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pRICING AND HEDGING FINANCIAl 
AND INSURANCE pRODUCTS 
pART 2: BlACk-SCHOlES’ MODEl 
AND BEYOND

By Mathieu Boudreault

have assumed that the stock could only take two possible 
values at the end of the period. The only risk in this market 
is related to the uncertainty regarding whether or not the 
stock will increase at the end of the period.

Of course, having only two possible values at the end of 
a period is unrealistic. Instead, the time horizon is split up 
into smaller time steps. To do so, we assume that at the 
end of each period, the stock can increase by a factor of u 
or decrease by a factor of d. A cell in the binomial tree is 
known as a node. For a given time period, the stock price at 
each node corresponds to all its possible realizations at that 
time. Figure 1 shows the possible outcomes of the price of 
the stock at each time period after three periods.

At time three, there are four nodes and hence four pos-
sible stock prices. The price at the uppermost (lowermost) 
node corresponds to the case where the stock has increased 
(decreased) on three occasions out of three periods (trials). 
If a stock price increases (decreases) it is equivalent to a 

T his paper is the second excerpt of the article, 
“Pricing and Hedging Financial and Insurance 
Products,” which will be available from the Society 

of Actuaries’ website upon completion. Comments are 
welcome.

In 1973-1974, Fischer Black, Myron Scholes and Robert 
Merton provided the first tools to rationally value a finan-
cial derivative.1 Those scientific contributions also helped 
launch the first U.S. options exchange in Chicago in 1973, 
known as the Chicago Board Options Exchange (CBOE). 
Since then, the market for derivatives has exploded to 
astronomic proportions. In 2008, 1.2 billion contracts were 
traded on the CBOE, and nearly $200 trillion of derivatives 
were traded just in the United States alone.

Over the years that followed their publication, the Black-
Scholes’ model has quickly become the industry and aca-
demic standard to price and hedge financial derivatives. 
Even though many academics and professionals (and 
Fischer Black himself!) acknowledged numerous holes in 
the approach and provided solutions to these, the Black-
Scholes’ model still was widely used in 2012. It is an 
extremely useful and simple model that often acts as a start-
ing point to understand the dynamics of simple and complex 
derivatives. Built upon the first excerpt, this paper discusses 
in length the Black-Scholes’ model, its weaknesses and 
its alternatives (such as the Heston model (see Boudreault 
2012)) using concepts introduced in the first paper.

fROM the SiNgle-SteP BiNOMiAl tRee 
tO BlACK-SChOleS 

Construction of Black-Scholes’ Model
Let us recall the single-step binomial tree presented in the first 
excerpt. The main purpose of the single-step binomial tree 
was to represent the outcomes of a very simple market in order 
to replicate the cash flows of a derivative. In this frictionless2 

market where a stock and a Treasury bond are traded, we 

Figure 1: Evolution of the stock price in a 3-step binomial tree

CONTINUED ON PAGE 28
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process known as geometric Brownian motion (GBM). 
The purpose of Black-Scholes’ model is to find the no-
arbitrage price of derivatives under the assumption that the 
stock is traded at every instant. As in the single-step binomi-
al tree model, the market is assumed to be frictionless where 
only a Treasury bond and a stock are traded. Unfortunately, 
the fact that the time step is infinitely small (or that the 
stock is continuously traded) complicates the mathematics 
and hides the intuition behind the most important results.

Replicating (Hedge) Portfolio 
The replicating (hedging) procedure in a general binomial 
tree works very similarly as in a single-step binomial tree, 
with the important exception that the replicating portfolio 
needs to be dynamically updated every time the stock price 
changes. It all boils down to solving a set of two equations 
with two unknowns at each node and each time period, 
valuing the portfolio from the maturity of the derivative to 
its inception. The next example and Figure 2 illustrate how 
this works in a two-step binomial tree. 

“success” (“failure”) in the probability sense, and the price 
at this node corresponds to three successes (failures) out 
of three trials. To obtain the given price at node 1 (S0u

1d2), 
the stock price has increased only once in three periods, 
whereas there were two decreases. Hence, there was one 
success out of three trials. Consequently, the probabilities 
attributed to stock prices at a given time period are linked 
to a binomial distribution, which explains the name of the 
model.

Up to now, we have not attributed any unit of time to a peri-
od. Hence, this tree could represent the evolution of the stock 
over three months, for example. One could also assume that 
a time period can be a week, a day, an hour, a second, etc. 
When the time period is infinitely small, the values of u and 
d are appropriate (a Cox-Ross-Rubinstein tree for example) 
and if the tree is valid over a finite time horizon, then the 
distribution of the stock price is lognormally distributed. In 
other words, the continuously compounded asset return is 
normally distributed. The set of all possible stock prices on 
any continuous time horizon is represented by a stochastic 

Figure 2: Evolution of the stock price, Treasury bond and a derivative in a two-step binomial tree.
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Example: Suppose that the evolution of the price of the 
stock is given by the two-step binomial tree of Figure 
2. Assume as well that interest rates are flat at 2 percent 
and that the derivative pays off an amount given in the 
rightmost tree. Using replicating portfolios, what is the no-
arbitrage price of this derivative, along with the strategies 
that should be followed at each time step and node?

Solution: In order to find the no-arbitrage price of this 
option, we have to find the replicating strategy at each time 
step and node. It is important to note that in a two-step bino-
mial tree there are three one-step binomial trees to consider.

• When (or given that) the stock price is $120 after one 
year, there are two possible values at the end of the 
second year, that is, $125 or $99. In that particular tree, 
we want to replicate payoffs of $10 and $3 respectively 
in the upper and lower node. Since the Treasury bond 
is worth 1.0404 after two years, and solving for two  
equations and two unknowns, we find that we need 
0.2692 units of stock and a loan of 22.74 units of the 
Treasury bond. At time 1, the option value is the cost 
of buying the latter portfolio, i.e., 0.2692 units of a 
stock worth $120 and a loan of 22.74 units times 1.02. 
Hence, the option is worth $9.12 when the stock is 
$120 at time 1.

• When (or given that) the stock price is $95 after one 
year, there are two possible values at the end of the 
second year, that is, $99 or $90. In that particular tree, 
we want to replicate payoffs of $3 and $1 respectively 
in the upper and lower node. Using a similar reasoning, 
we find that we need 0.2222 units of a stock and a loan 
of 18.26 units of a Treasury bond. The option is worth 
$2.48 at time 1 when the stock is $95.

• Finally, at time 0, we want to replicate an option that 
is worth $9.12 ($2.48) when the stock is worth $120 
($95) at time 1. Solving for the two equations and two 
unknowns, we find that 0.2654 units of a stock and 
a loan of $22.28 are necessary at time 0 to replicate 
the payoffs of the option at time 1. The cost of that 

portfolio, i.e., the initial price of this option, is $4.26. 

We see that the replicating strategy is dynamic: at time 0 we 
start by buying 0.2654 units of a stock. At time 1, depend-
ing on the value of the stock, we either buy additional stock 
(from 0.2654 to 0.2692) when the stock goes up to $125, or 
sell some units of the stock (from 0.2654 to 0.2222) when 
the stock goes down to $95. Thus, applying the appropriate 
strategy in this context will ensure (within the scope of the 
example) that we can replicate the payoffs of the derivative, 
no matter what is ultimately observed at the end.

Applying the same logic of the previous example when the 
stock is traded continuously means that the risk manager has 
to continuously trade in the stock and the bond to make sure 
the replicating portfolio has the same value as the option. 
Once again, under no-arbitrage arguments, the initial cost 
of that replicating strategy will correspond to the price of 
the option. This price is given by the well-known Black-

Figure 3: Black-Scholes’ formula

CONTINUED ON PAGE 30
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strategy will exactly match the payoff of the derivative at 
its maturity, no matter what path is ultimately observed and 
no matter how likely each path really is (real-world prob-
ability). As in the single-step binomial tree, the price of a 
derivative only reflects the cost of the positions necessary 
in the stock and the bond. This is exactly why the mean 
return on the stock (mu) is not a relevant input in the Black-
Scholes’ formula; this formula only provides the cost of the 
replicating strategy given the latest price of the stock. The 
mean return mu is already a very relevant parameter when 
pricing the stock alone. However, no matter how likely the 
stock is to attain some level, the price of a derivative will 
always reflect the cost of its replication; there is no need to 
further account for mu.

Risk-Neutral Pricing
In the single-step binomial tree, we were able to express 
the cost of the replicating portfolio as a discounted expec-
tation of future cash flows. This expectation was taken 
with a different probability measure q and cash flows were 
discounted at the risk-free rate. This probability measure is 
known as a risk-neutral measure because only risk-neutral 
investors would expect a return equivalent to the risk-free 
rate on risky assets.

When we solve for the exact dynamics of the cost of the 
replicating portfolio in Black-Scholes’ model, it turns out 
that we arrive at a similar expression, that is, a discounted 
expectation of future cash flows, where the discount rate 
and the mean return on the stock are both the risk-free rate. 
This should have been expected because the Black-Scholes’ 
model is a limiting case of the binomial tree and in excerpt # 
1, we found the cost of the replicating portfolio as a special 
type of expectation.

Once again, the risk-neutral probability measure has noth-
ing to do with the true probability associated with the stock 
price. When pricing a derivative, we do not assume that 
investors are risk-neutral. In fact, a short position in the 
derivative and an appropriate amount of stock  

Scholes’ formula in the case of a plain vanilla call option. 
Figure 3 shows the famous Black-Scholes’ formula where 
t represents today, St is the current stock price, r is the risk-
free rate, T is the maturity of the option, K is the strike price,  
σ is the volatility of log-returns and  is the cumulative 
distribution function of a standard normal random variable.

We can rewrite the Black-Scholes’ formula in order to 
illustrate how many units of the stock and of the Treasury 
bond are necessary in every instant to exactly replicate 
the payoff of a call option, if the portfolio is continuously 
updated. Let Bt be the accumulated value of $1 invested 
for t years at the continuously-compounded risk-free rate, 
which is also the value of one unit of a risk-free Treasury 
bond. Figure 4 shows how the formula can be rewritten.3 

The value at any time t of a call option  is given by 
the value of its replicating portfolio, which has a portion 
invested in stocks and a portion invested in 
the risk-free Treasury bond . The latter, being 

always negative, is in fact a loan at the risk-free rate. The 
number of units of stocks and bonds has to be dynamically 
updated because the stock price changes continuously (d1 
and d2 are both functions of the current stock price).

Hence, as in the single-step binomial tree, if the risk man-
ager can indeed trade at every instant the right number of 
stocks and Treasury bonds, the value of the replicating 

Figure 4: Black-Scholes’ formula rewritten as the value 
of the replicating portfolio
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issuer. For risk management purposes, hedging errors, 
which is the difference between the value of the replicating 
portfolio and the derivative’s payoff at maturity (or any 
time period), are difficult to predict and can result in profits 
or losses ultimately. In both cases, it is extremely important 
to validate each assumption and the potential risk associated 
with a deviation to the true market dynamics.

Geometric Brownian Motion
When applied to modeling stock (or asset) prices, the GBM 
requires that the continuously-compounded returns are 
independent and identically distributed as normal random 
variables. This is unfortunately not the case in practice for 
various reasons.

Behavior Of Observed Returns
Financial econometricians constantly study the behavior of 
asset returns (individual stocks and portfolios) at various 
time horizons (daily, monthly, etc.). One basic exercise 
they often do is compute various descriptive statistics of 
these returns as in Table 1. They have generally found that 
asset returns show negative asymmetry, which means that 
“the left tail is longer and the mass of the distribution is 

yield a risk-free position. If the position is risk-free, then 
its cash flows should be discounted at the risk-free rate. 
Thus, risk-neutral valuation is only the consequence of 
the fact that we can trade in stocks and bonds to replicate 
the payoffs of a derivative. Under no-arbitrage pricing of 
derivatives, the level of risk premium included in the stock 
is useless.

Conclusion
The Black-Scholes’ model is the continuous-time equiva-
lent of applying the one-step binomial tree at every instant. 
Under the absence of arbitrage, one can equivalently price 
a derivative using a replicating portfolio or by risk-neutral 
arguments. Although the mathematical tools are more 
complex (solving a partial differential equation or using the 
Girsanov theorem), the results are exactly the same, i.e., it 
is a type of expectation of discounted cash flows.

It should also be emphasized that the replicating strategy 
only tells us how to perfectly hedge the derivative given that 
the model’s assumptions are observed. In the more realistic 
case where the model’s assumptions do not hold, the hedge 
will not be perfect and may result in a random profit or 
loss. The next sections discuss the weaknesses of the Black-
Scholes’ model and how practitioners and academics have 
dealt with these issues.

evideNCe AgAiNSt BlACK-SChOleS’ 
MOdel
The Black-Scholes’ model is extremely useful in various 
settings. However, one has to be careful because most of 
its underlying assumptions do not hold in practice. This 
has been largely documented, as for example in papers by 
Fischer Black titled, “The Holes In Black-Scholes” and 
“How To Use The Holes In Black-Scholes.”

Deviations between real market dynamics and the one given 
by a model can have very small or very large consequences 
on risk management. Indeed, serious mispricing of deriva-
tives can lead to arbitrage opportunities and losses to its CONTINUED ON PAGE 32
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concentrated on the right” (Wikipedia). This is contrary to 
a normal distribution as the latter is perfectly symmetric 
around the mean. Moreover, returns show fat tails, which is 
shown by a significant excess kurtosis. In a normal distribu-
tion, the kurtosis is three, so that the excess kurtosis is zero. 
Although, the asymmetry is close to -1 at every observation 
frequency, the kurtosis is clearly much more significant at 
the daily level. Thus, asset returns clearly are not normally 
distributed and deviations from normality are greater at 
higher frequencies. We still have to investigate whether or 
not historical asset returns are independent and identically 
distributed as in a random walk.

A lot of academic and professional research has been 
devoted in the last several decades toward the predictability 
of asset returns and the efficient markets hypothesis (EMH). 
However, the EMH taken alone is very difficult to assess 
because an equilibrium pricing model has to be assumed, so 
that rejection of the EMH may as well be related to the fail-
ure of the model to fit prices. Being central to the EMH, the 
random walk hypothesis is often investigated to determine 
the ability to “predict” asset returns.

Campbell, Lo and MacKinlay (1996) (Chapter 2) document 
three types of random walks. The simplest is one where 
increments are independent and identically distributed 
(i.i.d.). The second form of random walk is one where 

Frequency # Data Mean Std. dev. Variance*100 Skewness
(Excess) 
kurtosis

Daily 14063 0.02% 1.00% 0.0101 -1.0271 27.87

Weekly 2914 0.12% 1.80% 0.0325 -0.7027 6.28

Monthly 670 0.51% 3.60% 0.1293 -0.7320 4.15

quarterly 223 1.56% 6.29% 0.3956 -0.9974 3.85

Yearly 55 6.24% 12.94% 1.6754 -1.0943 3.91

Table 1: Descriptive statistics of the log-returns observed on the S&P500 from Jan. 1, 1957 to  
Nov. 9, 2012. Source: Federal Reserve of St. Louis’ Economic Data (FRED)

increments are independent, but not necessarily identi-
cally distributed. The third type of random walk involves 
uncorrelated increments. There are various statistical tests 
to check for the validity of each type of random walk. 
However, it is not plausible that returns are identically dis-
tributed (first type of random walk) because throughout the 
financial history, there have been changes in the economic 
and regulatory environments, in addition to technological 
advances. Moreover, it has been shown numerous times 
in the financial econometrics literature that squared asset 
returns are autocorrelated. Thus asset returns are not inde-
pendent and this would lead to a rejection of the second type 
of random walk. Therefore, most empirical research testing 
the predictability of asset returns is focused toward the third 
type of random walk.

Empirical evidence (see for example Section 2.8 of 
Campbell, Lo and MacKinlay (1996)) shows that daily, 
weekly and monthly returns have positive and statistically 
significant autocorrelation (at the first lag), thus rejecting 
the random walk hypothesis. Another way to assess whether 
returns follow a random walk is to compare the variance of 
the process at different time horizons: this is known as the 
variance ratio test. In a random walk (even the third type), 
the variance of the process grows linearly over time as 
more increments are added to the total. Hence, the variance 
of annual returns should be about 12 times the variance 
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econometrics literature, we can find that asset returns show 
the following characteristics:
• Non-constant and possibly stochastic volatility;
• Jumps in asset prices (downward jumps more often 

than not);
• Jumps in the volatility as well.

While it is the role of behavioral finance and economics to 
explain why asset returns show these features, actuaries and 
other risk managers have to account for these characteristics 
of stock prices in pricing and hedging claims that are linked 
to the financial markets.

The insurance industry has shown particular interest in 
extending the Black-Scholes model to reserve their equity-
linked insurance policies. For example, the regime-switch-
ing log-normal model (RSLN) (Hardy (2001)) has been 
proposed for equity prices by the Task Force on Segregated 
Funds of the Canadian Institute of Actuaries whereas a 
discrete-time stochastic volatility model has been proposed 
by the American Academy of Actuaries (AAA) for vari-
able annuities. It is important to note that the RSLN model 
features stochastic volatility (one possible value per regime) 
and by construction, the volatility jumps at each regime 
switch. The AAA’s model does feature a much greater 
spectrum of values for the volatility, but it lacks jumps in 
both the volatility and the price.

In the financial mathematics literature, more sophisti-
cated continuous-time alternatives to the GBM also exist. 
The stochastic volatility model of Heston (1993) (dis-
cussed below) remains very popular in the finance indus-
try. For a thorough review of financial econometrics 
models applied to the context of reserving and hedg-
ing variable annuities or segregated funds, the reader 
is invited to look at Augustyniak & Boudreault (2012). 

Continuous Trading And Rebalancing
One of the underlying assumptions of the Black-Scholes’ 

of monthly returns. It turns out that the variance ratio test 
rejects the random walk hypothesis (third type) at numer-
ous horizons for equal-weighted portfolios. It was found 
that portfolios formed with the smallest firms have the most 
significant deviations from the random walk hypothesis. 
Finally, for individual securities the random walk hypoth-
esis cannot be rejected and this should have been expected 
because individual stocks show company-specific noise that 
is mostly attenuated when aggregated into a portfolio.

Computing variance ratios in Table 1 also suggests that the 
random walk hypothesis is rejected with more recent data. We 
can see that daily returns are more variable (proportionally) than 
weekly, monthly or annual returns. This may be a sign of short-
term mean reversion. In other words, an extreme daily return is 
often corrected in the next days, so that over a week, the weekly 
return has a more reasonable behavior. Short-term mean rever-
sion is also backed by the decreasing kurtosis in Table 1.

Whether long-horizon returns (returns over periods longer  
than a year) also exhibit mean reversion is still an open 
debate among practitioners and academics. Proponents 
of long-term mean reversion often use widely accepted 
economic theories and models and pretend that mean rever-
sion is supported in these theories. Others use statistical 
tests to measure their presence. In both cases, opponents of 
long-term mean reversion argue that the financial history is 
too short to obtain statistically significant results and that 
bubbles (NASDAQ or Japan for example) make it difficult 
to observe such reversion.

Overall, the GBM assumption clearly does not hold. (Log-) 
Returns are not normally distributed: they generally show 
negative skewness and very fat tails. Moreover, returns do 
not follow a random walk: they have some form of autocor-
relation,4 as shown by the Box-Pierce and variance ratio tests.

Realistic Alternatives To The GBM
When we dig deeper into both the empirical finance and 

CONTINUED ON PAGE 34
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tials between identical products and portfolios. Second, they 
can significantly increase the true cost of the replicating 
portfolio, forcing companies to hedge more intelligently or 
less frequently, which in the latter case is riskier. Different 
lending and borrowing rates, in addition to taxes, can be 
seen as an asymmetrical transaction cost structure, further 
reducing arbitrage opportunities.5 Finally, the fact that we 
can only buy an integer number of stocks (or a block of 100 
stocks for example) is not a huge issue for investment banks 
since they trade millions of positions.

Overall, some of these simplifying assumptions on mar-
ket frictions do have minor impacts, but transaction costs 
(including tax and interest differentials) can have signifi-
cant effects for pricing and risk management purposes. The 
interested reader is referred to Black (1989) for a discussion 
of these frictions.

Conclusion
We have only listed a subset of the many problems 
encountered with the Black-Scholes’ model, i.e., the fact 
that observed asset returns do not follow a GBM, that con-
tinuous rebalancing of the replicating portfolio is virtually 
impossible and that market frictions such as transaction 
costs and restrictions on short selling can reduce the quality 
of the hedge portfolio and lead to important losses. Two 
other holes in Black-Scholes also deserve more attention, 
especially for insurance companies that sell long maturity 
put options through their equity-linked policies.

Suppose for example that your company has issued an 
implicit five-year put option in equity-linked policies and 
you need to replicate its future cash flows with stocks and 
bonds. Stock markets crash worldwide and the option goes 
deeper into the money. By following the replicating strat-
egy, you would need to sell more units of the stock, and 
in times of crises, finding a buyer at the other end can be 
difficult. To find a buyer, one would need to further reduce 
the price offered, which increases the hedging loss. That 
creates a type of liquidity risk. According to Hull (2008), 
this had further aggravated the October 1987 crash, and it is 

model is that the stock is traded continuously, so that 
the replicating portfolio should also be updated con-
tinuously. Physically this is virtually impossible that the 
stock be traded in continuous-time! Humans and com-
puters have to take some time to analyze their positions 
and send orders to execute them. However, these delays 
between trades are melting down now with supercomput-
ers that execute computations and trades in milliseconds, 
and massive investments by banks in communications 
infrastructures. Transaction costs also prevent an inves-
tor to trade continuously in a stock to update its replicat-
ing portfolio. Consequently, the fact that the replicat-
ing portfolio cannot be updated continuously entails a 
potential for hedging errors. In fact, it is exposed to large 
moves from the stock between two portfolio updates. 
This hedging error can be reduced by systematically 
rebalancing more frequently, say daily or hourly, but this 
can be very costly.

To reduce transaction costs and potential hedging errors, 
there are two common solutions. First, practitioners usually 
update their portfolio only when it deviates significantly 
from delta-neutrality (or some other criteria). They can also 
combine this approach with other hedging schemes that 
involve making sure the portfolio is insensitive to other 
factors (hedging based upon Greeks are discussed later in 
the text).

Frictionless Market
In many finance textbooks, either in the Black-Scholes’ 
model or others, it is assumed that markets are frictionless, 
i.e., there are no transaction costs, assets are perfectly liquid 
and divisible, lending and borrowing interest rates are the 
same, there are no taxes and no restrictions on long and 
short positions, etc. We will briefly discuss the impact of 
these elements on pricing and hedging derivatives.

Transaction costs such as bid-ask spreads, commissions 
and other fees are indubitably the most important market 
friction in the derivatives market. First they help prevent 
arbitrage that may come up with very small price differen-
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Black-Scholes’ model for low-strike (high-strike) options: 
this is the so-called volatility skew (smile) for equity prices. 
Hence, the implied volatility is the sigma parameter in the 
Black-Scholes’ formula that replicates a given market price. 
The relationship between the implied volatility and the time 
to maturity is the volatility term structure. Finally, the rela-
tionship between the implied volatility, the strike and the 
time to maturity is the volatility surface.

Practitioners have been using the implied volatility to deal 
with the asymmetry and fat tails of the return distribution 
for pricing and hedging purposes. The concept is widely 
known and used: the CBOE monitors an index known as 
the VIX, which is, loosely speaking, a compound measure 
of the implied volatility computed from a portfolio of 
traded options. Derivatives known as variance swaps are 
even issued on the VIX so that investors can protect against 
changes in volatility. However, as discussed by LeRoux 
(2006), the implied volatility is “the wrong number to plug 
into the wrong formula to get the right price,” describing 
how it is not necessarily the most adequate solution to deal 
with Black-Scholes’ imperfections.

Hedging With Greeks
To cope with the inability to trade continuously and the 
lack of normality of equity returns, practitioners have been 
using Greeks to improve the robustness of their hedge port-
folio. For those familiar with the concepts of duration and 
convexity matching (immunization), hedging with Greeks 
is very similar. It comes from the Taylor expansion of 
the option price at the next time period (which is random) 
around the current stock price (which is known). Truncating 
the Taylor series to the first or second term, allows us 
to immunize first-order and second-order changes of the 
option price with respect to the stock. With fixed-income 
securities, matching the first-order derivative is known as 
duration matching but with options, this is known as delta-
hedging. When both first- and second-order derivatives 
are matched, duration-convexity matching is equivalent to 
delta-gamma hedging. As with duration-convexity match-

reasonable to believe a similar issue may have contributed 
to the current recession.

It is postulated in the Black-Scholes’ model that the term 
structure of interest rates is flat and deterministic over 
time. This is, of course, unrealistic since the term structure 
is not constant and it moves randomly over time. In fact, 
changes in interest rates can be largely explained by random 
variations in the level, slope and convexity (curvature) of 
the term structure. Because the volatility of interest rates 
is much smaller than the volatility in stocks, pricing very 
short-term options can reasonably be done using deter-
ministic interest rates. However, for long-term contracts, 
especially equity-linked insurance that matures after five to 
20 years, interest rate risk can be important when pricing 
these contracts.

iMPACtS ON iNduStRy PRACtiCeS
The fact that equity prices do not follow a GBM and the 
inability to continuously rebalance the hedge portfolio are 
perhaps the two most important holes in Black-Scholes. 
They have had important and profound impacts on how the 
industry uses the Black-Scholes’ model. This section covers 
the implied volatility metric and hedging with Greeks.

Implied Volatility
We have seen in Table 1 that equity returns clearly do 
not follow a normal distribution through the computation 
of very simple descriptive statistics. We found that asset 
returns are negatively skewed and they show fat tails. The 
lack of normality of asset returns also show in the histori-
cal price structure of plain vanilla call and put options. We 
can see that low-strike put options are underpriced with 
Black-Scholes, meaning the left tail is underestimated with 
a normal distribution. Similarly, high-strike call options 
are overpriced with Black-Scholes, meaning the right tail 
is overestimated with a normal distribution. So instead 
of moving away from Black-Scholes, practitioners use a 
different volatility parameter to price options with differ-
ent strikes. They increase (decrease) the volatility used in 
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derivative of the option’s price with respect to changes in 
the risk-free rate is known as rho.

In order to hedge an option with Greeks, one has to com-
pute these sensitivities. First-order, second-order and partial 
derivatives have to be based upon a model and the industry 
standard is Black-Scholes. Although a Taylor series expan-
sion shows that using more Greeks improve the quality of 
hedging, this is only guaranteed to be true when the market 
model is the same as the one used in computing sensitivi-
ties. However, when the market dynamics (say Heston) are 
different than the one used to build the hedging strategy 
(Black-Scholes), it is not perfectly clear as to how using 
more Greeks is going to improve the quality of the hedge.

heStON MOdel ANd BeyONd
Financial econometric models are used in the insurance 
industry mainly to help represent the risk on securities such 
as stocks and bonds on both the asset and liability side of 
the company. For example, it can be used to generate mul-
tiple scenarios to price equity-linked insurance, to assess the 
quality of a hedging strategy, etc. We now discuss how the 
wider use of complex financial models have an impact on 
the most basic risk management operations of an insurance 
company. To lighten the discussion, we will mainly discuss 
the Heston (1993) model, but most of the remarks also hold 
for models with stochastic volatility, jumps in prices and 
jumps in the volatility.

In Heston’s model, the variance of the continuously-com-
pounded return is given by a Cox-Ingersoll-Ross process, 
i.e., the variance is mean-reverting and guaranteed to be posi-
tive. There are two sources of risk: the volatility, and given 
the volatility, the stock price also has a stochastic element. 
Since only the stock is traded and one cannot buy one unit of 
volatility (yet), the underlying financial market is incomplete. 
Incomplete markets have been discussed in a trinomial tree in 
the first excerpt. Thus, Heston’s model has all the caveats of 
an incomplete market model, that is the price of most deriva-
tives is not unique and the hedge cannot be perfect.

ing, delta-gamma hedging is exposed to the same caveats, 
i.e., it is only valid for a small time period.6 Otherwise, the 
terms that are ignored in the Taylor expansion can become 
more significant. Thus, the impacts of being unable to 
continuously update the replicating portfolio (or the lack 
of normality of asset returns) can be diminished by also 
hedging gamma.

The issuer of an option is also exposed to other risks than 
variations of the stock price. Other variables such as chang-
es in interest rates and volatility can have a significant effect 
on the option price. It is possible to diminish the impacts of 
changes in these variables by using an approach similar to 
delta-gamma hedging. Indeed, using a multivariate Taylor 
series expansion of the option price with respect to many 
variables, one can develop a hedging strategy that consists 
in matching the sensitivity of liabilities and assets to many 
risks. The sensitivity of the options’ price with respect to 
each of many variables is given a name after a Greek letter 
(most of the time). For example, the first- and second-order 
derivatives of the option’s price with respect to changes in 
stock price are known as delta and gamma. The first order 
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“ “THERE IS NO CURE TO MODEl RISk: ONE CAN 
IMplEMENT MORE THAN ONE MODEl TO COME Up WITH MORE ROBUST 

RISk MANAGEMENT STRATEGIES, AND OF COURSE, STRESS- AND 
BACk-TESTING ARE VERY IMpORTANT. 
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reality. To quote George Box, a famous statistician, “All 
models are wrong, but some are useful” and Black-Scholes’ 
model is widely used because it is indeed very useful. 
Actuaries and the insurance industry need to master the 
tools of mathematical finance, including the more complex 
models of stochastic volatility and jumps, to be more effec-
tive at developing new products and hedge them appropri-
ately in the financial markets.

Using a more sophisticated model does not necessarily 
guarantee success. No one can pretend to have a fool-proof 
understanding of a phenomenon. Hence, no one knows how 
the sophisticated model truly deviates from the true market 
dynamics. This relates to model risk, i.e., the unexpected 
consequences related to choosing a model over another, 
compared to the true dynamics of a phenomenon, which is 
unknown. There is no cure to model risk: one can imple-
ment more than one model to come up with more robust 
risk management strategies, and of course, stress- and back-
testing are very important.

A model can be useful, but it is crucial to understand its 
limitations. Many authors like Steven Shreve, Pablo Triana, 
Felix Salmon (in Salmon (2009)), Sam Jones (in Jones 
(2009)) among others blame users of financial models 
because they did not understand thoroughly enough the 
models they were using and their limits. The authors con-
tend that the latter may have instigated (or worsened) the 
current financial crisis. It also highlights the difficulties a 
whole company can face when implementing a complex 
risk management strategy, especially if the modeling 
department (that can be highly technical) cannot efficiently 
communicate with the upper management and board (who 
have very limited technical knowledge).

In the third (and final?) excerpt, we will discuss specific 
issues tied with equity-linked insurance that have not been 
discussed yet, such as pricing and hedging lapses, resets, 
withdrawals and other guarantees. 

To partly circumvent the non-uniqueness problem, Steven 
Heston has assumed some particular form of market price 
of risk, which only depends on one parameter. Contrarily 
to the Black-Scholes model where the passage from the 
real-world to the pricing measure is unique and straightfor-
ward, the Heston model implies estimating the parameter 
related to the market price of risk to make the passage from 
the physical to the risk-neutral probability measures. This 
parameter should really be taken seriously, especially if one 
is interested in both risk management and pricing (under 
no-arbitrage) applications.

No matter how a financial model is going to be used ulti-
mately, one has to determine its parameters based on some 
set of data. Although estimating a GBM is straightforward, 
it is generally not the case for the Heston model. Given 
a specific structure for the market price of risk, Heston 
obtains (quasi-) closed-form solutions for the price of plain 
vanilla options (calls and puts), which is very interesting 
since it can be used in the estimation/calibration process. 
Indeed, one can minimize the squared deviations between 
theoretical and observed options prices. The method is 
straightforward, but will only provide for parameters under 
the risk-neutral probability measure. For risk management 
purposes, those parameters will not be adequate, unless one 
appropriately estimates the parameter related to the market 
price of risk, or at least performs a sensitivity analysis of 
this parameter. One can also use the time series of volatil-
ity indices such as the VIX to infer the dynamics of the 
variance part of Heston model. The approach has proven 
to have some value, and the interested reader is referred 
to Aït-Sahalia & Kimmel (2007). Finally, estimating the 
Heston model (or any stochastic volatility model with or 
without jumps) often relies on the use of particle filters. 
This is one of the only methods that is statistically efficient 
with these models.

CONCludiNg ReMARKS
It is undeniable that the Black-Scholes’ model has been the 
cornerstone of modern finance and financial mathematics. 
However, any model is by definition a simplification of 

CONTINUED ON PAGE 38
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END NOTES
  
1   The approach is often attributed to Black & Scholes’ 

seminal paper in 1973, but Merton applied similar prin-
ciples to value the equity of the firm and its credit risk 
in 1974. Although some authors use the Black-Merton-
Scholes terminology, we will use the more common 
Black-Scholes term to refer to their 1973 paper.

2  A frictionless market is one in which there are no transac-
tion costs, no differences in lending and borrowing inter-
est rates, no taxes, no constraints on buying and (short-) 
selling the assets, etc.

3  A call option pays the excess of the stock price over the 
strike price, only when the former is greater than the lat-
ter. No matter what is the underlying stock price model, 
that preceding payoff can always be decomposed as a 
long position in a derivative that delivers one unit of the 
stock if its price is greater than the strike, and a short 
position in a derivative that pays an amount equivalent 
to the strike, only when the stock price is greater than 
the strike. Stone (2007) provides further insights into the 
Black-Scholes formula.

4  One may be tempted to exploit this finding to make 
money! However, even if autocorrelations are statistically 
different from zero, the implied R2s suggest that a very 
small percentage of the variance is explained by past 
returns.

5     Tax differentials between financial products (such as 
corporate and municipal bonds) are generally accounted 
for in prices because authorities work to prevent tax 
arbitrage.

6   Applying a delta-hedging strategy continuously is equiv-
alent to applying the theoretical replicating portfolio of 
Black-Sholes.
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