House Financial Services Committee 
in Washington on Oct. 29, 2009, Treasury Secretary Timothy 
Geithner gave indications that new regulations governing big 
financial institutions would, “enable government the ability to 
order even healthy companies to ‘shrink and separate’ if their 
size or scope threatened the broader economy.”1 The premise 
is that market dominance is potentially a bad thing, and that 
companies will engage in risky business strategies (that they 
otherwise would not engage in) if they know a government 
put option exists. President Obama has indicated that he also 
wants measures taken against the large institutions.

The public discussions on this issue have influenced many 
to conclude that being big is often bad, or at least not neces-
sarily the best market model to follow, especially in the case 
of financial institutions. I do tend to somewhat differ in the 
overall view, because I do not believe many large organizations 
like the idea of gambling with their survival, thinking that the 
government will otherwise bail them out if things do not turn 
out—virtually everyone wants their organization to succeed, 
even though sometimes this might be tainted by unreasonable 
optimism. Also an organization can make a mistake by assum-
ing the cost of risk-taking is quantifiable when it is not, leading 
to higher losses than ever anticipated—but this is not caused by 
any ease of mind created by the thought that the government 
might otherwise be there to assist if things go wrong. As well, 
there is the legal repercussions and embarrassment of being 
partly responsible for a failed or failing organization.

We should also focus our scrutiny on the smaller institu-
tions. In contrast to the “too big” argument, some have 
argued that being small is also a serious problem, and that 
U.S. government regulations have encouraged weak banks 
to continue in operation. For example, Martin Fridson in his 

TAKING STOCK: IS BEING BIG BAD …  | FROM PAGE 1

IN CONTRAST TO THE “TOO BIG” ARGUMENT, SOME HAVE ARGUED 

THAT BEING SMALL IS ALSO A SERIOUS 
 PROBLEM. …

“ “
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Even though Fridson notes that the FDIC has also protected 
banks that are, “too big to fail,” one of the other major points 
made from his review is that the United States now likely has 
more banks (and many of smaller size) than it otherwise would 
have had, because of government introduced safeguards. This 

result has caused a weaker financial system, given the inef-
ficiencies that it indirectly brings to the financial system as a 
whole. If larger institutions had been developed and fostered, it 
would have been healthier for the banking sector.

CONTINUED ON PAGE 6

Photos from the banking crisis of the 1930s. Source: http://www.fdic.gov/about/history/historicalphotogallery.html
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In my own review of FDIC data, I was surprised at the number 
of U.S. financial institutions that exist. Consolidation did not 
occur with any great regularity until the early 1990s. There 
were 14,146 insured commercial banks in 1934 (after the FDIC 
was created in 1933), to a peak of 14,507 in 1984 (with the 
overall number being relatively stable during that period of 50 
years), to a much smaller total of 7,097 at the end of 2008 (a 
drop of more than half).3 The decline since 1984 was in large 
part due to unassisted mergers between banks, even though the 
number of banks remaining is still a relatively large number, 
especially when compared to other countries.

Of course, how big an institution is allowed to get is another 
question, but having small and smaller institutions is not a solu-
tion either. No one really wants to talk about the latter since 
the public, politicians and the banking industry may be overly 
concerned with losing the perceived value of deposit insurance 
and with defending against the spectre of reduced competition, 
but it does nullify the cleansing effects that a free market has 
on limiting the number of institutions that operate.

Ironically, FDIC insurance has helped the “too small to suc-
ceed” banks to otherwise survive. By having deposit insurance 

as a backstop, they can engage in speculative ventures with 
depositors’ money. So the argument levied that the banks “too 
big to fail” eventually become a problem for government, can 
also be levied against having too many small banks.

WHAT ABOUT TOO MUCH COMPETITION?
Throughout this period of financial turmoil, I often would hear 
(primarily through the Canadian media) about how Canada has 
a superior banking system and how regulation had safeguarded 
Canadian banks from getting into the same financial trouble 
that U.S. banks now faced. I was not always sure if this told 
the complete story (for example, one of the Canadian banks, 
CIBC, was heavily involved in sub-prime exposure, and it was 
not due to any violations of either regulations or general bank 
industry standards). In addition, the strengths and weaknesses 
of any type of financial system can alternate depending on what 
economic environment we happen to be in.

I attended a presentation in June 2009 that addressed the 
prospects for the Canadian banking industry and the financial 
industry as a whole worldwide. There was one particular com-
ment that really caught my attention, and which really shed 
some light on one of the major structural differences between 
the Canadian and U.S. banking industry. The speaker high-
lighted the fact that since the major Canadian banks have such 
a dominant presence in the Canadian market, they make suffi-
cient shareholder return from providing basic banking services 
without having to get into more exotic and risky investments.4 
He noted the fact that Canadian banks are an oligopoly, which 
means that the top six banks control about 90 percent of the 
market (I include two charts from that presentation for illustra-
tion, and one includes a 7th financial institution).

TAKING STOCK: IS BEING BIG BAD …  | FROM PAGE 5

THE ARGUMENT LEVIED THAT THE BANKS “TOO  

BIG TO FAIL” EVENTUALLY BECOME A PROBLEM FOR 

GOVERNMENT, CAN ALSO BE LEVIED   
AGAINST HAVING TOO MANY  
SMALL BANKS.
 

“ “
Associated	Press
President Franklin D. Roosevelt signed the Glass-Steagall Act which was passed in 
1933, and which separated commercial and investment banking
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Canadian payments—Clearing Systems Volumes

Big Six Canadian Banks—Net Income by Geographic Area, C$ millions 

Share	of	2008	ACSS	Clearing	Volumes

Note:        The big six Canadian banks are Royal Bank of Canada, Toronto-Dominion (TD), Bank of 
Nova Scotia, Bank of Montreal, Canadian Imperial Bank of Commerce, National Bank of 
Canada

Source:   Bank Annual Reports, Moody’s Analysis and Estimates

Canada
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U.S.

Source:  Canadian Payments Association; Moody’s Analysis. Note: ACSS=Automated Clearing Settlement System; LVTS=Large Value Transfer System
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Taking the speaker’s point further, if we use the common mea-
sure of 10:1 (that many like to use when comparing the United 
States to Canada in terms of size, based on relative population), 
one might figure that six banks in Canada may be like having 
60 banks dominating the U.S. market. However this rationale 
can be flawed.

Having a higher population does not necessarily mean that we 
should proportionately have more banks. If there were only 60 
banks dominating a particular market, one could still expect 
more competition than with only six as is the case for Canada.
Competition is not always tied to the population it serves, but 
how easy it would be to coordinate strategies among the banks 
and thus function in an attitude of cooperation rather than 
rivalry, and it also depends on how fragmented the market is. 
Canadian banks do compete with each other, but the pressure 
for dramatic innovation is likely not as strong as in the U.S. 
environment. More companies competing in a particular sector 

simply make the prospect for competition to be more intense. 
In particular, it does increase the likelihood that at least some 
banks are going to try to push innovation to a breaking point, 
hurting the entire industry if other banks follow suit. They may 
also engage in risky investments to get a better return. It can be 
embarrassing for any company to be boring.

We do note in the following table that market dominance is 
significantly different between the two countries. In actual-
ity, while the Canadian banking industry is dominated by six 
banks, the United States has really only three or four, and these 
are of much smaller scale than their Canadian counterparts (the 
top two Canadian banks are almost equivalent to the top 10 
U.S. banks in terms of deposit market share, and ironically the 
10th largest U.S. bank is now also a Canadian bank because of 
its pre-crisis acquisitions).
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2009 
Rank

2008 
Rank U.S. Institution

US  
Market 
Share 

(%)

Total 
U.S.  

Deposits  
($B)

1 1 Bank of America Corp. 12.00 907.4

2 4 Wells Fargo & Co. 10.04 758.9

3 2 JP Morgan Chase & Co. 8.46 639.8

4 5 Citigroup Inc. 4.24 320.8

5 16 PNC Financial Services Group Inc. 2.44 184.2

6 7 U.S. Bancorp 2.02 152.8

7 8 SunTrust Banks Inc. 1.57 118.5

8 12 Capital One Financial Corp. 1.51 114.3

9 14 BB&T Corp. 1.51 114.2

10 11 Toronto-Dominion (TD) Bank 1.39 104.9

Total of the Big 10 45.18% $3,415.8

Total for Institutions in U.S. $7,559.9

2009 
Rank

2008 
Rank Canadian Institution

Cdn 
Market 
Share 

(%)

Total 
Deposits 
(Cdn $B)

1 1 Royal Bank 21.82 406.4

2 2 TD Bank 21.16 394.0

3 3 Bank of Nova Scotia 18.42 343.0

4 4 Bank of Montreal 12.77 237.7

5 5 CIBC 11.56 215.2

6 6 National Bank 4.15 77.3

Total of the Big 6 89.88% $1,673.7

Aggregate for Cana-
dian Banks

$1,862.1

The 2009 U.S. data includes bank and thrift deposits at retail and nonretail branches (active and de 
novo) as of June 30 and is pro forma for all acquisitions that have closed or have been announced at 
Oct 18. The 2008 data is based on ownership reported by the companies as of June 30, 2008. Source 
SNL Financial

Source: Office of the Superintendent of Financial Institutions Canada (OSFI), August 
31, 2009 Data
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As mentioned earlier, the United States has over 7,000 com-
mercial banks, but it also has an additional 1,200 savings 
institutions insured by the FDIC. Of course, many of these 
U.S. financial institutions are of varying sizes and many do not 
dominate the market at all. Canada in contrast has 22 domestic 
banks, 26 foreign banks, and 29 foreign bank branches. In 
addition, Canada has 66 trust and loan companies (but many 
of these are also owned by the big six Canadian banks).5 
Once we remove the top six Canadian financial institutions 
from the Canadian financial system, the remaining players 
are rather insignificant. Also, if we compare the two coun-
tries and assume all of the Canadian entities are separate and 
independent (which they are not, but this may also be the case 
for some of the U.S. institutions) we have 60 times as many 
financial institutions in the United States. This is quite a stark 
difference in the number of organizations operating within the 
two countries.

When you have many companies (banks) fighting for a market, 
it does change some of the dynamics. If there are too many, 
they have to compete vigorously. They offer higher deposit 
rates and lower charges (perhaps too low) as there are many 
other institutions that would otherwise take the business. Thus 
some (perhaps many) of the banks have to get into risky invest-
ments elsewhere in their overall book of business, because 
they make poor returns on basic offerings and services. For 
example, a regional bank which has a limited branch network 
and is thus unable to expand, may engage in riskier financial 
activities in order to achieve growth. When you have 7,000 
U.S. banks (or even 60) which have to compete with each 
other, you can envision a scenario where they feel forced to 
become more risky in order to remain at the same position or 
to get ahead of their peers, or even to achieve a similar share 
return to Canadian banks. I have to wonder how different 
things would be if instead of six major banks, Canada had 
the equivalent of 60 banks fighting for the Canadian market 
with none being dominant—I strongly believe that Canada 
would have a much weaker and more fragile banking system. 
The Canadian banks would be induced to come up with more 

provocative and more challenging products and ideas, some of 
which could fail miserably.

I should point out that Canada also has deposit insurance (the 
Canadian Deposit Insurance Corporation) which has similari-
ties to the FDIC, so that on its own insurance may not always 
prove to be a negative. But combine that with too many (and 
smaller) institutions, and we can produce a market efficiency 
problem.

COMPETITION LEADS TO INNOVATION—
BUT SOME GOOD AND SOME BAD
Competition does benefit society as it produces incentives to 
come up with new innovations that benefit the consumer. Such 
innovations also benefit the company that produces them, since 
it will achieve a relative advantage to its peers.

When competition is very strong, the pressure to come up 
with new products and ideas can be substantial. We see for 
example, in times of warfare, technological advances are more 
rapid and are of much greater magnitude than in times of peace. 
However, given the complexity of our world, competition can 
also lead to developments that are much farther ahead than 
our ability to comprehend and manage effectively. When the 
competition becomes severe, it can cause a company to go 
farther than it should go into innovative products that are not 
completely understood.

COMPETITION CAN LEAD TO GREATER 
RISK-TAKING
An organization, in order to distinguish itself from its peers, 
may at times be motivated to take on excessive risk. Depending 
on the incentives in place, certain individuals or divisions can 
be motivated to take chances based on the risk-reward payoff 
matrix. If a person faces limited downside risk if a decision is 
wrong (such as just losing a job) but has substantial upside, 
then the risks undertaken can be worth the gamble. These 
wrong incentives are not truly tied to the size of the institution, 

CONTINUED ON PAGE 10

WHEN COMPETITION IS VERY STRONG, THE 
PRESSURE TO COME UP WITH NEW PRODUCTS AND IDEAS 

CAN BE SUBSTANTIAL.
“ “
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even though a large organization has a large distribution net-
work which can generate higher returns for a successful idea. 
But I do not consider risk-taking to be unduly influenced by 
the government put option for larger organizations, but rather 
misaligned corporate incentives. For smaller organizations 
however, it may become more of an issue, as there is less to 
lose and more to gain given the much smaller corporate asset 
base, especially given the presence of deposit insurance.

SUMMARY
There have been two conflicting themes operating in the U.S. 
banking system, and this tends to be a similar problem in 
many world economies. We have a financial system where 
organizations may be protected from failing which results in 
efficiencies. We also encourage more risk taking as too many 
financial institutions are doing the same thing, and they there-
fore become motivated to look for ways to develop a relative 
advantage. Some institutions may be content with making a 
limited return on their investment, while others will become 
very aggressive in order to win market share over their peers.

Competition on its own promotes innovation and efficiency. 
However, it also promotes an environment, especially in today’s 
world, where developments and products can move beyond our 
ability to understand and monitor them. An organization tries to 
achieve a competitive edge, but without understanding its real 
cost. Here competition becomes a detriment to the well-being of 
the sector as a whole and the population it serves.

If there are cracks in our risk management systems or an orga-
nization has improperly aligned incentives (especially in terms 
of time periods, and where benefits or gains are too short-term 
in nature) then we can find an organization running somewhat 
loose in its revenue generating enterprises, without realizing 
that its products and services have hidden costs which no one 

truly understands, and is not being provisioned for via the bal-
ance sheet.

Under a totally free market framework, being small normally 
results in a company ceasing to exist unless it can achieve a 
competitive advantage. If there are too many institutions in any 
particular sector, it has been understood that the weakest can 
and do fail. Unfortunately many forget these other principles 
of competition as they wish to break-up larger organiza-
tions into smaller components while protecting organizations 
through goverment insurance programs.

In summary, we may not always know what number of compa-
nies of any type may be the ideal in any particular sector of the 
economy, and what is the appropriate size of an institution, but 
it does cause us to wonder. But targeting large organizations 
because of their absolute size relative to the economy is flawed 
if we do not address many of the other technical and practical 
problems that have been created by inappropriate government 
safeguards and intervention. 

FOOTNOTES:
1    Paletta, Damian, “U.S. Seeks Power to Force Even Strong Banks 

to Shrink”, Wall Street Journal, October 30, 2009, page A8.
2    Fridson, Martin S., Unwarranted Intrusions: The Case Against 

Government Intervention in the Marketplace, Hoboken: Wiley, 
2006. 251, 262.

3    “Historical Statistics on Banking, Commercial Bank Reports, 
CB02: Changes in Number of Institutions”, <www2.fdic.gov> 
[path: http://www2.fdic.gov/hsob/hsobRpt.asp]

4    Routledge, Peter, “Moody’s Investors Service – Canadian Bank 
Overview”, Canadian Banking Sector: Fixed Income & Equity 
Perspective, (luncheon seminar sponsored by Toronto CFA So-
ciety), June 11, 2009.

5    “Who We Regulate, Federally Regulated Financial In-
stitutions”, <http://www.osfi-bsif.gc.ca/> [path: http://
www.osfi-bsif .gc.ca/osfi/index_e.aspx?Detail ID=568 ]

TAKING STOCK: IS BEING BIG BAD …  | FROM PAGE 10

Nino Boezio, FSA, FCIA, CFA, is with TD Bank Financial Group. He can be contacted at 
nino.boezio@TD.com



 FEBRUARY 2010 RISKS AND REWARDS |  11

TWO FOR THE PRICE  
OF ONE

By Brett Gallagher

CONTINUED ON PAGE 12

N ormally, the saying “two for the price of one” 
is associated with a good deal; something to be 
desired.  Across the global financial markets, “two 

for the price of one” also nicely describes the price action in 
2009—periods of both extreme distress and incredible eupho-
ria. Whether it was something to be desired is another matter.

Through March 9th of this year, the poor returns of 2008 
continued across a variety of asset classes. Equities were par-
ticularly distressed as fixed income markets had already begun 
to stabilize late in 2008. Since early March, however, we have 
seen strong rallies across typically “riskier” classes in what can 
only be described as a once-in-a-lifetime bull market rally for 
a number of them.

Return	Performance	December	31st	–	March	9th
ML US High Yield Master -2.1%

ML US Corp BBB +1.2%

ML Global High Yield Euro Issuer +3.9%

ML Global EM Sovereign +0.0%

MSCI World -24.9%

MSCI Emerging Market Equity -20.7%

MSCI All Country World Equity -23.4%

Oil +5.5%

Copper +31.6%

Euro vs. US$ -9.7%

Combine the following table with the one above
Return	Performance	March	9th	–	September	30th
ML US High Yield Master +50.8%

ML US Corp BBB +27.1%

ML Global High Yield Euro Issuer +65.4%

ML Global EM Sovereign +33.9%

MSCI World +66.2%

MSCI Emerging Market Equity +113.7%

MSCI All Country World Equity +68.9%

Oil +50.0%

Copper +52.5%

Euro vs. US$ +16.1%

The reversals we experienced from asset class lows, to their 
highs have not been seen in decades.  In some cases (equities) 
we witnessed the biggest moves since the 1930s.

Credit	Spreads	(Baa-UST)	
12	Month	Difference	between	Maximun	and	Minimun

High	Yield	vs	BBB	Spreads	
12	Month	Difference	between	Maximun	and	Minimun

Source: Bank of America Merrill Lynch, MSCI Barra, Bloomberg, 

Artio Global Investors

Source: Bank of America Merrill Lynch, Artio Global Investors
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Such rapid market turns would seem to reflect a belief that 
we have avoided the worst possible outcome of the economic/
credit crisis (i.e., Armageddon) and that we are on our way to a 
more typical cyclical recovery.  The real question is, “are we”?

BACKDROP
Most of the market’s liquidity-related issues of Q4 2008 had 
been addressed through the massive and coordinated efforts of 
governments and central banks around the world. In total, fiscal 
“stimulus” packages aggregated to approximately 4 percent of 
Global GDP.

Emerging	Sovereign	Spreads	
12	Month	Difference	between	Maximum	and	Minimum

S&P	500	Index	
%	difference	Between	12	Month	Hi/Lo

MSCI	World	Index
%	Difference	Between	12	Month	Hi/Lo

Source: Bank of America Merrill Lynch, Artio Global Investors Source: Standard and Poor’s, Artio Global Investors

Source: MSCI Barra, Artio Global Investors
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US$ Bn As a % of 
National GDP

China* 1171 27%

United States 787 6%

Europe 298 2%

Japan 154 3%

Latin America 149 4%

Emerging Asia 52 2%

Central/Eastern 
Europe

23 2%

Russia 20 1%

TOTAL 4% Global GDP

Source: Nomura Research.  China number includes non-central 

Gov’t spending  

As a result, credit spreads collapsed and funding markets 
opened wide. Corporate issuers have taken advantage of the 
opportunity and, in our opinion, behaved wisely by extend-
ing borrowing maturities to take advantage of historically low 
interest rates while at the same time providing themselves with 
enhanced financial flexibility.

Monetary (including quantitative easing) and bailout programs 
(the banks, Fannie/Fredie, GM/Chrysler, AIG) provided further 
fuel to remedy the worst of the credit market woes.  

Corporate	Funding	Alternatives	($bn)

Give	and	Take

France, like 
many countries, 
is considering 
ways to recoup
some of the 
money it has 
spent on bank 
bailouts.

PLEDGED 
GOVERNMENT
RECAPITAL-
IZATION OF 
BANKS AS A 
SHARE OF 
2008 GDP

U.S.

BELGIUM

U.K.

GERMANY

FRANCE

SWITZERLAND

ITALY

5.2%

4.8%

3.9%

3.4%

1.4%

1.1%

0.7%

Source: International Monetary Fund

Source: Bloomberg

CONTINUED ON PAGE 14

SUCH RAPID MARKET TURNS WOULD SEEM TO REFLECT A BELIEF 
THAT WE HAVE AVOIDED THE WORST POSSIBLE  
OUTCOME OF THE ECONOMIC/CREDIT CRISIS. …

“
“
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What has been neglected throughout, however, and what we 
fear will guide the future, is massive leveraging—first of the 
consumer sector in a number of developed countries and now, 
as these same consumers pull back, their governments. Recent 
actions in both sectors are likely to result in lower secular 
growth rates and present the greatest risks to a return to sustain-
able global growth.

Consumers across many developed countries had support-
ed spending, not through incomes, but through borrowing. 
Household debt levels reached record highs in many countries, 
notably the United States and the United Kingdom amongst the 
larger economies.
 
Some may question our obsession with the consumer that we 
have voiced consistently throughout our previous commentar-
ies. However, we do not think our concern is overdone given 
the houshold’s importance to most economies, typically rep-
resenting between 50 percent and 70 percent of their GDP. In 
other words, as goes the consumer, so goes the economy.
The mathematics of consumer deleveraging are clear. By way 
of example, if we assume the U.S. consumer needs to repair 
their balance sheets to pre-2000 levels, they will have to pay 
down roughly $5 trillion in debt (reducing household debt 
from 97 percent of GDP to 65 percent). If this is accomplished 
through increased savings, many years will be required to 
reach the point of stability. Should the U.S. savings rate rise 
to its long-term average of 8 percent of income (it is currently 
5 percent), approximately $800 billion will be saved annually, 
implying a six-year debt paydown. Slower economic growth 
will be the side effect of this prudent activity, as savings 
become money no longer spent.

A corollary to the retreating consumer lies in the resurgent 
government sector. However, with the government gener-
ally 20 percent or less of GDP, its spending must grow by 3 
percent to counter each 1 percent decline in consumer spend-
ing. While countries with excess savings, like China, are able 
to provide such a boost without borrowing, most developed 
countries have had to resort to the kindness of strangers and 
have stepped up their borrowing. The hope is that by the time 
the government needs to withdraw, spirits should be such that 
the consumer is ready to pick up the baton.

We tend to feel that the amount of stimulus in the pipe today, 
and what is likely to flow over the next six to nine months 
(U.S. stimulus spending is approximately 25 percent complete, 
China approximately 50 percent complete, at time of writing 
in Nov. 2009), will tend to lend a positive boost to the world 

Personal	Consumption	as	%	GDP

Source: The Economist Intelligence Unit

Household	Liabilities	as	%	GDP	(2007)

Source: Eurostat, Federal Reserve, BIS Papers No. 46, Statistics Canada
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economy. We differ with the consensus in that we find gov-
ernment efforts unsustainable and doubt consumers will be 
in shape, or in the mood, to take over when the government 
steps back.

The chart that follows is from the IMF’s June report, “Fiscal 
Implications of the Global Economic and Financial Crisis,” 
http://www.imf.org/external/pubs/ft/spn/2009/spn0913.pdf. 
In it, the IMF calculates likely government sector debt/GDP 

ratios in five years time, based on current debt levels and 
forecast spending and growth plans. The reading is sobering.

Developed countries are shown in green, while emerging 
countries are shaded in grey. What jumps out at even the casual 
observer is the fact that it is the developed nations who have the 
most stretched balance sheets—the same observation we made 
about the consumer side of the ledger.

Source: The IMF

Government	Debt/GDP	Estimates	in	Year	2014

… WE FIND GOVERNMENT EFFORTS UNSUS-
TAINABLE AND DOUBT CONSUMERS WILL BE IN 
SHAPE, OR IN THE MOOD, TO TAKE OVER WHEN THE GOVERNMENT 

STEPS BACK.

CONTINUED ON PAGE 16

“ “
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It is also worth noting that almost 25 percent of Chinese 
Treasury holdings have a maturity of under 12 months (up from 
less than 4 percent just over a year ago). So, while the Chinese 
have not yet left the party, they have certainly moved closer 
to the door. There are many who poo-poo the idea of China 
abandoning U.S. Treasuries. Their simple question is, “what 
else are they going to do with the money”?  They then answer 
themselves by stating, “certainly they would not stop buying 
UST for that would damage the $800 billion worth of debt they 
already hold which is akin to shooting yourself in the foot.” I 
would argue that the maturity restructuring of their debt is 
just step one. Step two will be when the Chinese choose to 
issue sovereign debt denominated in the U.S. dollar, begin-
ning to currency match their assets and liabilities.  Maybe 
it’s the back door they’re looking to sneak out of? The Russians 
announced their intentions to issue $18 billion in dollar debt in 
mid-October, while the Germans decided to do it a few weeks 
earlier. Can the Chinese be far behind?

While debt levels are certainly a signal, it all really comes down 
to a country’s ability to service its debt. At year-end 2008, the 
U.S. debt service ratio was 3.1 percent of GDP. Assuming IMF 
projections are accurate and interest rates do not change (we 
think that is probably a generous assumption), American’s debt 
service ratio will increase to 4.1 percent by 2014. Should rates 
also climb, the U.S. may quickly reach the point at which debt 
service consumes any increase in GDP.

Another way of looking at this is to consider that debt servic-
ing currently has a claim on just less than 40 percent of all U.S. 
income taxes (which is also equal to just less than 20 percent 
of total government receipts). It is no longer inconceivable 
that it could reach a point where new investment or support of 
government programs is difficult.

The implications of the levered westerner (both at the consum-
er and government levels) could potentially lead to a scenario 
where consumers increase their raise savings rate which, while 
good for the balance sheet, is bad for economic growth. The 
government, which has already spent and borrowed as much 

Secondly, those countries where debt levels approach 100 per-
cent of GDP have a dilemma. It becomes increasingly possible 
that any growth in wealth (GDP), may be absorbed simply 
to support the debt service on previously borrowed moneys. 
Japan’s “lost decade” began around the time government debt 
exceeded 100 percent of GDP (though abnormally low interest 
rates kept the overall debt service ratios in check and a large 
current account surplus supported the currency).

This situation is especially worrying in the United States where 
not only is the debt level high, but also the average maturity 
of outstanding debt quite low. More than 40 percent of all 
U.S. Treasury obligations will need to be refinanced by the 
end of 2010 (and over 50 percent by the end of 2011), leav-
ing America most vulnerable to rising interest rates. Other 
countries with high debt levels would seem to have a more 
prudent distribution of debt maturities, most notably the United 
Kingdom which, though it shares our debt dependence, sees 
less than 12 percent of their debt roll over before next year end.

USA Japan UK Germany Aus Can France

2009-’10 42.4% 28.8% 11.6% 23.6% 15.2% 42.6% 26.1%

2011-’15 34.4% 39.6% 28.8% 46.4% 44.8% 30.1% 39.1%

2016-’20 15.1% 18.2% 16.9% 17.5% 21.4% 9.7% 20.1%

2021-’30 4.5% 11.0% 17.9% 5.3% 7.8% 7.5% 7.6%

2031+ 3.6% 2.4% 24.9% 7.2% 10.8% 10.2% 7.2%

USA Japan UK Germany Aus Can France

2009-’11 52.8% 40.1% 18.2% 35.6% 24.8% 52.2% 35.6%

2012-’15 24.0% 28.6% 22.1% 34.4% 35.2% 20.5% 29.6%

2016-’20 15.1% 18.2% 16.9% 17.5% 21.4% 9.7% 20.1%

2021-’30 4.5% 11.0% 17.9% 5.3% 7.8% 7.5% 7.6%

2031+ 3.6% 2.4% 24.9% 7.2% 10.8% 10.2% 7.2%

France debt includes Social Security Debt Repayment Fund 
Germany debt includes Federal Post, Deutsche Bundesbahn and Treuhand  
Australia debt includes Queensland Treasury, South Australia GFA, Treasury Corp 
Western Aus, Tasmanian PFC, NT Treasury
Japan debt includes government bonds for individuals
Source: Bloomberg, Artio Global Investors (as of Oct. 20, 2009)

TWO FOR THE PRICE OF ONE | FROM PAGE 15

… WHILE THE CHINESE HAVE NOT YET LEFT THE 
PARTY, THEY HAVE CERTAINLY MOVED CLOSER TO THE DOOR. “

“
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have difficulty given its export dependency and our forecast 
for slower baseline global growth, but that time is not today.
High yield bonds have had a year for the ages. While spreads 
have compressed dramatically, we are still above longer-term 
spread norms and while we do suspect the future normal will be 
about wider than before* given the slower rate of global growth 
(and likely higher defaults), the reason for buying the asset 
class is still valid—you don’t (or shouldn’t) buy high yield for 
the compression (though it was a nice bonus). You buy it for 
the ongoing yield. We believe that from current levels, the asset 
class is still likely to outperform equities.  

*The historic average default rate for high yield has been about 
5 percent and the recovery rate about 40 percent. Given our 
view for slower global growth, we would expect both higher 
defaults and lower recoveries going forward (let’s assume 6 per-
cent and 20 percent, respectively). That would make the cost of 
default roughly 480 basis points (6 percent * (1 - .2)). If we further 
assume an additional 150 bps by way of liquidity premium, we 
could expect a future normal spread of approximately 630 bps 
(up from 450 bps today).

The views expressed are subject to change, based on market 
and other conditions and do not constitute investment advice.
This article was previously published as part of the Artio Global 

Advisors CIO Letter sent in Q4 2009. 

as they can, must raise taxes while cutting spending, further 
retarding growth. In short, a number of Western economies, led 
by the United States and the United Kingdom, have likely gone 
ex-growth, joining Japan which did so more than a decade ago. 
Those investors looking for opportunity, are better off focused 
on companies which do business in the still viable emerging 
markets and those fewer developed markets where consumers 
and governments are not as stretched. Interestingly, as Angela 
Merkel wins another election in Germany, her focus is on cut-
ting corporate tax rates. The balance sheet flexibility of the 
Germans allows this and is likely to widen the capital attrac-
tiveness gap versus the United States—just one of the reasons 
Continental Europe finds favor in our portfolios.

Our international and global equity teams also continue to 
have a pro-cyclical bias to sector allocation to take advantage 
of continued stimulus flows. We also have a bias toward 
commodity-exposed countries which stand to benefit not only 
from the increased demand of a rebounding economy, but also 
as a hedge against a weak U.S. dollar. While we have taken 
some profits from our recently increased Emerging Markets 
exposures given their dramatic runs, we still have a relatively 
positive view of them for the intermediate-term. Further out, 
we may have to revisit our China exposure as it is likely to 

Brett Gallagher is deputy chief investment officer and senior portfolio manager of Artio 
Global Management LLC. He can be reached at brett.gallagher@artioglobal.com.
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A lthough investment strategies have not substantially 
changed for pension plans during the past decade, 
smoothing mechanisms embedded in accounting stan-

dards and funding regulations have been significantly reduced. 
These changes have increased the transparency of the risk 
associated with pension plans and reflect a shift in the pension 
paradigm—from a world heavily reliant on long-term return 
expectations to a world requiring stronger risk management of 
short-term volatility. Consequently, plan sponsors are reevaluat-
ing the level of risk being taken in their pension plans and their 
approach to managing it.

That reevaluation should include rethinking the traditional 
approach of maintaining the same asset allocation regardless of 
the economic environment, the funded status of the pension, and 
the financial strength of the plan sponsor. Why? Because the 
traditional approach does not sufficiently consider the following:

•  Avoidance of ruin—that is, avoiding the asset value or fund-
ing level to which a plan could not afford to fall.

•  Tail risk associated with the investment allocation—that 
is, the worst types of performance a certain portfolio could 
experience.

•  Limitations on uses of surpluses in pension plans.

When plan sponsors do evaluate these three considerations, it 
becomes apparent that the attractiveness of any investment risk 
will vary depending on the situation. For example, if it is difficult 
for companies to use pension surpluses, it will be less advanta-
geous to take risk in a well funded plan than in a poorly funded 
plan. It is important to shift the asset allocation to reflect changes 
in the pension plan’s and company’s financial situations.

The traditional process of determining the asset allocation 
for pension plans was developed to identify a long-term asset 
allocation. Consequently, the process employs models that rely 
heavily on long-term return and risk assumptions. In a world 
requiring strong risk management of short-term volatility, 
long-term expectations are less important because it is impor-
tant for plan sponsors to understand the levels of risks created 
in the current markets.

This article does two things. First, it examines circumstances 
under which plan sponsors’ fiduciary responsibilities to par-
ticipants should cause them to be concerned about the invest-
ment risk in the pension plan. Second, it describes a process 
for dynamically managing risk in pension plans. This process 
forces plan sponsors to continuously make conscious decisions 
about taking risk in the pension plan rather than passively 
relying on static long-term allocations and assumptions. The 
dynamic risk management approach recognizes and makes 
adjustment for constraints and/or competitive advantages that 
pension sponsors have relative to other investors. It makes these 
adjustments by following a four-step risk management process:
1. Properly define risk,
2. Explicitly budget risk,
3. Efficiently allocate risk, and
4. Implement and monitor performance.

This approach puts a greater emphasis on implementing appro-
priate solutions after evaluating the best interest of stakeholders.

IMPORTANT PENSION RISK MANAGEMENT 
CONSIDERATIONS
Balancing Investment Risk Taking with Fiduciary 
Responsibility
In general, plan sponsors have a fiduciary responsibility to plan 
participants with respect to the management of pension assets. 
They have often sought to avoid lawsuits from participants for 
breach of this fiduciary responsibility by adopting a herd men-
tality to investing. Unfortunately, the herd’s asset allocation 
does not necessarily represent the best interest of participants 
or shareholders (See Corporate Finance.).

The fact is that participants would likely have grounds to sue 
plan sponsors for breach of fiduciary responsibility only in the 
event that participants lose benefits. Fortunately, participants 
can only lose benefits if each of the following conditions occur 
at the same time:
- Benefits are not fully covered by pension insurance;
- The company sponsoring the plan declares bankruptcy; and
-  The pension plan is underfunded as defined by the pension 

insurer (e.g., PBGC).

COME THE REVOLUTION! 
A NEW DAY FOR PENSION 
RISK MANAGEMENT

By Chad Hueffmeier
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Corporate Finance4

The mere act of taking passive risk (e.g., large cap equity 
exposure) in an underfunded plan sponsored by a finan-
cially weak plan sponsor should create value for share-
holders. However, since it is difficult to access surplus 
assets in pension plans, the upside of creating surplus 
can be quickly outweighed by the downside of increas-
ing a deficit. Consequently, as a financially weak plan 
sponsor’s funded status improves, the investment risk in 
the pension should be adjusted to reflect a plan’s funded 
status.

There is a common misperception that taking passive risk 
creates shareholder value for financially strong plan spon-
sors. In a transparent world, shareholders would demand 
additional returns at least commensurate with the higher 
expected returns from the pension plan (by discounting 
plan sponsor’s stock price) because shareholders need to 
be compensated for the additional risk.

Current accounting standards allow plan sponsors to 
book expected asset returns and smooth experience gains 
(losses) on their income statement book. This creates 
artificial stability on the income statement; hence, it 
essentially hides risk. Although there is only an economic 
argument for taking passive risk in underfunded plans 
with financially weak plan sponsors, financial statements 
drive perception which can create economic consequences 
(e.g., stable earnings tend to be rewarded by the markets).

As long as participants’ pension benefits are fully covered by 
pension insurance,1 participants should generally2 have little 
interest in how much investment risk the plan sponsor takes 
in the pension plan. However, if participants’ pension benefits 
are not fully covered, plan sponsors could improve the security 
of benefits by reducing the chance that the three conditions 
described above are met at the same time.

For example, if participants are not fully insured and their 
pension plan is poorly funded, plan sponsors could improve 
benefit security by taking investment risk because doing so 
would increase the likelihood that the plan would be well 
funded3 even if the plan sponsor declares bankruptcy. On 
the other hand, if a plan is well-funded,  plan sponsors could 
increase benefit security by taking minimal investment risk. 
Consequently, plan sponsors should adjust investment risk to 
reflect their plan’s funded status and, thereby, improve benefit 
security.

Before plan sponsors take investment risks in their pension 
plans, they should spend considerable time understanding how 
risks could be taken without significantly impairing the secu-
rity of pension benefits. This requires plan sponsors to under-
stand the extent to which they can withstand negative results 
from the pension plan, how to guard against certain levels of 
negative results (e.g., higher contribution requirements), and 
how to implement and monitor their exposure to risks.

1    In the United States, the PBGC guarantees benefits of quali-
fied plans up to certain limits. Based on two studies, one of 
which is “PBGC’s Guarantee Limits – an Update” (can be 
found at http://www.pbgc.gov/docs/guaranteelimits.pdf ), 
participants of plans taken over by the PBGC received the vast 
majority of benefits earned under their plan and benefits for 84 
percent of participants were not reduced by any of the limita-
tion provisions.

2      If participants have a strong claim on assets (e.g., certain regu-
latory jurisdictions, union plans, etc.), participants effectively 
have a free put option against the plan sponsor and the pen-
sion insurer. Consequently, risk becomes more attractive to 
participants as the plan sponsor’s credit strengthens and the 
level of benefits protected by pension insurance increases. 
Note that if plan sponsors are not required to sponsor pen-
sions, this type of pension system is likely unsustainable.

3      Well-funded should be based on the definition used by the 
pension insurer (e.g., PBGC’s measure of liabilities).

4     As described in Morgan Stanley Investment Management’s 
August 2008 white paper Asset-Liability Management within 
A Corporate Finance Framework, which was co-authored by 
Michael Peskin and Chad Hueffmeier.

… PLAN SPONSORS SHOULD ADJUST  
 INVESTMENT RISK TO REFLECT THEIR PLAN’S FUNDED 

STATUS AND, THEREBY, IMPROVE BENEFIT SECURITY.	
“ “

CONTINUED ON PAGE 20
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Management needs to determine whether taking advan-
tage of an accounting anomaly justifies the economic 
consequences associated with risk. To facilitate informed 
decisions, it is important for management to continuously 
understand risk relative to their liabilities and potential 
asymmetries associated with taking the risk. However, 
overanalyzing this trade-off may be futile because recent 
trends indicate accounting standards are migrating away 
from artificial smoothing mechanisms.

Avoidance of ruin

It is vital for plan sponsors to avoid ruin which occurs when 
plan sponsors find themselves in situations they cannot sur-
vive financially. For example, pension funding regulations 
and/or debt covenants may require pensions to maintain 
certain funding thresholds that, if not satisfied, would trigger 
adverse consequences (e.g., higher contribution requirements). 
If investment risk causes the pension’s funding level to fall 
below these thresholds at a time when the company’s business 
is performing poorly, the pension could lead to the demise of 
the company. Furthermore, its ability to tolerate the impact 
of certain cash flow requirements will be driven by its ability 
to attain credit. Consequently, plan sponsors should consider 
enterprise risk management (ERM) and credit market factors 
when they analyze the level and type of risk taken in the plan.5  

These may become dominating considerations as the size of the 
pension plan relative to the plan sponsor’s business increases 
because it becomes more difficult for the business to finance 
pension deficits.

In addition, it is important for plan sponsors to realize that the 
distribution of potential funding levels resulting from invest-
ment performance changes radically as the ratio between 
benefits and assets rises. Although two different sequences of 
returns can lead to the same geometric return, the introduction 
of cash flows can cause these paths to generate significantly 

different asset levels. For example, let’s assume we have $101 
today and could make an investment that will pay 10.0 percent 
in one of the next two years and -9.1 percent in the other.

•  Assume no cash flows => [$101 x (1.1) - $0] x (0.91) = [$101 
x (0.91) - $0] x (1.1) = $101

Although the investment’s value would fluctuate over the peri-
od, we would not consider this investment to be risky because 
the final outcome is known (i.e., the value would be $101 at the 
end of two years). However, the order of the returns becomes 
important when cash flows are introduced. As you will see 
below, the introduction of a $50 cash flow at the end of year 
one would create uncertainty about the final outcome (i.e., the 
value would be $55.60 or $46.10 at the end of the two years); 
hence, we would consider the investment risky.

•  Assume a negative cash flow of $50 at the end of the first year 
=> [$101 x (1.1) - $50] x (0.91) = $55.60 > [$101 x (0.91) - 
$50] x (1.1) = $46.10

Finally, when we introduce another negative $50 cash flow 
at the end of year two, it creates the possibility of ruin. If the 
return is -9.1 percent in year one, we would not be able to make 
the full payment at the end of year two. Consequently, it should 
be unattractive to the investor to take risk in this situation since 
the risk could lead to ruin.

For any level of risk, the probability of ruin increases as cash 
flows increase as a percent of assets. Pension funding require-
ments and pension insurance may make it impossible for cer-
tain pensions to come to ruin by actually running out of money. 
However, plan sponsors may wish to define ruin as the funding 
thresholds at which they are required to make accelerated plan 
contributions to certain levels. 

5    Note that if credit spreads are considered in funding regula-
tions (e.g., incorporating credit spreads in the measurement of 
liabilities or in the targeted funding level), it makes the avail-
ability of credit less of a concern.
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Risk-neutral Probability

Funded  Ratio

Risk-neutral Probability

Funded  Ratio

Risk-neutral Probability

Funded  Ratio

For example, a plan sponsor may define ruin as falling below a 
certain funded ratio (60 percent) at the end of seven years. The 
graphs below illustrate the projected funding ratios of two fro-
zen plans with $1 billion in assets and $1.2 billion in liabilities: 
(1) Plan X has annual benefit payments of $50 million, and 
(2) Plan Y has annual benefit payments of $100 million. Since 
benefit payments from underfunded plans like Plan Y always 
cause the funded status to deteriorate, plan sponsors should 
expect Plan Y’s funded status to deteriorate more quickly than 
Plan X’s. In this example, the probability of ruin is 7 percent 
and 33 percent for Plan X and Plan Y, respectively.

Increasing risk in the plan would cause the tails (i.e., the worst 
types of experience) to fatten with exaggerated results. In this 

example, increasing volatility from 5 percent to 15 percent 
causes the probability of ruin to increase to 30 percent and 53 
percent for Plan X and Plan Y, respectively. 

Assumptions:
- Seven year projection period
- Risk free rates of 5.0 percent
-  Paths and probabilities were created using a risk-neutral lat-

tice model
-  Asset volatility is assumed to be 5 percent and 15 percent (as 

indicated)
- Interest rate risk in liabilities has been hedged
- No contributions are made to the pension plan
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Once plan sponsors define ruin, they should evaluate the 
chances of it happening. In general, the plan sponsor should 
want to avoid any chance of ruin. However, the cost associated 
with eliminating the possibility (e.g., buying insurance) may 
be prohibitive and cause the plan sponsor to retain some risk 
of ruin.

Tail Risk
It is crucial for plan sponsors to understand the tail risk in their 
portfolio. While plan sponsors would consider various fac-
tors about the plan’s unique circumstances when they define 
ruin, tail risk describes the worst types of performance the 
pension plan could experience in isolation. If plan sponsors 
chose to take investment risk, they are exposed to tail risk. 
Consequently, they can only be certain of avoiding ruin when 
they fully understand and properly manage tail risk.

Management needs to evaluate the economic/accounting trade-
off for both normal economic environments and less stable 
environments that are often linked to the poorest types of 
portfolio performances. Modern portfolio theory is useful for 
understanding and managing risk in normal environments 
because volatility is an appropriate (but not necessarily suf-
ficient) risk metric and diversification is a relatively good risk 
management tool during those times.

However, it may be difficult for management to weigh the 
trade-off between tail risk and the cost of hedging or insuring 
tail risk because it is impossible to make an informed decision 
without understanding the risk. In general, normal distribu-
tions and Value at Risk (VaR) has been used most often by 
institutional investors when contemplating tail-risk. Although 
these measures are easy to understand, there are at least three 
important shortfalls that prevent them from helping us make 
informed decisions about taking risk in the real world.
 (1)  VaR does not describe the tails, it describes a certain 

percentile event;
 (2)  The percentile is not correct—there is a reason why 

one in 20 events seem to occur every five or six 
years—the models are wrong; and

 (3)  The process does not consider the financial strength of 
the plan sponsor during the tail event (i.e., tail events 
often coincide with poor business performance).

In general, a good rule of thumb may be that if plan sponsors 
do not understand the risk, they should not take it. It is difficult 
to reconcile the fulfillment of fiduciary responsibilities with 
taking risks that are not understood. Consequently, plan spon-
sors should seriously consider hedging/insuring against tail risk 
or implement a process, described in the second part of this 
article, to ensure the risk is better understood.

Limitations on Uses of Surplus Assets
As described earlier, pension insurance may cause participants 
to be indifferent to investment risk taken in the pension plan. 
In this situation, plan sponsors may choose to take investment 
risk to help finance the pension plan.

In most countries, participants do not own7  the excess assets 
in the pension. Shareholders are generally able to receive value 
from excess pension assets by using it to pay for future benefit 
accruals (i.e., contribution holiday). However, with fewer par-
ticipants accruing pension benefits than in the past, plans today 
need fewer assets for this purpose. Outside of using assets to 
pay for future benefit accruals, it tends to be difficult for share-
holders to realize the full value of pension assets. When the 
cost of annual benefit accruals decrease, shareholders require 
less assets to pay for future accruals.

Although shareholders can try to access pension assets by 
terminating8 the plan to have assets (when owned by the plan 
sponsor) revert back to the company, in the United States the 
company would be required to pay excise taxes on any reverted 
assets.

7    In the United States, by law, surplus in contributory pension 
plans is owned in part by participants.

       In addition, surplus is often considered during labor nego-
tiations and effectively causes surplus to be partially or fully 
owned by participants.

8   Generally this is a situation where the plan sponsor purchases 
group life annuities to transfer their liability to an insurance 
company.

COME THE REVOLUTION! … | FROM PAGE 21
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Pension assets that shareholders cannot recoup full value on 
will be referred to as excessive assets. Value for sharehold-
ers decreases when plan sponsors take risks that could create 
excessive assets. Essentially, the taxing authority is provided 
a free call option on a portion of the excessive assets at the 
expense of shareholders. And when plan sponsors maintain 
the same allocation of assets regardless of the plan’s funded 
status, they increase the chances of creating excessive assets.9

For example, if participants have no claim on the surplus and 
excise taxes are 50 percent of the value of reverted assets,  the 
taxing authority would have a call option on 50 percent of 
excessive assets. Using Black-Scholes option pricing and the 
following assumptions, we have estimated the shareholder 
value destroyed by continuously maintaining a constant asset 
allocation in four examples.

Value of Tax Authority’s Option ($ millions)

80%	Funded 100%	Funded

Frozen Plan $10.8 $56.8

Closed Plan 

with future 

accruals equal 

to 10%

$4.8 $33.3

Assumptions:
- Liabilities of $1 billion10

- Demographic experience will match expectations
-  Interest rate risk in liabilities (and future accruals) is fully 

hedged
- Liability tracking error11 of 10 percent
- Risk-free returns are 4 percent
- The plan will be terminated in five years

From the perspective of shareholders, assets are less valuable 
due to the taxing authority’s free call option. In our example of 
a frozen plan that is 100 percent funded, the assets would only 
be worth $943.2 million (i.e., $1 billion less $56.8 million) to 
shareholders.12

In certain situations,13 participants essentially own pension 
assets; hence, the free call option is provided to participants 
rather than the taxing authority. We would need to modify 
our assumption to reflect that participants own 100 percent of 
excessive assets (rather than the taxing authority owning 50 
percent of it). In this situation, the assets of a frozen plan that 
is 100 percent funded would only be worth $886.4 million (i.e., 
$1 billion less $56.8 million x 2) to shareholders.14

As illustrated in Figure One below, management (i.e., agents) 
could enhance value for its shareholders by dynamically man-
aging risk: by either selling out-of-the-money call options to 
capture premiums (second approach in Figure One) or system-
atically adjusting asset allocations (third approach in Figure 
One). Either approach should avoid the creation of excessive 

9       In the United States, excise taxes can be limited to 20 percent 
by taking certain actions.

10      Based on a termination liability
11      Measures the volatility asset returns have relative to liability 

returns.
12      These numbers are not adjusted for corporate income taxes.
13      Participants may have a strong claim on pension assets in 

contributory plans, union plans, or in some jurisdictions.
14      Note that it is not possible for shareholders with a fully fund-

ed frozen plan to benefit from taking risk in these examples.

Traditional  
Approach

Excessive
Assets

Enhanced
Value

Initial
Value for 
Principals

Systematically 
Adjust

Asset Allocation

Traditional Approach
Combined with Selling 
Out-of-the-Money Calls

FIGURE	ONE
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IN GENERAL, A GOOD RULE OF THUMB MAY BE THAT  

IF PLAN SPONSORS DO NOT UNDERSTAND 
THE RISK, THEY SHOULD NOT TAKE IT.

“ “
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assets and, thereby, enhance value for the company’s share-
holders since the free call option would have no value.

DYNAMIC RISK MANAGEMENT PROCESS
Plan sponsors’ decisions to take investment risk must be fully 
informed. That means they should consider the implications 
of all the concepts and constraints raised so far in this article: 
the security of participant benefits, ruin, tail risk and uses of 
surplus. Doing so will help them identify situations that may 
make risk unattractive. Plan sponsors are likely to understand 
these implications more clearly when they follow the process 
described here.

Step One: Properly Define Risk
In general, investment risk in pensions should be managed rela-
tive to pension liabilities. Plan sponsors should determine an 
appropriate liability benchmark against which to manage risk. 
The benchmark does not have to be the accounting or funding 
liability. In fact, these types of measures tend to be artificially 
biased toward certain types of risk (e.g., credit risk) and impos-
sible to hedge.

As an alternative, plan sponsors should consider establishing 
a liability benchmark for managing risk that is investable and 
does not bias the risk allocation process toward certain types 
of risk. The benchmark would be based on projected benefit 
payments and risk free15 interest rates. This type of benchmark 
would help identify two items: (1) the level of assets that would 
be expected to be sufficient to pay for future benefit payments 
with relying on neither returns from investment risk nor future 
contributions; and (2) the level of risk premiums and alpha16  
required to make up the shortfall without relying on future 
contributions.

The risk management benchmark would not impact accounting 
and funding calculations. It would only be used to help make 
decisions about how much risk to take and it could influence 
the types of risk taken.

Step Two: Explicitly Budget Risk
It is critical for investment committees to understand how 

much risk is appropriate for a pension plan’s stakeholders 
(i.e., participants and shareholders). The risk budget is simply 
the vernacular used when identifying this level of risk and, as 
such, the crux of the risk management process. As discussed, 
the security of participant benefits and certain concepts of cor-
porate finance suggest that reducing risk as the funded status 
improves is appropriate. Consequently, the plan sponsor should 
not only determine the amount of risk that is initially appropri-
ate, but also develop an approach to assure the level of risk in 
the pension plan continues to be appropriate over time.

As also discussed, it is necessary for plan sponsors to incorpo-
rate ruin into the risk budgeting process. When plan sponsors 
can clearly define their idea of ruin (e.g., funding levels that 
trigger certain events), sponsors should dynamically manage 
risk—by either paying for protection (e.g., put options) or sys-
tematically adjusting asset allocations—to avoid ruin.

When benefits are fully insured, the participants should be 
indifferent to risk taken in the pension plan. If management 
does choose to take investment risk in this situation, they must 
understand limitations on uses of surplus assets to identify 
excessive assets. Doing so should prompt plan sponsors to 
consider dynamically managing risk by either selling out-of-
the-money call options to capture premiums or systematically 
adjusting asset allocations.

As illustrated in Figure Two, if plan sponsors decide to take 
investment risk in their pension plans, it is important to man-
age the risk within the limits imposed by excessive assets and 
ruin. This is done by dynamically managing risk with option 
strategies, systematically adjusting asset allocations, or a com-
bination of both.

15      We have not defined “risk free” because the issue is debat-
able and would require significant discussion. These rates are 
commonly defined as interest rates implied in either sover-
eign debt prices or forward LIBOR/swap markets.

16     Alpha refers to returns that, theoretically, are not generated 
by taking risk.

COME THE REVOLUTION! … | FROM PAGE 23
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If funded status improves, systematically adjusting the asset 
allocation to take less risk may be most practical because the 
plan sponsor would likely want to permanently reduce risk. 
However, if funded status deteriorates, it may be more practical 
to retain the asset allocation and pay for protection (e.g., put 
options) because the plan sponsor would likely want to return to 
the previous level of risk once the funded status improves—ulti-
mately the funded status will improve due to funding require-
ments. Consequently, plan sponsors may favor a dynamic risk 
management strategy that protects against ruin through option 
strategies and against excessive assets by systematically adjust-
ing the asset allocation as their plan’s funded status improves.

As we know, plan sponsors can improve the security of ben-
efits by reducing the likelihood of having plan underfunding 
coincide with corporate bankruptcy. Plan sponsors should 
consider constraining the correlation between pension plan 
performance and business performance. For example, the plan 
sponsor could choose to invest in a manner that provides a 
funded status volatility of 10 percent (i.e., a one standard devia-
tion event would cause the plan’s funded status to fluctuate by 
10 percent) and has a correlation of less than 0.5 with the plan 
sponsor’s stock price.

Step Three: Efficiently Allocate Risk
As witnessed in 2008, economic environments can change 
rapidly. Furthermore, asset classes and new asset categories 
continue to evolve. Static asset allocations do not lead to stable 
levels of risk because all the aforementioned transformations 
lead to changes in volatilities and correlations. A disciplined 
risk management process requires plan sponsors to modify 
asset allocations to reflect changes in the portfolio’s risk.

Plan sponsors should seek to maximize risk-adjusted returns 
(i.e., efficiently allocate risk). Explicitly budgeting risk from 
the outset forces the plan sponsor to weigh the trade-off 
between taking one type of risk rather than another type. Under 
the traditional approach, it has been difficult for plan sponsors 
to make decisions to reduce interest rate risk (i.e., hedging the 
interest rate risk inherent in liabilities) because they have not 
been forced to evaluate opportunity costs. In a dynamic risk 
management framework, it is easier for plan sponsors to make 
this decision because reducing interest rate risk allows the plan 
sponsor to take other types of risks.

FIGURE	TWO

Traditional  
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STATIC ASSET ALLOCATIONS DO NOT LEAD TO STABLE LEVELS OF RISK 

BECAUSE ALL THE AFOREMENTIONED TRANSFORMATIONS 
LEAD TO CHANGES IN VOLATILITIES AND COR-
RELATIONS. 

“ “
CONTINUED ON PAGE 26
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Sponsors, reluctant to deviate from the herd, have been slow 
both to invest in new asset classes and to utilize state-of-the-art 
risk management tools. Nevertheless, it is important that plan 
sponsors reflect the evolution of asset classes and investment 
tools in their allocation process. Because it is important that 
plan sponsors understand the risk before accepting it, they 
should consider partnering with professionals to identify non-
traditional investment opportunities.

For example, non-traditional investments are often associated 
with liquidity risk premiums that should be attractive to pen-
sions.17 These types of asset classes (e.g., direct real estate, pri-
vate equity, infrastructure, etc.) require risk management deci-
sions to be integrated within the investment process because 
it is difficult to manage the risk after the investment is made. 
Although significant due diligence is essential when evaluating 
such opportunities, history has shown the risk-adjusted returns 
can be substantial.

Finally, it requires a sophisticated set of skills to manage tail 
risk. For this reason, plan sponsors should consider establishing 
a tail risk portfolio in which a certain percentage of pension 
assets are set aside to explicitly manage tail risk. Establishing 

this portfolio would allow traditional asset managers to remain 
focused on their specific task and would leave the management 
of tail risk to someone with the appropriate skills. As risk is 
reduced in the overall portfolio, the allocation to the tail risk 
portfolio could also be reduced.

Step Four: Implement/Monitor
Corporate finance must define excessive surplus and ruin 
and the Chief Investment Officer (CIO) and investment team 
should allocate assets in a manner that efficiently manages risk 
within the boundaries established by these definitions.

In addition, the finance and investment teams should work 
together to identify financial triggers that make risk more or 
less attractive. Ideally, the allocation of risk within the risk 
budget should continuously evolve because risk premiums and 
the relationships among risks change. The development of new 
asset classes also creates opportunities for diversification and 
could potentially enhance returns. Practical considerations, 
such as the pension governance process, may require the 
investment team to recommend predetermined allocations for 
each trigger.

Figure Three illustrates how risk would be dynamically man-
aged by systematically adjusting the asset allocation as a pen-
sion plan’s funded status approaches excessive surplus or ruin.

FIGURE	THREE

Other Upper Triggers

Upper Trigger 1: a% equity, b% fixed income, c% other

Optimize Initial Portfolio

Lower Trigger 1: x% equity, y% fixed income, z% other

Other Lower Triggers

Identify lowest level of
acceptable funding

Liabilities

Assets

Ruin

TIME
15      Unless contemplating the termination of the pension plan, 

liquidity is not required for a significant portion of the assets. 
Hence, pensions can receive a premium for holding illiquid 
assets for little or no risk.
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Once the investment strategy has been identified, respon-
sibility for monitoring the financial triggers and modifying 
the asset allocation appropriately must be assigned by the 
plan sponsor. While liquid assets and pension liabilities can 
be monitored daily, it may be possible to monitor illiquid 
assets, such as private equity and direct real estate, only on a 
monthly or quarterly basis. Finance and the investment team 
should agree upon a methodology for estimating the value of 
illiquid assets.

Risk management reports should be developed to keep man-
agement informed of the evolving situation. It is critical that 
these reports provide the returns from risk and remind decision 
makers why risk is taken. It is possibly more important that 
these reports remind decision makers that they should view 
the performance of peers related to passive risk exposures as 
irrelevant.

CONCLUSIONS
In general, boards and investment committees have both judged 
investment performance against peer groups and allowed their 
concern about being sued by participants for breach of fidu-
ciary responsibilities to outweigh strong financial management 
decisions. Management has commonly sought protection by 
adopting the herd’s investment approach rather than determin-
ing the approach that is in the best interest of stakeholders.

The traditional investment process fails to take into account 
many issues that plan sponsors should consider if they are to 
fulfill their fiduciary responsibilities. Often, these issues may 
be addressed by substantially reducing the risk in pension 
plans. However, if plan sponsors continue to take significant 
risk in pension plans, it is in the best interest of all stakeholders 
that they adopt a strict risk management approach and imple-
ment a dynamic strategy. 

MANAGEMENT HAS COMMONLY SOUGHT 
PROTECTION BY ADOPTING THE HERD’S 
INVESTMENT APPROACH RATHER THAN DETERMINING 

THE APPROACH THAT IS IN THE BEST INTEREST OF STAKEHOLDERS.

“ “

Chad Hueffmeier, FSA, CFA, is a principal with Buck Consultants. He can be reached at 
chad.hueffmeier@buckconsultants.com
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S tochastic volatility models are now routinely used in 
investments and option pricing. A brief introduction to 
those models is first given, and then a method for pric-

ing options is described.

The stochastic process that later became known as “Brownian 
motion” first appeared in Bachelier (1900), as a model for 
security prices. Bachelier imagined the security price as an 
arithmetic Brownian motion (defined below); this has the 
shortcoming of allowing negative security prices. Osborne 
(1959), apparently unaware of Bachelier’s work, proposed geo-
metric Brownian motion (GBM) as a model for stock prices, in 
part because GBM cannot be negative. That model was used in 
economics from the 1960s, notably to value options. Black and 
Scholes (1973) also used GBM for their risky asset, and since 
then Osborne’s GBM model for stock prices has often been 
called the “Black-Scholes model.”

In the sequel, 
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may be a good fit to some return series, but they otherwise have 
an undesirable property, that the expectation of the exponential 
of a variable with a stable distribution has infinite expectation; 
this is fatal for option pricing. Stable processes are not used as 
models of log-prices in option pricing, but other types of Lévy 
processes have more recently been proposed (at least in the 
academic literature) to model returns and also to price options. 
Note that Lévy processes have independent increments, so 
the independence of returns over time was not contested by 
Mandelbrot and Fama. Interestingly, Black and Scholes (1972) 
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the 1970s and 1980s that refined the random walk model by making the variance of  a 
stochastic process, leading to the well-known ARCH processes. 
 
Option pricing 
Not only does GBM not fit observed stock prices well, it is also unsatisfactory for option 
pricing, leading to the well-known “smile effect.” 
 
ARCH processes have been suggested for pricing options, but another class of models is 
found more frequently in the literature, namely those where volatility is a continuous-
time process: 

  

Here  is the risk-free rate of interest (since this model is formulated under the risk-
neutral measure), are Brownian motions (possibly correlated), and  are 
stochastic processes, that may depend on . In this model the  of the GBM model has 
been replaced with the stochastic process ; is the squared volatility process. 
Several models of this type have been proposed; they raise two problems: estimation and 
option computation. If a model is to be used to price options, then logically the model 
should fit observed option prices; more precisely, what is sought is the distribution of the 
process  under the risk-neutral measure. This is not easy to estimate, because the 
number of observed option prices is usually quite small. Only in the case of the GBM 
model is that not a problem; this is because the quadratic variation of log-prices over t 
time units is in that case the same constant, (editor’s note ****should be 
σ2t***), under both the physical measure and the risk-neutral measure. Therefore, the 
GBM stock price distribution under the physical measure implies the GBM stock price 
distribution under the risk-neutral measure, and the  is the same under both measures; 
hence, one only needs to estimate  from past stock prices; but this applies only to the 
GBM/Black-Scholes model. 
 
Once the stochastic volatility model has been estimated there usually remains another 
problem, that of computing option prices under the model. The resulting distribution for 

 often turns out to be either very complicated or just unknown. Monte Carlo simulation 
is a possibility, but one soon realizes that the simulation of stochastic differential 
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What matters in finding the distribution of  is that of the integrated squared volatility 
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Regime switching stochastic volatility model 
Models under which a parameter changes value according to a Markov chain have 
recently become quite popular, at least in the academic literature. A simple stochastic 
volatility model consists in letting  be a Markov chain that takes values in a set 

. Models of this kind almost always have a very small number of possible 
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where  

  

A similar formula is obtained for puts. The regime switching stochastic volatility model 
was used to test this formula against Monte Carlo simulation and also the explicit formula 
for the distribution of (in the case where volatility takes   values). The Fourier 
integral beats both alternatives easily, in computing time as well as coding effort. The 
only downside is that there is a free parameter  in the theorem, and that some trial and 
error is required to find a good range for it. This is a common feature of Fourier integrals 
that involve oscillating functions. 
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References 
 
Bachelier, L. (1900). Théorie de la spéculation. Annales Scientifiques de l'École Normale 
Supérieure III-17: 21-86. Thesis for the Doctorate in Mathematical Sciences. English 
translation in The Random Character of Stock Market Prices, Cootner, P. (ed.) 
Cambridge, MIT Press 1964. 
 
Black, F., and Scholes, M. (1972). The valuation of option contracts and a test of market 
efficiency. Journal of Finance 27: 399-417. 
 
Black, F., and Scholes, M. (1973). The pricing of options and corporate liabilities. 
Journal of Political Economy 81: 637-654. 
Chin, S., and Dufresne, D. (2009). A general formula for option prices in a stochastic 
volatility model. Submitted for publication. Working paper no.182, Centre for Actuarial 
Studies, University of Melbourne. http://mercury.ecom.unimelb.edu.au/SITE/actwww/ 
wps2009/No182.pdf 
 
Dufresne, D., Garrido, J., and Morales, M. (2009). Fourier inversion formulas in option 
pricing and insurance. Methodology and Computing in Applied Probability 11: 359-383.  
 
Dufresne, D. (2001). The integrated square-root process. Working paper no.90, Centre 
for Actuarial Studies, University of Melbourne. http://econ.unimelb.edu.au/SITE/actwww 
/html/no90.pdf 
 
 
Fama, E.F. (1965). The behavior of stock-market prices. Journal of Business 38: 34-105.  

STOCHASTIC VOLATILITY …  | FROM PAGE 29

possible values for 

equations is far from  trivial; one must deal with errors arising from both randomness of 
the sample and the discretization of the differential equation.  (This is a real problem in 
applications; to make matters worse, some of the early authors on option pricing under 
stochastic volatility models have suggested methods, especially series, that are of 
questionable value; caveat emptor.) 
 
Perhaps the best-known stochastic volatility model is the one where the squared volatility  

 satisfy the so-called square-root process: 
  
where  are constants. (This process was studied by William Feller and others in the 
1940s; it was chosen as a model for interest rates and squared volatility because (i) it is 
non-negative and (ii) many of its properties are known explicitly.) The distribution of  
is known in this case (see Dufresne, 2001, for details), though this does not help much in 
finding the distribution of ; the reason for this is that the solution of 

 is 

  

What matters in finding the distribution of  is that of the integrated squared volatility 
, and the latter is rarely a simple one. 

 
Regime switching stochastic volatility model 
Models under which a parameter changes value according to a Markov chain have 
recently become quite popular, at least in the academic literature. A simple stochastic 
volatility model consists in letting  be a Markov chain that takes values in a set 

. Models of this kind almost always have a very small number of possible 
states (or “regimes”), say  or 3. This model does not appear to match the visual 
appearance of graphs of observed volatilities, but it is tractable to a certain degree and a 
definite improvement over constant volatility models. A notable advantage is that when 
there are only  possible values for  the distribution of  is known explicitly 
(this result has been in the literature for a while, see Chin and Dufresne (2009) for 
details). 
 
Pricing options with Fourier integrals 
In the case of the square-root volatility model, Heston (1993) showed that a Fourier 
inversion formula may be used to price European puts and calls. The idea of expressing 
option prices in that way was not new. A classical result in probability theory is that the 
characteristic function of , , being the Fourier transform of the probability 
density function of  , yields the probability density function of  by the inversion 
formula 

  

 (R is the real line and i is the imaginary unit, .) Under some conditions, 
Parseval’s theorem gives a similar expression for the expectation of a function of : 

 the distribution of 

equations is far from  trivial; one must deal with errors arising from both randomness of 
the sample and the discretization of the differential equation.  (This is a real problem in 
applications; to make matters worse, some of the early authors on option pricing under 
stochastic volatility models have suggested methods, especially series, that are of 
questionable value; caveat emptor.) 
 
Perhaps the best-known stochastic volatility model is the one where the squared volatility  

 satisfy the so-called square-root process: 
  
where  are constants. (This process was studied by William Feller and others in the 
1940s; it was chosen as a model for interest rates and squared volatility because (i) it is 
non-negative and (ii) many of its properties are known explicitly.) The distribution of  
is known in this case (see Dufresne, 2001, for details), though this does not help much in 
finding the distribution of ; the reason for this is that the solution of 

 is 

  

What matters in finding the distribution of  is that of the integrated squared volatility 
, and the latter is rarely a simple one. 

 
Regime switching stochastic volatility model 
Models under which a parameter changes value according to a Markov chain have 
recently become quite popular, at least in the academic literature. A simple stochastic 
volatility model consists in letting  be a Markov chain that takes values in a set 

. Models of this kind almost always have a very small number of possible 
states (or “regimes”), say  or 3. This model does not appear to match the visual 
appearance of graphs of observed volatilities, but it is tractable to a certain degree and a 
definite improvement over constant volatility models. A notable advantage is that when 
there are only  possible values for  the distribution of  is known explicitly 
(this result has been in the literature for a while, see Chin and Dufresne (2009) for 
details). 
 
Pricing options with Fourier integrals 
In the case of the square-root volatility model, Heston (1993) showed that a Fourier 
inversion formula may be used to price European puts and calls. The idea of expressing 
option prices in that way was not new. A classical result in probability theory is that the 
characteristic function of , , being the Fourier transform of the probability 
density function of  , yields the probability density function of  by the inversion 
formula 

  

 (R is the real line and i is the imaginary unit, .) Under some conditions, 
Parseval’s theorem gives a similar expression for the expectation of a function of : 

 is known explicitly 
(this result has been in the literature for a while, see Chin and 
Dufresne (2009) for details).

PRICING OPTIONS WITH FOURIER INTE-
GRALS
In the case of the square-root volatility model, Heston (1993) 
showed that a Fourier inversion formula may be used to price 
European puts and calls. The idea of expressing option prices in 
that way was not new. A classical result in probability theory is 
that the characteristic function of 

equations is far from  trivial; one must deal with errors arising from both randomness of 
the sample and the discretization of the differential equation.  (This is a real problem in 
applications; to make matters worse, some of the early authors on option pricing under 
stochastic volatility models have suggested methods, especially series, that are of 
questionable value; caveat emptor.) 
 
Perhaps the best-known stochastic volatility model is the one where the squared volatility  

 satisfy the so-called square-root process: 
  
where  are constants. (This process was studied by William Feller and others in the 
1940s; it was chosen as a model for interest rates and squared volatility because (i) it is 
non-negative and (ii) many of its properties are known explicitly.) The distribution of  
is known in this case (see Dufresne, 2001, for details), though this does not help much in 
finding the distribution of ; the reason for this is that the solution of 

 is 

  

What matters in finding the distribution of  is that of the integrated squared volatility 
, and the latter is rarely a simple one. 

 
Regime switching stochastic volatility model 
Models under which a parameter changes value according to a Markov chain have 
recently become quite popular, at least in the academic literature. A simple stochastic 
volatility model consists in letting  be a Markov chain that takes values in a set 

. Models of this kind almost always have a very small number of possible 
states (or “regimes”), say  or 3. This model does not appear to match the visual 
appearance of graphs of observed volatilities, but it is tractable to a certain degree and a 
definite improvement over constant volatility models. A notable advantage is that when 
there are only  possible values for  the distribution of  is known explicitly 
(this result has been in the literature for a while, see Chin and Dufresne (2009) for 
details). 
 
Pricing options with Fourier integrals 
In the case of the square-root volatility model, Heston (1993) showed that a Fourier 
inversion formula may be used to price European puts and calls. The idea of expressing 
option prices in that way was not new. A classical result in probability theory is that the 
characteristic function of , , being the Fourier transform of the probability 
density function of  , yields the probability density function of  by the inversion 
formula 

  

 (R is the real line and i is the imaginary unit, .) Under some conditions, 
Parseval’s theorem gives a similar expression for the expectation of a function of : 

, being the Fourier 
transform of the probability density function of 

equations is far from  trivial; one must deal with errors arising from both randomness of 
the sample and the discretization of the differential equation.  (This is a real problem in 
applications; to make matters worse, some of the early authors on option pricing under 
stochastic volatility models have suggested methods, especially series, that are of 
questionable value; caveat emptor.) 
 
Perhaps the best-known stochastic volatility model is the one where the squared volatility  

 satisfy the so-called square-root process: 
  
where  are constants. (This process was studied by William Feller and others in the 
1940s; it was chosen as a model for interest rates and squared volatility because (i) it is 
non-negative and (ii) many of its properties are known explicitly.) The distribution of  
is known in this case (see Dufresne, 2001, for details), though this does not help much in 
finding the distribution of ; the reason for this is that the solution of 

 is 

  

What matters in finding the distribution of  is that of the integrated squared volatility 
, and the latter is rarely a simple one. 

 
Regime switching stochastic volatility model 
Models under which a parameter changes value according to a Markov chain have 
recently become quite popular, at least in the academic literature. A simple stochastic 
volatility model consists in letting  be a Markov chain that takes values in a set 

. Models of this kind almost always have a very small number of possible 
states (or “regimes”), say  or 3. This model does not appear to match the visual 
appearance of graphs of observed volatilities, but it is tractable to a certain degree and a 
definite improvement over constant volatility models. A notable advantage is that when 
there are only  possible values for  the distribution of  is known explicitly 
(this result has been in the literature for a while, see Chin and Dufresne (2009) for 
details). 
 
Pricing options with Fourier integrals 
In the case of the square-root volatility model, Heston (1993) showed that a Fourier 
inversion formula may be used to price European puts and calls. The idea of expressing 
option prices in that way was not new. A classical result in probability theory is that the 
characteristic function of , , being the Fourier transform of the probability 
density function of  , yields the probability density function of  by the inversion 
formula 

  

 (R is the real line and i is the imaginary unit, .) Under some conditions, 
Parseval’s theorem gives a similar expression for the expectation of a function of : 

, yields the 
probability density function of 

equations is far from  trivial; one must deal with errors arising from both randomness of 
the sample and the discretization of the differential equation.  (This is a real problem in 
applications; to make matters worse, some of the early authors on option pricing under 
stochastic volatility models have suggested methods, especially series, that are of 
questionable value; caveat emptor.) 
 
Perhaps the best-known stochastic volatility model is the one where the squared volatility  

 satisfy the so-called square-root process: 
  
where  are constants. (This process was studied by William Feller and others in the 
1940s; it was chosen as a model for interest rates and squared volatility because (i) it is 
non-negative and (ii) many of its properties are known explicitly.) The distribution of  
is known in this case (see Dufresne, 2001, for details), though this does not help much in 
finding the distribution of ; the reason for this is that the solution of 

 is 

  

What matters in finding the distribution of  is that of the integrated squared volatility 
, and the latter is rarely a simple one. 

 
Regime switching stochastic volatility model 
Models under which a parameter changes value according to a Markov chain have 
recently become quite popular, at least in the academic literature. A simple stochastic 
volatility model consists in letting  be a Markov chain that takes values in a set 

. Models of this kind almost always have a very small number of possible 
states (or “regimes”), say  or 3. This model does not appear to match the visual 
appearance of graphs of observed volatilities, but it is tractable to a certain degree and a 
definite improvement over constant volatility models. A notable advantage is that when 
there are only  possible values for  the distribution of  is known explicitly 
(this result has been in the literature for a while, see Chin and Dufresne (2009) for 
details). 
 
Pricing options with Fourier integrals 
In the case of the square-root volatility model, Heston (1993) showed that a Fourier 
inversion formula may be used to price European puts and calls. The idea of expressing 
option prices in that way was not new. A classical result in probability theory is that the 
characteristic function of , , being the Fourier transform of the probability 
density function of  , yields the probability density function of  by the inversion 
formula 

  

 (R is the real line and i is the imaginary unit, .) Under some conditions, 
Parseval’s theorem gives a similar expression for the expectation of a function of : 

 by the inversion formula
  

equations is far from  trivial; one must deal with errors arising from both randomness of 
the sample and the discretization of the differential equation.  (This is a real problem in 
applications; to make matters worse, some of the early authors on option pricing under 
stochastic volatility models have suggested methods, especially series, that are of 
questionable value; caveat emptor.) 
 
Perhaps the best-known stochastic volatility model is the one where the squared volatility  

 satisfy the so-called square-root process: 
  
where  are constants. (This process was studied by William Feller and others in the 
1940s; it was chosen as a model for interest rates and squared volatility because (i) it is 
non-negative and (ii) many of its properties are known explicitly.) The distribution of  
is known in this case (see Dufresne, 2001, for details), though this does not help much in 
finding the distribution of ; the reason for this is that the solution of 

 is 

  

What matters in finding the distribution of  is that of the integrated squared volatility 
, and the latter is rarely a simple one. 

 
Regime switching stochastic volatility model 
Models under which a parameter changes value according to a Markov chain have 
recently become quite popular, at least in the academic literature. A simple stochastic 
volatility model consists in letting  be a Markov chain that takes values in a set 

. Models of this kind almost always have a very small number of possible 
states (or “regimes”), say  or 3. This model does not appear to match the visual 
appearance of graphs of observed volatilities, but it is tractable to a certain degree and a 
definite improvement over constant volatility models. A notable advantage is that when 
there are only  possible values for  the distribution of  is known explicitly 
(this result has been in the literature for a while, see Chin and Dufresne (2009) for 
details). 
 
Pricing options with Fourier integrals 
In the case of the square-root volatility model, Heston (1993) showed that a Fourier 
inversion formula may be used to price European puts and calls. The idea of expressing 
option prices in that way was not new. A classical result in probability theory is that the 
characteristic function of , , being the Fourier transform of the probability 
density function of  , yields the probability density function of  by the inversion 
formula 

  

 (R is the real line and i is the imaginary unit, .) Under some conditions, 
Parseval’s theorem gives a similar expression for the expectation of a function of : (R is the real line and i is the imaginary unit, 

equations is far from  trivial; one must deal with errors arising from both randomness of 
the sample and the discretization of the differential equation.  (This is a real problem in 
applications; to make matters worse, some of the early authors on option pricing under 
stochastic volatility models have suggested methods, especially series, that are of 
questionable value; caveat emptor.) 
 
Perhaps the best-known stochastic volatility model is the one where the squared volatility  

 satisfy the so-called square-root process: 
  
where  are constants. (This process was studied by William Feller and others in the 
1940s; it was chosen as a model for interest rates and squared volatility because (i) it is 
non-negative and (ii) many of its properties are known explicitly.) The distribution of  
is known in this case (see Dufresne, 2001, for details), though this does not help much in 
finding the distribution of ; the reason for this is that the solution of 

 is 

  

What matters in finding the distribution of  is that of the integrated squared volatility 
, and the latter is rarely a simple one. 

 
Regime switching stochastic volatility model 
Models under which a parameter changes value according to a Markov chain have 
recently become quite popular, at least in the academic literature. A simple stochastic 
volatility model consists in letting  be a Markov chain that takes values in a set 

. Models of this kind almost always have a very small number of possible 
states (or “regimes”), say  or 3. This model does not appear to match the visual 
appearance of graphs of observed volatilities, but it is tractable to a certain degree and a 
definite improvement over constant volatility models. A notable advantage is that when 
there are only  possible values for  the distribution of  is known explicitly 
(this result has been in the literature for a while, see Chin and Dufresne (2009) for 
details). 
 
Pricing options with Fourier integrals 
In the case of the square-root volatility model, Heston (1993) showed that a Fourier 
inversion formula may be used to price European puts and calls. The idea of expressing 
option prices in that way was not new. A classical result in probability theory is that the 
characteristic function of , , being the Fourier transform of the probability 
density function of  , yields the probability density function of  by the inversion 
formula 

  

 (R is the real line and i is the imaginary unit, .) Under some conditions, 
Parseval’s theorem gives a similar expression for the expectation of a function of : 

 Under 
some conditions, Parseval’s theorem gives a similar expression 
for the expectation of a function of  

equations is far from  trivial; one must deal with errors arising from both randomness of 
the sample and the discretization of the differential equation.  (This is a real problem in 
applications; to make matters worse, some of the early authors on option pricing under 
stochastic volatility models have suggested methods, especially series, that are of 
questionable value; caveat emptor.) 
 
Perhaps the best-known stochastic volatility model is the one where the squared volatility  

 satisfy the so-called square-root process: 
  
where  are constants. (This process was studied by William Feller and others in the 
1940s; it was chosen as a model for interest rates and squared volatility because (i) it is 
non-negative and (ii) many of its properties are known explicitly.) The distribution of  
is known in this case (see Dufresne, 2001, for details), though this does not help much in 
finding the distribution of ; the reason for this is that the solution of 

 is 

  

What matters in finding the distribution of  is that of the integrated squared volatility 
, and the latter is rarely a simple one. 

 
Regime switching stochastic volatility model 
Models under which a parameter changes value according to a Markov chain have 
recently become quite popular, at least in the academic literature. A simple stochastic 
volatility model consists in letting  be a Markov chain that takes values in a set 

. Models of this kind almost always have a very small number of possible 
states (or “regimes”), say  or 3. This model does not appear to match the visual 
appearance of graphs of observed volatilities, but it is tractable to a certain degree and a 
definite improvement over constant volatility models. A notable advantage is that when 
there are only  possible values for  the distribution of  is known explicitly 
(this result has been in the literature for a while, see Chin and Dufresne (2009) for 
details). 
 
Pricing options with Fourier integrals 
In the case of the square-root volatility model, Heston (1993) showed that a Fourier 
inversion formula may be used to price European puts and calls. The idea of expressing 
option prices in that way was not new. A classical result in probability theory is that the 
characteristic function of , , being the Fourier transform of the probability 
density function of  , yields the probability density function of  by the inversion 
formula 

  

 (R is the real line and i is the imaginary unit, .) Under some conditions, 
Parseval’s theorem gives a similar expression for the expectation of a function of : :

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

This technique is studied in detail in Dufresne et al. (2009). 
Since the payoffs of some reinsurance contracts are the same as 
those of call options (i.e. 

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

 the same 
ideas apply in reinsurance and in option pricing. A formula 
proved in that paper is

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

(

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

 is the real part of 

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

; the only assumptions are: the ran-
dom variable S is positive and has finite mean, the constant K 
is positive.) There are similar formulas in terms of 

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

. The 
computational advantage of this type of formula is that it is not 
necessary to find the distribution of S first before computing 
the option price (or stop-loss premium); if 

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

 is known, 
then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of S and then 

computing the expected payoff, and is also faster than Monte 
Carlo simulation.

One way to apply this idea is described in Chin and Dufresne 
(2009). Suppose V is independent of the Brownian motion 
driving S (denoted  

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

above), and that the characteristic 
function of integrated squared volatility, E

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

 is known. 
Then, one may condition on V to get the price of a call:

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

(This means conditioning on the whole process 

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

.) Now, 
given 

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

, the value of both 

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

and 

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

 are assumed known, and 
the stochastic integral

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

  
has a normal distribution with mean zero and variance

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

  
Hence, the price of the call is

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

where 

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

 has a standard normal distribution and is indepen-
dent of 

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

. At this point one recognizes the no-arbitrage 
price of a call option in the ordinary Black-Scholes model, 
if 

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

 is replaced with 

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

. Denote the price of such a 
call 

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

. We thus see that the price of the call in the 
stochastic volatility model is the same as 

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

. Once 
the Fourier transform of g(.)  is found, Parseval’s Theorem may 
then be used to find the following formula (Chin and Dufresne, 
2009, Theorems 2.1, 2.2).

Theorem. Suppose 

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,   for some 

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  . Then, for 

any  
  

  

This technique is studied in detail in Dufresne et al. (2009). Since the payoffs of some 
reinsurance contracts are the same as those of call options (i.e. ),  
the same ideas apply in reinsurance and in option pricing. A formula proved in that paper 
is 

  

(  is the real part of ; the only assumptions are: the random variable  is positive 
and has finite mean, the constant  is positive.) There are similar formulas in terms 
of . The computational advantage of this type of formula is that it is not necessary 
to find the distribution of  first before computing the option price (or stop-loss 
premium); if  is known, then a single integral gives the price of a European put or 
call. This is quicker than finding the distribution of  and then computing the expected 
payoff, and is also faster than Monte Carlo simulation. 
 
One way to apply this idea is described in Chin and Dufresne (2009). Suppose is 
independent of the Brownian motion driving  (denoted  above), and that the 
characteristic function of integrated squared volatility, , is known. Then, one 
may condition on  to get the price of a call: 
  
 (This means conditioning on the whole process .) Now, given , the value of 
both and  are assumed known, and the stochastic integral 

  

has a normal distribution with mean zero and variance 

  

Hence, the price of the call is 
  
where  has a standard normal distribution and is independent of . At this point one 
recognizes the no-arbitrage price of a call option in the ordinary Black-Scholes model, if 

 is replaced with . Denote the price of such a call . We thus see that 

the price of the call in the stochastic volatility model is the same as . Once 
the Fourier transform of  is found, Parseval's Theorem may then be used to find the 
following formula (Chin and Dufresne, 2009, Theorems 2.1, 2.2). 
 
Theorem. Suppose  for some . Then, for any ,  

where 



FEBRUARY 2010 RISKS AND REWARDS |  31

A similar formula is obtained for puts. The regime switching 
stochastic volatility model was used to test this formula against 
Monte Carlo simulation and also the explicit formula for the 
distribution of UT (in the case where volatility takes N=2 
values). The Fourier integral beats both alternatives easily, in 
computing time as well as coding effort. The only downside is 
that there is a free parameter 

  

where  

  

A similar formula is obtained for puts. The regime switching stochastic volatility model 
was used to test this formula against Monte Carlo simulation and also the explicit formula 
for the distribution of (in the case where volatility takes   values). The Fourier 
integral beats both alternatives easily, in computing time as well as coding effort. The 
only downside is that there is a free parameter  in the theorem, and that some trial and 
error is required to find a good range for it. This is a common feature of Fourier integrals 
that involve oscillating functions. 
 
Daniel Dufresne, FSA, Ph.D., Centre for Actuarial Studies, University of Melbourne, can 
be contacted at dufresne@unimelb.edu.au 
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H edging programs have become a mainstay in the 
risk management arsenal of life insurers seeking to 
mitigate the capital markets risk associated with their 

products, especially variable annuities. The recent financial 
crisis has placed significant stresses on variable annuity (VA) 
hedging programs and the lessons learned in responding to 
these stresses will likely play an important role in shaping 
future developments. This talk focuses on four key topics in 
this regard: a) management of severe adverse movements in 
underlying asset values; b) treatment of volatility risk; c) man-
agement of fund mapping related basis risk; and d) credit risk 
as an emerging area of concern.

A brief review of VA hedging model basics is a good place to 
begin in developing an understanding of the problems encoun-
tered by hedging programs in the financial crisis. VA hedging 
models are generally simulation based and work by first gener-
ating a set of risk neutral economic scenarios using parameters 
appropriate to current market conditions. The paths are then 
used in conjunction with a detailed model of the structural 
features of the guarantee and policyholder information to value 
the guarantee as the expected value of the present value of its 
future cash flows.

Successful dynamic hedging of VA market risks relies upon the 
ability to acquire effective risk off-setting positions in a timely 
manner. In order to do this, it is necessary to compute sensitivi-
ties, or greeks, which measure the response of the economic 
value of the guarantee to changes in market parameters. Key 
greeks that are usually considered for hedging are delta and 
gamma—first and second order derivatives measuring equity 
price level sensitivity respectively, rho and convexity—first 
and second order derivatives measuring interest rate sensitiv-
ity, and vega—a first order derivative measuring sensitivity to 
(equity) volatility.

MANAGEMENT OF SEVERE MOVEMENTS 
IN UNDERLYING ASSET VALUE
The recent financial crisis is notable for the magnitude of 

severe market movements occurring over short periods of time. 
Such movements can be problematic for dynamic hedging 
programs both mathematically and operationally. The math-
ematical issue turns on the use of greeks to create market risk 
neutralizing positions based on a Taylor series like approxima-
tion which becomes less accurate for larger market movements. 
This problem can be somewhat mitigated by using higher order 
greeks, e.g., gamma. The operational issue concerns the fact 
that execution of required hedging transactions may not be 
feasible in the presence of sufficiently large and rapid market 
movements. This issue can be addressed by prepositioning 
hedging instruments, e.g., out of the money options, to neutral-
ize greeks in prescribed market stress scenarios. This type of 
catastrophe or macro hedging has been widely used in banking 
and is now being more actively considered by insurers.

Life insurers’ near term responses to the hedging challenges 
posed by large adverse market movements may constitute a 
prolog to the future. These responses include programmatic 
reviews of risk limits, escalation protocols, system/operational 
responsiveness, utilization of wider set of greeks, including 
second order greeks (gamma, possibly convexity), and choice 
of hedging instruments. Cost/benefit considerations include a 
greater appreciation of the value of protective strategies cou-
pled with a more acute sensitivity to implementation costs and 
the transactional difficulties associated with the use of highly 
specialized instruments in turbulent markets.

TREATMENT OF VOLATILITY RISK
To achieve market consistency, many hedging platforms param-
eterize their hedging models using implied volatility. The high 
levels of market implied volatility characterizing the recent 
financial crisis have motivated greater scrutiny of the treatment 
of volatility in VA hedging programs. The volatility dependence 
of VA guarantees is significant and unhedged volatility can 
be an important source of hedge slippage. However, the com-
plete treatment of implied volatility is complex as this quantity 
depends on both tenor and moneyness. The relative paucity of 
traded data at distant tenors and moneyness is an issue.

SUMMARY OF PRESENTATION 
DELIVERED AT THE SOA 
2009 ANNUAL MEETING 
“HEDGING FOR LIFE INSURERS 
– WHAT’S NEXT FOR VARIABLE 
ANNUITIES?”

By David J. Maloof
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In light of recent market experience, a number of writers who 
initially chose to hedge only delta, or delta and rho, are revisit-
ing their decision to not hedge vega. In doing this, the elevated 
cost of hedging instruments, given recent levels of implied 
volatility, and the increased operational complexity associ-
ated with vega hedging, must be weighed against the added 
risk management benefits. Hedging instruments tend to be 
vanilla options, but variance swaps are also receiving attention. 
Volatility modeling is becoming more sophisticated to capture 
the full volatility surface. Modeling paradigms span the gamut 
from ad hoc strike dependent volatility adjustments to the use 
of more complex stochastic processes, e.g., local volatility or 
stochastic volatility.

MANAGEMENT OF FUND MAPPING 
RELATED BASIS RISK
The funds underlying a variable annuity contract are typically 
not themselves directly hedgable. In practice, they are usu-
ally linked to hedgable market indices via linear relationships 
called fund mappings, which are essentially multifactor linear 
regressions expressing the returns of a given fund in terms of 
the returns of a prescribed set of hedgable indices. The effec-
tiveness of a hedging strategy making use of these mappings 
depends critically on their explanatory power. This explanatory 
power can become attenuated over time, especially as a result 
of market turbulence or changes in fund strategic objectives, 
thereby giving rise to fund mapping related basis risk and 
potentially significant hedge slippages.

Product design is the first line of defense that VA writers have 
against the basis risk engendered by ineffective fund map-
pings. Hedge friendly designs utilize underlying funds with 
risk/return characteristics that are well described by hedgable 
market indices with broad and deep associated derivatives 
markets. The importance of ongoing fund mapping manage-
ment is becoming more widely recognized among VA writ-
ers. This is evidenced, for example, by increased allocation 
of dedicated staffing resources to monitor and improve fund 
mapping performance and establishment of more formal risk 
management protocols requiring regular fund mapping assess-
ment and recalibration if needed.

CREDIT RISK—AN EMERGING AREA OF 
CONCERN
Recent well publicized defaults, or near defaults, particularly 
within the banking and broker/dealer communities, have moti-
vated a renewed awareness of the importance of credit risk 
management in general. Counterparty credit risk is an area 
of heightened focus for VA hedging operations, somewhat 
in contrast to the situation prior to the recent financial crisis. 
Effective management of credit risk is an emerging area of 
practice among life insurers, and VA writers in particular. 
Possible avenues of approach include: strengthened, more 
formalized, monitoring of obligor credit quality and exposure 
concentration; imposition of more rigorous credit risk limits; 
and utilization of modern market-based credit quality metrics 
in addition to traditional ratings. 

David J. Maloof, Ph.D., is a senior consultant at Towers Perrin. He can be contacted at david.
maloof@towersperrin.com

COUNTERPARTY CREDIT RISK IS AN AREA OF HEIGHT-

ENED FOCUS FOR VA HEDGING OPERATIONS. …“

“
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INTEGRATING ROBUST RISK 
MANAGEMENT INTO PRICING: 
NEW THINKING FOR VA WRITERS  
By Frank Zhang

T he variable annuity (VA) industry is rebuilding and 
even making a concerted effort to reinvent itself 
after many insurers incurred large losses, experienced 

increases in guaranteed minimum benefit reserves and required 
capital and accelerated DAC write-offs. As VA writers work 
to take advantage of growing demand for a new generation of 
guaranteed income products, they should look carefully at the 
lessons learned from the recent financial crisis. Most writers 
have modified their products by raising fees, reducing guar-
antees, and requiring more restrictive asset allocations. Some 
insurers have even stopped writing VA guarantees in certain 
markets. Throughout the industry, hedging programs are being 
modified and strengthened. Most reinsurance companies have 
exited the VA market or are acting very cautiously.

There are plenty of cautionary tales about the impact of 
volatility on hedging costs and product profitability, and the 
resulting higher statutory capital requirements. However, thus 
far, less has been written about the more robust pricing of 
the newest generation of VA products that satisfies consumer 
needs, reflects recent lessons learned about volatility and risk 
and ensures the acceptable profitability of those products. As 
insurers continue to design new products to reflect new market 
realities and uncertainties, it is time for capital market and 
actuarial minds to work together on integrating risk manage-
ment and pricing.

RECOGNIZING FACTORS AFFECTING VA 
GUARANTEE PRICING
One legacy of the financial crisis is a deeper and more granular 
recognition of key factors that impact the pricing of VA guar-
antees. Of particular importance are the potential impact of 
policyholder behavior on the hedging of embedded guarantees, 
lower risk-free rates on risk-neutral pricing of embedded guar-
antees, lower long-term expected equity growth rates, higher 
volatility (implied and realized), higher basis risk and increased 
accounting complexity.

Policyholder behavior: Higher persistency means higher 
potential revenue and profitability for most non-lapse-sup-
ported products and usually for VA base contracts. On the 
other hand, all embedded guarantees (death or living benefits) 
are exotic derivatives and higher persistency has the opposite 
effect on their profitability; they are lapse-supported and the 
notional value of liability options increases as more contracts 
stay in force. Because either over- or under-hedging can result 
in losses, it is critical for insurers to monitor changes in poli-
cyholder behavior and dynamically adjust their hedging posi-
tions to reflect those changes. Experience analysis and robust 
attribution analysis of hedge program performance are critical 
in understanding the impact of policyholder behavior on the 
hedging of VA guarantees.

Interest rate risk in a period of lower risk-free rates: Many 
economists foresee an extended period of low interest rates; 
therefore insurers will need to manage product design very 
carefully, given the current mismatches between low risk-free 
rates and higher roll-up rates. Roll-up or bonus rates that are 
significantly higher than the risk-free rates are creating embed-
ded losses every year and are obviously not sustainable. One 
risk mitigation tactic has been to design products that have 
floating roll-up rates that are linked to risk-free rates.

Lower long-term expected equity growth rate: Given the capi-
tal market crisis, it is unrealistic to assume a return to the strong 
long-term equity returns of the 1990s. Faced with uncertainty 
about expected returns, insurers could encounter higher earn-
ings volatility, lower profits, and higher claims, reserves and 
required capital. Insurers will have no alternative but to price 
more conservatively to deal with the likelihood of reduced 
profitability (specifically, ROE) of their products.

Higher implied and realized volatility: Along with uncertainty 
about equity return rates, potential higher volatility will signifi-
cantly impact the pricing of embedded guarantees in VA prod-
ucts and thus challenge normal VA pricing methods. Fair value 
and marked-to-market accounting will increase the demand for 
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derivatives to reduce the earnings volatility. The unbalanced 
supply of, demand for, and lack of liquidity of long-dated 
options render implied volatility higher. Higher implied volatil-
ity has made it more costly to hedge using options, and some-
times unaffordable relative to the guarantees priced in VAs.

Recently, realized volatilities have been catching up with 
implied volatilities, resulting in higher realized hedge costs. 
This increase in realized volatility has increased delta-hedging 
costs as compared to the cost of short-term options. Real-world 
pricing based on higher long-term volatility assumptions will 
place more pressure on profitability and capital positions, 
particularly as both VACARVM and C3 Phase II are directly 
impacted by the expected long-term volatilities of asset classes.

Higher basis risk: In late 2008 and early 2009, many hedg-
ers—insurance companies and banks—incurred losses from 
basis risk (i.e., tracking errors between changes in the VA 
liability and corresponding hedge assets), with some hedgers 
losing 300 or more basis points of assets under management. 
While most hedgers experienced positive tracking errors in 
2009, insurers have become more active in their management 
of basis risk through a more careful selection of underlying 
mutual funds. It will be critical to continue managing the basis 
risks directly, beginning with the selection of the underlying 
funds. Despite the recent occurrence of more positive tracking 
errors, pricing and/or volatility assumptions will need to be 
adjusted to account for basis risks.

Accounting complexity: Continuing uncertainty and increased 
complexity in accounting requirements will impact insurers’ 
financial performance and product profitability and, ulti-
mately, market competitiveness. Under more benign economic 
conditions, insurers and rating agencies focused primarily on 
minimizing GAAP earnings volatility. Many insurers did not 
implement economic hedges for GMDB and GMIB benefits, 
and only a few priced these benefits as derivatives marked-
to-market under SFAS 133 or 157. Since the financial crisis, 
however, insurers have become much more concerned about 
their statutory capital. With the liquidity crisis and high credit/
counter party risks, capital has become expensive and funding 

costs higher. Regulatory requirements, such as VACARVM 
and C3 Phase II, may continue to complicate efforts to inte-
grate risk management positions (such as hedging) that make 
sense economically, but could increase statutory requirements.

RISK MANAGEMENT AND PRICING
With so many unknowns and variables, particularly related to 
future volatility in the capital markets, VA writers must once 
again address the systemic and structural risks to the profit-
ability of new products. VA guarantees, particularly, should 
be treated as derivatives in the pricing calculation. Unlike 
traditional insurance liabilities, which are not leveraged to the 
market and that can be managed by pooling risk, derivatives 
must be managed differently. In fact, the systematic risk associ-
ated with derivatives cannot be diversified away. Insurers will 
need to determine and manage the trade-offs between earnings 
volatility and capital optimization, as well as those between 
marked-to-market profitability (based on forward-looking 
implied or expected volatility) and trading profitability (based 
on realized volatility).

There is an urgent need to develop pricing strategies that can 
withstand long-term uncertainty. Insurers need to develop inte-
grated approaches that incorporate robust and real-world risk 
management into the pricing process. This will require care-
ful alignment and collaboration between the pricing and risk 
management functions and a careful mix of actuarial science 
and financial engineering disciplines. The approaches must be 
diversified and designed for both the short and long term, and 
can include:
-  Diversification that addresses both actuarial and capital 

issues over the short and long term.
-  Capital market solutions, typically managed by hedging/

derivatives teams, which might include dynamic hedging, 
semi-static hedges, and such.

-  Insurance options, typically managed by actuaries, including 
reinsurance whenever possible and affordable.

-  Structured hedges, which are often hybrids between a 
dynamic hedge and full reinsurance.

CONTINUED ON PAGE 36

INSURERS NEED TO DEVELOP INTEGRATED 
APPROACHES THAT INCORPORATE ROBUST AND REAL-WORLD 

RISK MANAGEMENT INTO THE PRICING PROCESS.

“ “
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INTEGRATING ROBUST RISK MANAGEMENT  … | FROM PAGE 35

An integrated approach to risk management must include better 
integration of financial engineering and actuarial science and 
utilize robust modeling of hedges and derivatives in pricing 
systems. One example is the use of nested stochastic simula-
tions to price the products and incorporate hedging strategies 
in pricing runs.

The challenge is to ensure that risk management and hedging 
strategy development optimize the trade-offs among capital 
management, financial risk management, derivatives manage-
ment and product management. To effectively optimize the 
trade-offs, it will be prudent to plan for the possibility that 

“black swan” events may occur much more frequently than 
normally distributed events and that many long-term actuarial 
pricing assumptions will no longer be as relevant or reliable. 
Integration of pricing and hedging processes will enable pric-
ing models that reflect more realistic hedge outcomes and 
reveal hedge ineffectiveness.

Designing and executing an integrated risk management and 
pricing framework before another crisis will provide protection 
that is neither too late nor costly, and should help ensure better 
profitability in the long run. 

Frank Zhang is an executive director in the Insurance and Actuarial Advisory Services practice of 
Ernst & Young’s Financial Services Office. Frank is based in New York City and can be reached at +1 
212 773 5450 or frank.zhang@ey.com.   
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MANAGING INVESTMENTS 
IN A MARKET CONSISTENT 
FRAMEWORK

By Craig Buck

M arket Consistent Embedded Value (MCEV) is the 
present value of the future shareholder transfers 
determined on a risk adjusted basis. It is also the 

market value of assets less the market value of liabilities, where 
the market value of liabilities is determined on a risk-adjusted 
basis. Managing a book of life insurance policies on an MCEV 
basis can have broad implications for product strategy, pricing 
and investment strategy. This article focuses on the implica-
tions and uses of MCEV in developing investment strategy.

REPLICATING PORTFOLIOS
The concept of a replicating portfolio is critical to the theoretical 
underpinnings of MCEV reporting and can be helpful in under-
standing and evaluating the impact of a particular investment 
strategy. A replicating portfolio is the investment portfolio that 
best replicates the features of the liabilities, e.g., the liability cash-
flows across a wide range of economic scenarios or the value of 
the liabilities under various financial stress tests and sensitivities.

This is not to say that the replicating portfolio, once identified, 
is the portfolio we should invest in. Insurers are risk-taking 
entities. Investing in an alternative portfolio involves taking 
on more economic risk (relative to the liabilities), but this can 
be justified as long as the expected return from taking on this 
risk exceeds the return required for the additional risk capital. 
Any excess return earned will ultimately enhance the enterprise 
value once the return is earned and the risk has been released.

Replicating portfolios with a very close fit to complex insur-
ance liabilities may be difficult or impossible to construct. 
Achieving a close fit, particularly in the distribution tails, may 
require the construction of theoretical exotic, non-traded deriv-
atives and may require the inclusion of a rebalancing. As such, 
the theoretical minimum risk portfolio may include assets that 
cannot be practically or cost-effectively secured. In that case, 
the best an investment manager can do to minimize investment 
risk is to digress from the theoretical minimum risk portfolio 
and acquire assets that are obtainable in deep and liquid mar-
kets—the investable replicating portfolio. Both the investable 
and theoretical replicating portfolios have their uses and the 
difference between the two can be seen as a product related risk 

rather than an investment risk (as the product design forces this 
minimum level of mismatch).

Impact of the Liquidity Premium
The consideration of a liquidity premium in MCEV is a hotly 
debated topic that will likely have a significant impact on 
investment strategy. The recently released updated MCEV 
principles allow for consideration of a liquidity premium, 
though specific guidance on how to determine the liquidity 
premium is not yet prescribed.

When there is no liquidity premium, an investable risk-free 
position exists for fixed cashflows—either Treasuries or swaps, 
depending on the definition of risk-free. But if a liquidity pre-
mium is included, an equivalent investable risk-free position 
may or may not exist. For example, if liquidity premium is 
defined as long corporate bonds plus CDS protection on those 
names, this negative basis trade is investable. However, if the 
liquidity premium is defined by reference to a structural model 
then an investable position may not exist.

If the risk-free position is not investable, then management 
must make a choice between:

•  investing in liquid risk-free assets and foregoing any liquidity 
premium, thereby locking-in a loss position, or

•  investing in risky assets (potentially with some default protec-
tion) in an effort to extract a liquidity premium that approxi-
mates the liability liquidity premium, but thereby introducing 
exposure to credit risk.

IMPLICATIONS FOR INVESTMENT 
STRATEGY
If managing to MCEV, the aim is maximize MCEV earnings 
which are the growth in MCEV on a risk-adjusted basis. Risk 
can be measured by volatility in MCEV or percentile moves 
in MCEV, so our approach to investment management can be 
very similar to what many investment departments already do: 
measure the risk in terms of volatility or a specified percentile 
for the selected metric (MCEV), measure return expectations 

CONTINUED ON PAGE 38
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under the selected metric (expected MCEV earnings) for 
alternative investment strategies, define an efficient frontier 
and look for the intersection with the risk appetite.

MCEV may cause some insurers to question the purpose or 
value of beta. In an efficient world, the strategic asset allo-
cation will affect the insurer’s beta, which should translate 
directly through to cost of capital. So, value is not generated 
through beta since any changes to the expected return should 
be offset by implied changes to the cost of capital. This might 
imply that strategic asset allocation that focuses on managing 
beta is not value-adding.

Although investment strategy will not usually directly impact 
the initial MCEV (only pricing changes will impact the MCEV 
at the point of sale), investments will impact the emergence of 
MCEV earnings. Since changes in the economic environment 
directly impact MCEV it can be a volatile metric. As invest-
ment strategy impacts the emergence of earnings and is often 
the most significant source of MCEV earnings volatility, it can 
be used as a mechanism to manage that volatility by incorpo-
rating strategies designed to hedge MCEV. MCEV results can 
be analyzed to help make decisions on investment strategy.

As an example, the impact on MCEV of varying equity market 
returns, yield curves and defaults/credit spread widening can 

be analyzed.

Figure 1 shows the 
results of these sce-
narios in rank order 
from the combina-
tion of shocks that 
produces the lowest 
surplus to that which 
produces the largest. 
In order to drill into 
these results we can 
look separately at 
each risk.

Figure 2 shows the sensitivity of results to equity shocks. It 
appears that this product is reasonably well-hedged within a 
range of equity performance, but there may be opportunity 
to trade off some more of the upside in the extremely high 
equity returns to protect against some of the downside in the 
extremely low (see circled results).

Figure 3 analyzes the impact of credit shocks. It shows that 
this product is basically unhedged with respect to credit risk. 
Negative credit shocks produce negative results and positive 
shocks produce positive results.

MANAGING INVESTMENTS  … | FROM PAGE 37
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Finally, Figure 4 summarizes the impact of yield curve shifts. 
This shows a reasonably well hedged position since there is not 
a discernable slope to a regression line. Variances in positive 
and negative results appear to be independent of yield curve 
shifts.

When reviewing these results in total, potential modifications 
to investment strategy that could reduce the risk exposure 
might include:

 •  To hedge the equity exposure, if an adequate market 
exists, an investor could sell equity market call options 
with a high strike price so any payments due under the 
call option would be offset by the positive MCEV earn-
ings currently seen in Figure 2. The proceeds could be 
used to buy out-of-the-money put options to protect the 
extreme downside risk.

 •  To hedge the credit exposure seen in Figure 3, if 
an adequate market exists, credit protection could be 
bought and sold in order to hedge some of the extreme 
aspects of this position and stabilize results. However, 
perfect hedges of credit risk are unlikely to be avail-
able due to the depth of the market and the exposure to 
counterparty risk. Reducing the credit exposure seen in 
Figure 3 would reduce volatility, but may also decrease 
the ultimate expected returns—unnecessarily to the 

extent management believe this risk can be effectively 
managed.

 •  While the exposure to yield curve shifts appears reason-
ably well-hedged, there may be a slight negative slope 
to a regression line in Figure 4, indicating an opportunity 
to trade off the positive impact of negative interest rate 
movements to cover the negative impact of positive 
shifts (e.g., using interest rate swaps).  However, this 
would not be a priority based on the magnitude of expo-
sures to equity and credit risks.

These actions or some combination thereof, should give more 
stability to MCEV earnings and may make sense if manage-
ment was uncomfortable with the distribution summarized in 
Figure 1.

CONCLUSION
There are many other implications of managing to MCEV—
including implications for performance measurement and 
investor communications. Strategic asset allocation and deci-
sions to deviate from the replicating portfolio imply taking on 
various levels of risk and will impact the emergence of MCEV 
earnings. In some cases, there will be opportunities to manage 
volatility in this metric. Complicating matters are issues such 
as liquidity premium that are still being debated.

Nonetheless, MCEV can be a valuable metric in monitoring 
and understanding the risks to which an insurer is exposed. 
When properly utilized and determined, MCEV can provide 
a basis to articulate and disclose the risks as well as a clearer 
line of sight to the role of the investment actuary in managing 
these risks. 

MCEV (MARKET CONSISTENT EMBEDDED VALUE) CAN BE A 
VALUABLE METRIC IN MONITORING AND UNDERSTANDING 

THE RISKS TO WHICH AN INSURER IS EXPOSED. 
“ “
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percent probability. But if the portfolio is divided into senior 
and junior tranches of $1000 each, the payoffs are as follows: 
senior tranche pays $1000 with 99 percent probability and $0 
with 1 percent probability while the junior tranche pays $1000 
with 81 percent probability and $0 with 19 percent probability. 
So, under the independence assumption, the value of the senior 
tranche is $990 while the junior tranche is worth $810.

What’s the point? The senior tranche is like the AAA CDO 
tranches retained by the investment banks and the junior 
tranche is like the non-investment-grade tranches sold off to 
hedge funds. Professor Lo then showed what happens when the 
independence assumption is wrong. To take it to an extreme, 
if we suppose that the bonds are 100 percent correlated, then 
the buyer of the senior tranche will have paid too much and 
the buyer of the junior tranche got a very good deal. And this 
is what happened to the banks. They lost on both counts—they 
held the overvalued tranches and sold the undervalued ones.

This leads to one of the key points of the lecture: risk is not just 
market risk; systemic risk matters. What is systemic risk? It is 
risk to the financial system. Systemic risk differs from market 
risk in a number of ways. Systemic risk arises from unexpected 
losses. The kinds of losses that the system was not designed to 
tolerate. Systemic risk is nonlinear, dynamic and complex. The 
markets have become increasingly complex in recent history. 
Indeed, the world itself has.

Professor Lo then asked, “Why does crisis happen in other 
technology-based industries?” Here, he is thinking about catas-
trophes such as Chernobyl and Three Mile Island, the shuttle 
disasters, and transportation failures like the Minneapolis 
bridge collapse. He also tells us about Perrow’s (1984) Theory 
of Normal Accidents. According to the theory, whenever 
there are two conditions present, 1) complex systems (nonlin-
earities), and 2) tight coupling (i.e., high levels of interdepen-
dence), we should expect large failures. We should therefore 
prepare for these failures. He then gave a few examples from 
finance to illustrate the high level of complexity involved. He 
then added a third condition which he first proposed in 2004: 

A mong the many interesting sessions at the 2009 SOA 
Annual Meeting in Boston was a lecture presented 
by Professor Andrew Lo. I had the distinct pleasure 

of introducing Professor Lo to the audience. Andrew Lo is the 
Harris & Harris Professor of Finance at MIT’s Sloan School 
of Management and the Director of the MIT Laboratory for 
Financial Engineering. His list of research accomplishments 
and awards is very impressive; I had to leave out most of the 
details and I will do so here as well. I will simply mention that 
he is a prolific author, edits several important finance journals, 
and has won many awards. Given his background, he did not 
disappoint. For me, it was one of the most entertaining and 
interesting presentations I have ever witnessed at a professional 
meeting.

He began with a summary of the crisis and the long list of 
people and institutions that share blame. He asked, “Is there a 
common denominator?” As a hint, he quoted from a very good 
article titled, “Confessions of a Risk Manager” that appeared 
in the Aug. 7, 2008 edition of The Economist. In that article, 
a risk manager of a large investment bank speaks frankly as to 
why risk management failed to stop the excessive risk-taking. 
An important point is that the banks often kept AAA tranches 
of the CDO’s they created on their own balance sheets. A key 
quote, “We were most eager to sell the non-investment-grade 
tranches [of CDO’s created by the investment bank], and our 
risk approvals were conditional on reducing these to zero.” 
And who bought these non-investment-grade tranches? Hedge 
funds.

To better understand the importance of the above observa-
tions, Professor Lo gave a very simple example of how CDO 
tranching works. The example features two identical bonds 
that either pay $1000 with 90 percent probability or $0 with 10 
percent probability. He then observes that the (expected) value 
of each bond is $900 (ignoring interest for simplicity). Now, 
assuming independence of defaults, a portfolio of two such 
bonds will have three possible payoffs: $2000 with 81 percent 
probability, $1000 with 18 percent probability and $0 with 1 

WHY WE NEED TO TRANSFORM 
OUR VIEW OF RISK

A summary of the talk given by Andrew Lo at the 2009 
SOA Annual Meeting in Boston

By Gary Hatfield
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When the film was done, he polled the audience and got a dis-
persion of counts between 15 and 20. He then asked if anyone 
had seen something else of interest. One person shyly raised 
her hand and said, “There was some kind of monkey?” Upon 
inquiry, about 20 percent of the audience said they saw some-
thing like a monkey. Well over half did not. Upon replay, a 
man dressed in gorilla suit strolled into the center of the screen, 
turned to the camera, beat his chest, and walked off. Professor 
Lo quipped, “All this talk about Black Swans when we can’t 
even see the black gorilla looking right at you and beating his 
chest.” Humor aside, the point here is that we are incredibly 
good at focusing on the talk in front of us. So much so that we 
ignore things that are not part of the task. In the financial con-
text, this means that managers with incentives to make earnings 
and revenue goals will not see the gorilla (systemic risk) look-
ing at them and beating its chest.

So what are the implications? According to Lo, we need a cen-
tral body responsible for systemic risk. But, he does not mean 
to assert that we need more regulation. What he has in mind is 
something more akin to the role the NTSB plays in aviation. 
After all, financial regulators often work to increase systemic 
risk rather than to decrease it. Like the NTSB, the body would 
objectively report on the causes of failures. And the regulators 
(e.g., FAA in the case of the NTSB) would not be immune from 
critique. In the end, crisis preparation may be as important (if 
not more) than crisis prevention.  

absence of negative feedback over an extended period of time.
Could the current financial crisis have been avoided? Not in his 
view, because we didn’t know something was wrong. Indeed, 
he shows that more than one observer (including himself and 
Robert Shiller) raised an alarm as far back as 2005. However, 
he argues that foreknowledge of the danger could not have 
prevented the crisis because of what he calls the psychology 
of greed.  In short, our psychological makeup prevents us from 
avoiding these kinds of risk. To set things up, he asked us to 
imagine the plight of a CRO at an investment bank in 2006. 
Suppose they correctly recognized the growing systemic risk 
from the subprime CDO business. They could have recom-
mended an unwinding of the very business responsible for 
over half of the bank’s profits for the decade. Or perhaps they 
could have ordered the exposure hedged with resulting losses 
over the next year or so. But no matter how you look at it, it 
is hard to come up with a course of action that would not have 
cost the CRO his or her job other than recommending to “stay 
the course.”

To even more powerfully illustrate our limitations, he asked the 
audience to participate in a cognitive experiment. He showed 
a film of several college students passing around basketballs—
some wearing black t-shirts while others were wearing white. 
The goal for the audience was to only count how many passes 
occurred between black t-shirted students. To make it even 
harder, Professor Lo randomly counted along but incorrectly. 

… NO MATTER HOW YOU LOOK AT IT, IT IS HARD TO 

COME UP WITH A COURSE OF ACTION THAT WOULD NOT HAVE COST 

THE CRO HIS OR HER JOB OTHER THAN RECOMMENDING TO ‘STAY THE 

COURSE’.

“ “
Gary Hatfield, Ph.D., FSA, CFA, Investment Actuary, Securian Financial Group. He can be contacted 
at Gary.Hatfield@securian.com    
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