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S tochastic volatility models are now routinely used in 
investments and option pricing. A brief introduction to 
those models is first given, and then a method for pric-

ing options is described.

The stochastic process that later became known as “Brownian 
motion” first appeared in Bachelier (1900), as a model for 
security prices. Bachelier imagined the security price as an 
arithmetic Brownian motion (defined below); this has the 
shortcoming of allowing negative security prices. Osborne 
(1959), apparently unaware of Bachelier’s work, proposed geo-
metric Brownian motion (GBM) as a model for stock prices, in 
part because GBM cannot be negative. That model was used in 
economics from the 1960s, notably to value options. Black and 
Scholes (1973) also used GBM for their risky asset, and since 
then Osborne’s GBM model for stock prices has often been 
called the “Black-Scholes model.”

In the sequel, 
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In the sequel, will stand for a standard Brownian motion, that is,  has independent 
increments and continuous trajectories,   has an N  distribution for 

. Arithmetic Brownian motion (or ABM) is a process of the type , 
where “a” and “b” are constants. 
 
The usual financial notation for GBM goes back to Black, Scholes, and their 
predecessors, and is the familiar stochastic differential equation 
  
This means exactly the same thing as 
  
though the latter shows  more clearly that log-prices form an ABM.  
 
A discrete-time equivalent of arithmetic Brownian motion is the random walk 
  
where  is i.i.d. Here  stands for the log-price, . In both cases the variance 
(=squared volatility) of the returns (=difference in log-prices) per time period is a 
constant; both are constant volatility models. Observe that in a random walk  may have 
any distribution, while if  is GBM then necessarily has a normal 
distribution. (N.B., the name random walk often has a wider meaning in the finance 
literature but I am stating the classical mathematical definition here.) 
 
Whether log-prices actually do follow an arithmetic Brownian motion was challenged 
very soon after that model was formulated; Mandelbrot (1963) and then Fama (1965) 
suggested a stable Lévy process as a better model for log-prices. Lévy processes are 
continuous-time processes with independent increments that are not necessarily normally 
distributed; ABM is the only Lévy process with normal increments. Stable processes may 
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Option pricing 
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Here  is the risk-free rate of interest (since this model is formulated under the risk-
neutral measure), are Brownian motions (possibly correlated), and  are 
stochastic processes, that may depend on . In this model the  of the GBM model has 
been replaced with the stochastic process ; is the squared volatility process. 
Several models of this type have been proposed; they raise two problems: estimation and 
option computation. If a model is to be used to price options, then logically the model 
should fit observed option prices; more precisely, what is sought is the distribution of the 
process  under the risk-neutral measure. This is not easy to estimate, because the 
number of observed option prices is usually quite small. Only in the case of the GBM 
model is that not a problem; this is because the quadratic variation of log-prices over t 
time units is in that case the same constant, (editor’s note ****should be 
σ2t***), under both the physical measure and the risk-neutral measure. Therefore, the 
GBM stock price distribution under the physical measure implies the GBM stock price 
distribution under the risk-neutral measure, and the  is the same under both measures; 
hence, one only needs to estimate  from past stock prices; but this applies only to the 
GBM/Black-Scholes model. 
 
Once the stochastic volatility model has been estimated there usually remains another 
problem, that of computing option prices under the model. The resulting distribution for 

 often turns out to be either very complicated or just unknown. Monte Carlo simulation 
is a possibility, but one soon realizes that the simulation of stochastic differential 
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where  

  

A similar formula is obtained for puts. The regime switching stochastic volatility model 
was used to test this formula against Monte Carlo simulation and also the explicit formula 
for the distribution of (in the case where volatility takes   values). The Fourier 
integral beats both alternatives easily, in computing time as well as coding effort. The 
only downside is that there is a free parameter  in the theorem, and that some trial and 
error is required to find a good range for it. This is a common feature of Fourier integrals 
that involve oscillating functions. 
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A similar formula is obtained for puts. The regime switching 
stochastic volatility model was used to test this formula against 
Monte Carlo simulation and also the explicit formula for the 
distribution of UT (in the case where volatility takes N=2 
values). The Fourier integral beats both alternatives easily, in 
computing time as well as coding effort. The only downside is 
that there is a free parameter 
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A similar formula is obtained for puts. The regime switching stochastic volatility model 
was used to test this formula against Monte Carlo simulation and also the explicit formula 
for the distribution of (in the case where volatility takes   values). The Fourier 
integral beats both alternatives easily, in computing time as well as coding effort. The 
only downside is that there is a free parameter  in the theorem, and that some trial and 
error is required to find a good range for it. This is a common feature of Fourier integrals 
that involve oscillating functions. 
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