
T he issuance of FASB Statement No. 123 (Revised), 
Share-Based Payment, in December 2004 quieted 
much of the controversy over whether share based 

payments should be recognized in a company’s financial 
results. It did not specify a model for valuing these pay-
ments, however. The model and related assumptions 
used to value them can significantly affect the amount of 
costs measured and reported.  

A stock’s price distribution is a key assumption to any 
share-based valuation model. Recent research indicates 
that commonly assumed price distributions may be in 
error. If the distribution—or density function as it is 
known to mathematicians—is selected incorrectly, inac-
curate or spurious values can be computed. 

This article discusses facts and issues related to the 
selection of a stock’s price distribution, including the 
following:

• Properties of a commonly assumed distribution.
• Empirical evidence regarding price distributions.
•  Commonly used models for valuing share-based pay-

ments, and the impact of errors in distributions on valu-
ing share-based payments.

First, a brief overview is provided on authoritative 
and regulatory guidance for model selection and 
types of assumptions required to value share-based 
payments.

AuthoritAtive ANd regulAtory 
guidANCe
Financial Accounting Standards Board
Aware of the complexity and variety of share-based 
payments, the Financial Accounting Standards Board 
(FASB) granted great latitude to the selection of a model 
for valuing these payments. FASB Statement No. 123 

(R) does not require use of a specific model. It simply 
provides general guidance on this matter. Techniques 
mentioned in the statement include the Black-Scholes 
model, lattice or binomial models and Monte Carlo 
simulation methods, among others. These models are 
discussed later in this article. Assumptions required 
depend on the complexity of the plan, but under para-
graph A18 of the statement must include, at a minimum, 
the following: 

• The exercise price of the option.
•  The expected term of the option, taking into account 

both the contractual term of the option and the effects 
of employees’ expected exercise and post-vesting 
employment termination behavior. 

•  The current price of the underlying share. 
•  The expected volatility of the price of the underlying 

share for the expected term of the option.
•  The expected dividends on the underlying share for the 

expected term of the option.
•  The risk-free interest rate(s) for the expected term of 

the option.

The exercise price is simply the price at which the option 
can be transacted. If the exercise price for an option 
to purchase stock is above the current stock price, the 
option is out-of-the-money. If the reverse is true, the 
option is in-the-money.

The volatility of a stock is the amount by which its price 
is expected to fluctuate in a period of time. Volatility is 
generally measured as the annual standard deviation of 
the stock’s daily price changes. 

Although a stock’s price distribution is not included in 
the list of required assumptions, it is inextricably linked 
to a model’s design and assumptions about a stock’s 
volatility. In fact, the Black-Scholes model explicitly 

1 All data referred to herein is courtesy of Options as a Strategic Investment by lawrence G. mcmillan, Wiley Trading.
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assumes a lognormal distribution of prices. This distri-
bution is discussed in more detail below.

Assumptions about price distribution impact our percep-
tion of volatility. Smooth transitions from one price level 
to another are often associated with a normal distribution 
of prices, and a stable volatility percentage. Erratic price 
moves may indicate an uneven price distribution and a 
volatility percentage, where average volatility is a poor 
predictor of expected volatility.

United States Securities and Exchange Commission
The United States Securities and Exchange Commission 
(SEC) generally deferred to the FASB’s guidance on the 
selection of models and assumptions for valuing share-
based payments. SEC Staff Accounting Bulletin No. 
107 (SAB No. 107) allows the use of the Black-Scholes 
model, lattice or binomial models and Monte Carlo 
simulation methods, among others. The SAB specifies 
three requirements for any valuation model used. The 
model should:
   
•  Be applied in a manner consistent with the fair value 

measurement objective and other requirements of 
Statement 123R. 

•  Be based on established principles of financial eco-
nomic theory and generally applied in that field.

•  Reflect all substantive characteristics of the instru-
ment. 

In valuing a particular instrument, certain models may 
meet the first and second criteria but may not meet the 
third criterion because the techniques or models are not 
designed to reflect certain characteristics contained in 
the instrument. For example, for an option in which the 
exercise is conditional on a specific increase in the price 
of the underlying shares, the Black-Scholes closed-form 
model would not generally be appropriate. While it 
meets the first and second criteria, it is not designed to 
consider conditional market prices.

In the SAB, the staff indicated it would not object to a 
company’s choice of a model if the model meets the fair 
value measurement objective. For example, a company 
is not required to use a lattice model simply because it 
is more complex than other models. However, the SAB 
contains many examples of situations in which lattice or 
other non closed-form models may be required to solve 
valuation issues. Some professionals have interpreted 
this as an implicit preference for these more complex 
techniques. 

A CommoNly Assumed distriButioN
Many market analysts and economic valuation profes-
sionals use the lognormal distribution as a proxy for the 
actual distribution of stock prices. The distribution is 
basically a bell curve skewed to the right. This skew is 
explained by the fact that stock prices cannot be below 
zero. In short, the distribution indicates that stock prices 
can never be less than zero, can rise to very high values 
and usually drift up and down.

The lognormal distribution is based on the historical 
volatility of a stock’s price. This volatility is measured 
by the standard deviation in the stock’s price, and would 
predict that a stock’s price would remain within three 
standard deviations of its current price approximately 99 
percent of the time. 

The lognormal distribution is similar to the bell curve 
studied in basic statistics, and is therefore a comfortable 
concept for most users. It is a very rough approximation 
to the way stock prices behave most of the time. The log-
normal distribution may be intuitively appealing, but it 
simply does not accurately describe the way stock prices 
behave. We have all been struck by how a stock that 
“just can’t rise anymore” marches ever higher in price, 
and a quality stock that “can’t go any lower” continues 
to plummet.

       In the SAB, the staff indicated it would not object to 

                 a company’s choice of a model if the 

 model meets the fair value measurement objective.
“ “
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The ease with which descriptive statistics may be com-
puted for this distribution, users’ familiarity with it 
and its general intuitive appeal may explain why this 
distribution is so commonly used to value share-based 
payments. This distribution may be useful for many 
purposes, but its application to valuing share-based pay-
ments is suspect.

emPiriCAl evideNCe regArdiNg stoCK 
PriCe distriButioNs
Actual market prices routinely rise or fall more than 
three standard deviations. Some prices change as much 
as eight standard deviations. The lognormal distribution 
would predict these moves to be extremely rare. In fact, 
these moves are not rare at all. 

The following table lists price changes for selected stocks 
on April 5, 1999, a volatile but not abnormal day:

Stock Last Sale Change
Standard 

Deviations

Aspect Devt (ASDV)
        $ 

8.00
   $ -14.38      - 31.2

Axent (ANT)
           

8.00
      -12.00      - 11.2

Ameritrade (AmTD) 91.63        29.00          8.6

CheckPoint (ChKP) 28.75       -10.75       -  8.4

Sabre Gp (TSG) 55.00          8.50          8.0

The lognormal distribution would indicate that the 
probability of eight standard deviation moves would be 
0.000000000000000629, or once in many billions of 
events. No, this is not a typographical error. It is graphic 
empirical evidence of the way stock prices behave. Other 
substantial moves occurred that day. In fact, 58 stocks 
had price changes of over four standard deviations on 
that day.

Many periods have been studied to determine the fre-
quency of these asymmetrical changes. 

For a 30-day period beginning on Oct, 22, 1999, price 
changes on 2,888 optionable stocks were computed. The 
following table lists the number of stocks which moved 
by the respective number of standard deviations (σ). σ is 
the Greek letter sigma which mathematicians often use 
to indicate standard deviations.

10/22/99–12/7/99:

Price movements

3σ 4σ 5σ > 6σ Total

Up moves     309      116        44 47 516

Down moves       69        29        15 19 132

  
A period of low stock market volatility was also studied 
(July 1993). Fewer optionable stocks existed during this 
period, and only 588 stocks were examined. This is a 
smaller, but statistically valid sample. 

7/1/93–8/17/93:

Price movements

3σ 4σσ 5σσ > 6σ Total

Up moves       14        5          1            1 21

Down moves       28        5          3            4 40

  
In these and other confirming studies, the results indicate 
the frequency of price moves far exceeds a nearly zero 
percent probability the lognormal distribution would pre-
dict. Some studies have indicated a 4σ move is as much 
as 20 times more likely than would be expected if prices 
were normally distributed. The stocks sampled were not 
low-price, obscure penny stocks priced at $1 per share; 
they are highly recognized companies. The lognormal 
distribution is simply a poor predictor of the frequency 
and magnitude of large price changes, and these studies 
confirm this point.  

CONTINUED ON PAGE 20
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CommoNly used models for vAluiNg 
shAre-BAsed PAymeNts
Typically, investors use one of three types of models to 
value stock options: the Black-Scholes model, Binomial 
or Lattice models and Monte Carlo models. Economic 
Valuation experts also use these models to value share-
based payments. The implications of the stock price 
distributions on which their computations are based for 
valuing share-based payments are discussed below
    
The Black-Scholes Model
The Black-Scholes model is a closed-form model 
for valuing an option. The model is characterized as 
“closed” because a user cannot adjust the paths followed 
by a stock’s price for known aberrations or trends. The 
technique assumes stock prices are lognormally distrib-
uted. Subject to a user’s selection of input parameters, 
the underlying algorithm for computing option values 
is fixed. (The required parameters are those listed above 
under the Financial Accounting Standards Board sec-
tion). If price paths cannot be introduced into the com-
putations, the model may significantly over or understate 
an option’s value. As indicated in the previous section, 
the likelihood of price trends or asymmetric changes in 
price is far higher than the lognormal distribution would 
predict.     

If the fair values used to record compensation cost are 
over or understated, then compensation cost is also over 
or understated. As indicated in the previous section, the 
major distortions in probabilities occur in the “tails” of 
the distribution. Outlying prices are the points at which 
mildly to deeply “out-of-the-money” options become 
profitable. These types of options are often associated 
with cash constrained, growth-oriented industries, start-
ups and corporate spin-offs. Such companies liberally 
issue “out-of-the-money” executive stock options to con-
serve cash, and attract talent with the potential for out-
sized rewards. These companies are also very sensitive 
to small changes in reported earnings. As a result, it may 

not be advisable to use the Black-Scholes model to value 
“out-of-the-money” options issued by these companies. 

Binomial or Lattice Models
Binomial or lattice models are simply decision trees, and 
may be used to value options. A user sets a point of ori-
gin, and then specifies events and subsequent events that 
may occur. The origin is typically the stock‘s price on 
the day of analysis—for options used as investments—
or the grant date when valuing a share-based award. 
Each event explicitly includes a potential outcome in 
the model, and is assigned a probability of occurrence. 
Option values are determined at the terminal points of 
the tree based on these events, and the expected payoffs 
of the stock price paths followed. 

Binomial or lattice models are not constrained to use a 
particular stock price distribution. They can be as simple 
or complex as the price history, development time and 
financial resources available to develop them. In the right 
situations, this added complexity can result in better esti-
mates of option prices. However, These models require 
extensive history to develop and are expensive to create. 
Although these models can be designed to account for 
an array of stock price distributions, the expense and 
data requirements to develop them may make their use 
prohibitive for smaller public companies with a shorter 
trading history. However, they may be suitable for larger 
companies as a means to account for their actual stock 
price distributions. 

Monte Carlo Models    
The Monte Carlo approach is a simulation method. 
Basically, the user defines an event or outcome that he 
is trying to simulate and the related assumptions, and 
inputs these to a software program. The program com-
pletes thousands or perhaps millions of “trials” based on 
this information, and reports the resulting distribution 
of results. From this resulting distribution, the expected 
outcome is measured. 




