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Present Values, 
Investment Returns and 
Discount Rates – Part 1
By Dimitry Mindlin

returns are uncertain, a single discount rate cannot encom-
pass the entire spectrum of investment returns, hence the 
selection of a discount rate is a challenge. In general, the 
asset value required to fund an uncertain financial commit-
ment via investing in risky assets—the present value of the 
commitment—is uncertain (stochastic).1

While the analysis of present values is vital to the process of 
funding financial commitments, uncertain (stochastic) pres-
ent values are outside of the scope of this paper. This paper 
assumes that a present value is certain (deterministic)—a 
present value is assumed to be a number, not a random vari-
able in this paper. The desire to have a deterministic present 
value requires a set of assumptions that “assume away” all 
the uncertainties in the funding problem.

In particular, it is generally necessary to assume that all 
future payments are perfectly known at the present. The 
next step is to select a proper measurement of investment 
returns that serves as the discount rate for present value cal-
culations. This step—the selection of the discount rate—is 
the main subject of this paper.

One of the main messages of this paper is the selection of 
the discount rate depends on the objective of the calcula-
tion. Different objectives may necessitate different discount 
rates. The paper defines investment returns and specifies 
their relationships with present and future values. The key 
measurements of investment returns are defined in the con-
text of return series and, after a concise discussion of capital 
market assumptions, in the context of return distributions. 
The paper concludes with several examples of investment 
objectives and the discount rates associated with these 
objectives.

1. Investment Returns
This section discusses one of the most important concepts 
in finance—investment returns. 

T his is the first of a two-part article. The first pro-
vides the groundwork for exploring the different 
formulations of the discount rate, to support various 

sorts of objectives. It provides some useful rule of thumb 
for estimating quantiles in the distribution of discount rates 
and for relating geometric and arithmetic discount assump-
tions in a defined series of returns. The second part, to 
follow in early 2014, applies this approach to examples of 
a stochastic distribution of returns.

The concept of present value lies at the heart of finance in 
general and actuarial science in particular. The importance 
of the concept is universally recognized. Present values of 
various cash flows are extensively utilized in the pricing of 
financial instruments, funding of financial commitments, 
financial reporting, and other areas.

A typical funding problem involves a financial commitment 
(defined as a series of future payments) to be funded. A 
financial commitment is funded if all payments are made 
when they are due. A present value of a financial commit-
ment is defined as the asset value required at the present to 
fund the commitment.

Traditionally, the calculation of a present value utilizes 
a discount rate—a deterministic return assumption that 
represents investment returns. If the investment return and 
the commitment are certain, then the discount rate is equal 
to the investment return and the present value is equal to 
the sum of all payments discounted by the compounded 
discount rates. The asset value that is equal to this present 
value and invested in the portfolio that generates the invest-
ment return will fund the commitment with certainty.

In practice, however, perfectly certain future financial com-
mitments and investment returns rarely exist. While the 
calculation of the present value is straightforward when 
returns and commitments are certain, uncertainties in the 
commitments and returns make the calculation of the pres-
ent value anything but straightforward. When investment 
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forward-looking capital market assumptions that include 
expected returns, risks, and correlations between various 
asset classes. Later sections discuss capital market assump-
tions in more detail.

Given the present value and portfolio return, formula (1.2) 
calculates the future value. However, many investors with 
future financial commitments to fund (e.g., retirement 
plans) face a different challenge. Future values—the com-
mitments—are usually given, and the challenge is to cal-
culate present values. A simple transformation of formula 
(1.2) produces the following formula:

(1.3)
Formula (1.3) represents the concept of discounting pro-
cedure. Given a portfolio, formula (1.3) produces the asset 
value PV required to be invested in this portfolio at the 
present in order to accumulate future value FV. It must be 
emphasized that return RP in (1.3) is generated by the actual 
portfolio P, as there is no discounting without investing. 
Any discounting procedure assumes that the assets are actu-
ally invested in a portfolio that generates the returns used 
in the procedure.

Formulas (1.2) and (1.3) are mathematically equivalent, and 
they utilize portfolio return in similar ways. Depending on 
the purpose of a calculation in (1.2) or (1.3), one may utilize 
either a particular measurement of return (e.g., the expected 
return or median return) or the full range of returns.2 The 
desirable properties of the future value in (1.2) or present 
value in (1.3) would determine the right choice of the return 
assumption.

Future and present values are, in a certain sense, inverse of 
each other. It is informative to look at the analogy between 

Let us define the investment return for a portfolio of assets 
with known asset values at the beginning and the end of a 
time period. If PV is the asset value invested in portfolio P 
at the beginning of a time period, and FV is the value of the 
portfolio at the end of the period, then the portfolio return 
RP for the period is defined as

			 
(1.1)

Thus, given the beginning and ending values, portfolio 
return is defined (retrospectively) as the ratio of the invest-
ment gain over the beginning value. Definition (1.1) estab-
lishes a relationship between portfolio return RP and asset 
values PV and FV.

Simple transformations of definition (1.1) produce the fol-
lowing formula:

(1.2)
Formula (1.2) allows a forward-looking (prospective) cal-
culation of the end-of-period asset value FV. The formula 
is usually used when the asset value at the present PV and 
portfolio return RP are known (this explains the notation: PV 
stands for “Present Value”; FV stands for “Future Value”).

While definition (1.1) and formula (1.2) are mathematically 
equivalent, they utilize portfolio return RP  in fundamentally 
different ways. The return in definition (1.1) is certain, as 
it is used retrospectively as a measurement of portfolio 
performance. In contrast, the return in formula (1.2) is used 
prospectively to calculate the future value of the portfolio, 
and it may or may not be certain.

When a portfolio contains risky assets, the portfolio return 
is uncertain by definition. Most institutional and individual 
investors endeavor to fund their financial commitments 
by virtue of investing in risky assets. The distribution of 
uncertain portfolio return is usually analyzed using a set of 
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demonstrated in a later section, similar conditions imposed 
on future and present values lead to different discount rates.

Uncertain future values generated by the uncertainties of 
investment returns (and commitments) play no part in finan-
cial reporting. In contrast, various actuarial and account-
ing reports require calculations of present values, and 
these present values must be deterministic (under current 
accounting standards, at least). Therefore, there is a need for 
a deterministic discounting procedure.

Conventional calculations of deterministic present values 
usually utilize a single measurement of investment returns 
that serves as the discount rate. Since there are numerous 
measurements of investment returns, the challenge is to 
select the most appropriate measurement for a particular 
calculation. To clarify these issues, subsequent sections 
discuss various measurements of investment returns.

2. Measurements of Investment 
Returns: Return Series
This section discusses the key measurements of series of 
returns and relationships between these measurements. 
Given a series of returns r1,..., rn, it is desirable to have a 
measurement of the series—a single rate of return—that, 
in a certain sense, would reflect the properties of the series. 
The right measurement always depends on the objective 
of the measurement. The most popular measurement of a 
series of returns r1,..., rn is its arithmetic average A defined 
as the average value of the series:

	 (2.1)
As any other measurement, the arithmetic average has its 
pros and cons. While the arithmetic average is an unbiased 
estimate of the return, the probability of achieving this value 
may be unsatisfactory. As a predictor of future returns, the 
arithmetic average may be too optimistic.

future and present values in the context of a funding prob-
lem, which would explicitly involve a future financial com-
mitment to fund. Think of an investor that has $P at the 
present and has made a commitment to accumulate $F at the 
end of the period by means of investing in a portfolio that 
generates investment return R.

Similar to (1.2), the future value of $P is equal to

	 (1.4)
Similar to (1.3), the present value of $F is equal to

	 (1.5)
The shortfall event is defined as failing to accumulate $F at 
the end of the period:

	 (1.6)
The shortfall event can also be defined equivalently in terms 
of the present value as $P being insufficient to accumulate 
$F at the end of the period:

	 (1.7)
In particular, the shortfall probability can be expressed in 
terms of future and present values:

(1.8)
If the shortfall event happens, then the shortfall size can 
also be measured in terms of future and present values. The 
future shortfall F - FV is the additional amount the inves-
tor will be required to contribute at the end of the period to 
fulfill the commitment. The present shortfall PV - P is the 
additional amount the investor is required to contribute at 
the present to fulfill the commitment.

Clearly, there is a fundamental connection between future 
and present values. However, this connection goes only 
so far, as there are issues of great theoretical and practical 
importance that distinguish future and present values. As 
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	 (2.5)
Thus, the geometric average connects the starting and 
ending asset values (and the arithmetic average does not). 
Therefore, if the primary objective of discount rate selec-
tion is to connects the starting and ending asset values, then 
the geometric average should be used for the present value 
calculations.

To present certain relationships between arithmetic and 
geometric averages, let us define variance V as follows:4

	 (2.6)
If V = 0, then all returns in the series are the same, and 
the arithmetic average is equal to the geometric average. 
Otherwise (if V > 0), the arithmetic average is greater than 
the geometric average (A > G).5

There are several approximate relationships between arith-
metic average A, geometric average G, and variance V.  
These relationships include the following relationships that 
are denoted (R1) – (R4) in this paper.

These relationships produce different results, and some 
of them work better than the others in different situations. 
Relationship (R1) is the simplest, popularized in many 
publications, but usually sub-optimal and tends to under-
estimate the geometric return.6 Relationships (R2) – (R4) 

Another significant shortcoming of the arithmetic return is 
it does not “connect” the starting and ending asset values. 
The starting asset value multiplied by the compounded 
arithmetic return factor (1 + A) is normally greater than 
the ending asset value.3 Therefore, the arithmetic average 
is inappropriate if the objective is to “connect” the start-
ing and ending asset values. The objective that leads to the 
arithmetic average as the right choice of discount rate is 
presented in Section 5.

Clearly, it would be desirable to “connect” the starting and 
ending asset values—to find a single rate of return that, 
given a series of returns and a starting asset value, gener-
ates the same future value as the series. This observation 
suggests the following important objective.

Objective 1: To “connect” the starting and 
ending asset values.
The concept of geometric average is specifically designed 
to achieve this objective. If A0  and An are the starting and 
ending asset values correspondingly, then, by definition,

	 (2.2)
The geometric average G is defined as the single rate of 
return that generates the same future value as the series of 
returns. Namely, the starting asset value multiplied by the 
compounded return factor (1 + G)n is equal to the ending 
asset value:

	 (2.3)
Combining (2.2) and (2.3), we get the standard definition of 
the geometric average G: 

	 (2.4)
Let us rewrite formulas (1.2) and (1.3) in terms of present 
and future values. If An is a future payment and r1,..., rn are 
the investment returns, then the present value of An is equal 
to the payment discounted by the geometric average:
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If we apply geometric return G to $1 at the present for two 
years, we get

which is equal to future value FV, as expected.

Given $1 in two years, present value PV is

If we discount $1 in two years using geometric return G, 
we get 

which is equal to present value PV, as expected.

If we discount $1 in two years using arithmetic return A, 
we get

which is less than present value  PV = 0.8783.

3. Capital Market Assumptions and 
Portfolio Returns
This section introduces capital market assumptions for 
major asset classes and outlines basic steps for the estima-
tion of portfolio returns.

It is assumed that the capital markets consist of n asset 
classes. The following notation is used throughout this sec-
tion:

mi	 mean (arithmetic) return;
si	 standard deviation of return;
cij	 correlation coefficient between asset classes i and j.

A portfolio is defined as a series of weights {wi}, such  
that  Each weight wi represents the fraction of  
the portfolio invested in the asset class i.

are slightly more complicated, but, in most cases, should be 
expected to produce better results than (R1).

The geometric average estimate generated by (R4) is always 
greater than the one generated by (R3), which in turn is 
always greater than the one generated by (R2).7 Loosely 
speaking, 

(R2) < (R3) < (R4)

In general, “inequality” (R1) < (R2) is not necessarily true, 
although it is true for most practical examples. If A > V / 
4, then the geometric average estimate generated by (R1) is 
less than the one generated by (R2).8

There is some evidence to suggest that, for historical data, 
relationship (R4) should be expected to produce better 
results than (R1) – (R3). See Mindlin [2010] for more 
details regarding the derivations of (R1) – (R4) and their 
properties.

Example 2.1.
 Then arithmetic mean A, geo-

metric mean G, and variance V are calculated as follows.

Note that (1+ G)2 = (1+ A)2 -V, so formula (R2) is exact in 
this example. 

Given $1 at the present, future value FV is

If we apply arithmetic return A to $1 at the present for two 
years, we get

which is greater than future value FV = 1.1385.

present values, investment returns… | From Page 13
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A = 8.00% • 35% + 6.00% • 65% = 6.70%

V = (20.00% • 35%)2 + (10.00% • 65%)2 = 0.9125%

It is interesting to note that the standard deviation of the 
portfolio is 9.55 percent (=  which is lower 
than the standard deviations of the underlying asset classes 
(20.00 percent and 10.00 percent). Assuming that the return 
factor of this portfolio has lognormal distribution, the 
parameters of this distribution are
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From (3.5), the median return for this portfolio is

From (3.5), the 45th percentile for this portfolio is
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Portfolio mean return A and variance V are calculated as 
follows:

(3.1)

(3.2)
Let us also define return factor as 1 + R. It is common to 
assume that the return factor has lognormal distribution 
(which means ln(1 + R) has normal distribution). Under this 
assumption, parameters µ and σ of the lognormal distribu-
tion are calculated as follows:

	 (3.3)
Using σ calculated in (3.3), parameter μ of the lognormal 
distribution is calculated as follows:

	 (3.4)
Given parameters μ and σ, the Pth percentile of the return 
distribution is equal to the following:

	 (3.5)
where  is the standard normal distribution. In particular, 
if P = 50%, then . Therefore, the median of 
the return distribution under the lognormal return factor 
assumption is calculated as follows.

	 (3.6)

Example 3.1.
Let us consider two uncorrelated asset classes with mean 
returns 8.00 percent and 6.00 percent and standard devia-
tions 20.00 percent and 10.00 percent correspondingly. If 
a portfolio has 35 percent of the first class and 65 percent 
of the second class, its mean and variance are calculated  
as follows.

CONTINUED ON PAGE 16
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END NOTES

1  �There are exceptions, e.g. an inflation-adjusted cash 
flow with a matching TIPS portfolio.

2  See Mindlin [2009] for more details.
3  �That is as long as the returns in the series are not the 

same.
4  �For the purposes of this paper, the concerns that the sample 

variance as defined in (2.6) is not an unbiased estimate are  
set aside.

5  �This fact is a corollary of the Jencen’s inequality.
6  �For example, see Bodie [1999], p. 751, Jordan [2008], 

p. 25, Pinto [2010], p. 49., Siegel [2008], p. 22., DeFusco 
[2007], p 128, 155.

7  �That is, obviously, as long as the returns in the series are 
not the same and V > 0.

8  �Mindlin [2010] contains a simple example for which (R1) 
> (R2).
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