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PRESENT VALUES, 
INVESTMENT RETURNS AND 
DISCOUNT RATES

By Dimitry Mindlin
 
Editor’s Note: The first half of this article was published 
in the August 2013 issue of Risks & Rewards. In case you 
missed it, below it is reproduced in its entirety. To read only 
the second half, resume at section 4.  

ent values are outside of the scope of this paper. This paper 
assumes that a present value is certain (deterministic)—a 
present value is assumed to be a number, not a random vari-
able in this paper. The desire to have a deterministic present 
value requires a set of assumptions that “assume away” all 
the uncertainties in the funding problem.

In particular, it is generally necessary to assume that all 
future payments are perfectly known at the present. The 
next step is to select a proper measurement of investment 
returns that serves as the discount rate for present value cal-
culations. This step—the selection of the discount rate—is 
the main subject of this paper.

One of the main messages of this paper is the selection of 
the discount rate depends on the objective of the calcula-
tion. Different objectives may necessitate different discount 
rates. The paper defines investment returns and specifies 
their relationships with present and future values. The key 
measurements of investment returns are defined in the con-
text of return series and, after a concise discussion of capital 
market assumptions, in the context of return distributions. 

The paper concludes with several examples of investment 
objectives and the discount rates associated
with these objectives.

1. INVESTMENT RETURNS
This section discusses one of the most important concepts in 
finance—investment returns. Let us define the investment 
return for a portfolio of assets with known asset values at 
the beginning and the end of a time period. If PV is the asset 
value invested in portfolio P at the beginning of a time 
period, and FV is the value of the portfolio at the end of the 
period, then the portfolio return RP for the period is defined as

     =     
FV - PV

RP 	      PV				    (1.1)

The concept of present value lies at the heart of 
finance in general and actuarial science in particular. 
The importance of the concept is universally recog-

nized. Present values of various cash flows are extensively 
utilized in the pricing of financial instruments, funding of 
financial commitments, financial reporting and other areas.

A typical funding problem involves a financial commitment 
(defined as a series of future payments) to be funded. A 
financial commitment is funded if all payments are made 
when they are due. A present value of a financial commit-
ment is defined as the asset value required at the present to 
fund the commitment.

Traditionally, the calculation of a present value utilizes 
a discount rate—a deterministic return assumption that 
represents investment returns. If the investment return and 
the commitment are certain, then the discount rate is equal 
to the investment return and the present value is equal to 
the sum of all payments discounted by the compounded 
discount rates. The asset value that is equal to this present 
value and invested in the portfolio that generates the invest-
ment return will fund the commitment with certainty.

In practice, however, perfectly certain future financial com-
mitments and investment returns rarely exist. While the cal-
culation of the present value is straightforward when returns 
and commitments are certain, uncertainties in the commit-
ments and returns make the calculation of the present value 
anything but straightforward. When investment returns are 
uncertain, a single discount rate cannot encompass the entire 
spectrum of investment returns; hence the selection of a dis-
count rate is a challenge. In general, the asset value required 
to fund an uncertain financial commitment via investing 
in risky assets—the present value of the commitment—is 
uncertain (stochastic).1

While the analysis of present values is vital to the process of 
funding financial commitments, uncertain (stochastic) pres-

CONTINUED ON PAGE 22
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Thus, given the beginning and ending values, portfolio return 
is defined (retrospectively) as the ratio of the investment 
gain over the beginning value. Definition (1.1) establishes a 
relationship between portfolio return RP and asset values PV 
and FV.

Simple transformations of definition (1.1) produce the follow-
ing formula:

FV = PV (1+ RP)	 	 	 	 (1.2)

Formula (1.2) allows a forward-looking (prospective) calcula-
tion of the end-of-period asset value FV. The formula is usu-
ally used when the asset value at the present PV and portfolio 
return RP are known (this explains the notation: PV stands for 
“Present Value”; FV stands for “Future Value”).

While definition (1.1) and formula (1.2) are mathematically 
equivalent, they utilize portfolio return RP in fundamentally 
different ways. The return in definition (1.1) is certain, as 
it is used retrospectively as a measurement of portfolio 
performance. In contrast, the return in formula (1.2) is used 
prospectively to calculate the future value of the portfolio, 
and it may or may not be certain.

When a portfolio contains risky assets, the portfolio return 
is uncertain by definition. Most institutional and individual 
investors endeavor to fund their financial commitments 
by virtue of investing in risky assets. The distribution of 
uncertain portfolio return is usually analyzed using a set of 
forward-looking capital market assumptions that include 
expected returns, risks, and correlations between various 
asset classes. Later sections discuss capital market assump-
tions in more detail.

Given the present value and portfolio return, formula (1.2) 
calculates the future value. However, many investors with 
future financial commitments to fund (e.g., retirement 
plans) face a different challenge. Future values—the com-

mitments—are usually given, and the challenge is to cal-
culate present values. A simple transformation of formula 
(1.2) produces the following formula:

PV =      FV   
           1 + RP				    (1.3)

Formula (1.3) represents the concept of discounting pro-
cedure. Given a portfolio, formula (1.3) produces the asset 
value PV required to be invested in this portfolio at the 
present in order to accumulate future value FV. It must 
be emphasized that return RP  in (1.3) is generated by the 
actual portfolio P, as there is no discounting without invest-
ing. Any discounting procedure assumes that the assets are 
actually invested in a portfolio that generates the returns 
used in the procedure.

Formulas (1.2) and (1.3) are mathematically equivalent, and 
they utilize portfolio return in similar ways. Depending on 
the purpose of a calculation in (1.2) or (1.3), one may utilize 
either a particular measurement of return (e.g., the expected 
return or median return) or the full range of returns.2  The 
desirable properties of the future value in (1.2) or present 
value in (1.3) would determine the right choice of the return 
assumption.

Future and present values are, in a certain sense, inverse of 
each other. It is informative to look at the analogy between 
future and present values in the context of a funding prob-
lem, which would explicitly involve a future financial com-
mitment to fund. Think of an investor that has $P at the 
present and has made a commitment to accumulate $F at the 
end of the period by means of investing in a portfolio that 
generates investment return R.

Similar to (1.2), the future value of $P is equal to

FV = P (1+ R )	 	 	 	 (1.4)
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Similar to (1.3), the present value of $F is equal to

PV =      F   
           1 + R				    (1.5)

The shortfall event is defined as failing to accumulate $F at 
the end of the period:

FV < F					     (1.6)

The shortfall event can also be defined equivalently in terms 
of the present value as $P being insufficient to accumulate 
$F at the end of the period:

P < PV					     (1.7)

In particular, the shortfall probability can be expressed in 
terms of future and present values:

Shortfall Probability = Pr ( FV < F ) = Pr ( PV > P )       (1.8)

If the shortfall event happens, then the shortfall size can 
also be measured in terms of future and present values. The 
future shortfall F - FV is the additional amount the inves-
tor will be required to contribute at the end of the period to 
fulfill the commitment. The present shortfall PV - P is the 
additional amount the investor is required to contribute at 
the present to fulfill the commitment.

Clearly, there is a fundamental connection between future 
and present values. However, this connection goes only 
so far, as there are issues of great theoretical and practical 
importance that distinguish future and present values. As 
demonstrated in a later section, similar conditions imposed 
on future and present values lead to different discount rates.

Uncertain future values generated by the uncertainties of 
investment returns (and commitments) play no part in finan-

cial reporting. In contrast, various actuarial and account-
ing reports require calculations of present values, and 
these present values must be deterministic (under current 
accounting standards, at least). Therefore, there is a need for 
a deterministic discounting procedure.

Conventional calculations of deterministic present values 
usually utilize a single measurement of investment returns 
that serves as the discount rate. Since there are numerous 
measurements of investment returns, the challenge is to 
select the most appropriate measurement for a particular 
calculation. To clarify these issues, subsequent sections dis-
cuss various measurements of investment returns.

2. MEASUREMENTS OF INVESTMENT 
RETURNS: RETURN SERIES
This section discusses the key measurements of series of 
returns and relationships between these measurements. 
Given a series of returns r1,..., rn it is desirable to have a 
measurement of the series—a single rate of return—that, 
in a certain sense, would reflect the properties of the series. 
The right measurement always depends on the objective 
of the measurement. The most popular measurement of a 
series of returns r1,..., rn  is its arithmetic average A defined 
as the average value of the series:

				    (2.1)

As any other measurement, the arithmetic average has its 
pros and cons. While the arithmetic average is an unbiased 
estimate of the return, the probability of achieving this value 
may be unsatisfactory. As a predictor of future returns, the 
arithmetic average may be too optimistic.

Another significant shortcoming of the arithmetic return is 
it does not “connect” the starting and ending asset values. 
The starting asset value multiplied by the compounded 

CONTINUED ON PAGE 24
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Let us rewrite formulas (1.2) and (1.3) in terms of present 
and future values. If An is a future payment and  r1,..., rn are 
the investment returns, then the present value of An is equal 
to the payment discounted by the geometric average:

Thus, the geometric average connects the starting and 
ending asset values (and the arithmetic average does not). 
Therefore, if the primary objective of discount rate selection 
is to connects the starting and ending asset values, then 
the geometric average should be used for the present value 
calculations.

					     (2.5)

To present certain relationships between arithmetic and 
geometric averages, let us define variance V as follows: 4
 

If V = 0, then all returns in the series are the same, and 
the arithmetic average is equal to the geometric average. 
Otherwise (if V > 0), the arithmetic average is greater than 
the geometric average (A > G).5

There are several approximate relationships between arith-
metic average A, geometric average G, and variance V. 
These relationships include the following relationships that 
are denoted (R1) – (R4) in this paper.

arithmetic return factor (1 + A) is normally greater than the 
ending asset value.3  Therefore, the arithmetic average is 
inappropriate if the objective is to “connect” the starting and 
ending asset values. The objective that leads to the arithme-
tic average as the right choice of discount rate is presented 
in Section 5.
 
Clearly, it would be desirable to “connect” the starting and 
ending asset values—to find a single rate of return that, 
given a series of returns and a starting asset value, gener-
ates the same future value as the series. This observation 
suggests the following important objective.

Objective 1: To “connect” the starting and ending asset 
values.

The concept of geometric average is specifically designed 
to achieve this objective. If A0 and An are the starting and 
ending asset values correspondingly, then, by definition,

A0 (1+ r1 ) … (1+ rn) =  An		 	 (2.2)

The geometric average G is defined as the single rate of 
return that generates the same future value as the series of 
returns. Namely, the starting asset value multiplied by the 
compounded return factor (1 + G )n

 
is equal to the ending 

asset value:

    A0 (1 + G ) n  = An			   (2.3)

Combining (2.2) and (2.3), we get the standard definition of 
the geometric average G:

			   (2.4)
(R1)

(R2)

(R3)

(R4)
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These relationships produce different results, and some 
of them work better than the others in different situations. 
Relationship (R1) is the simplest, popularized in many 
publications, but usually suboptimal and tends to underesti-
mate the geometric return.6  Relationships (R2) – (R4) are 
slightly more complicated, but, in most cases, should be 
expected to produce better results than (R1).

The geometric average estimate generated by (R4) is always 
greater than the one generated by (R3), which in turn is 
always greater than the one generated by (R2).7 Loosely 
speaking,

(R2) < (R3) < (R4)

In general, “inequality” (R1) < (R2) is not necessarily true, 
although it is true for most practical examples. If A > V/4, 
then the geometric average estimate generated by (R1) is 
less than the one generated by (R2).8

There is some evidence to suggest that, for historical data, 
relationship (R4) should be expected to produce better 
results than (R1) – (R3). See Mindlin [2010] for more 
details regarding the derivations of (R1) – (R4) and their 
properties.

Example 2.1.

n = 2 , r
1  = -1% , r

2 = 15% . Then arithmetic mean A, geo-
metric mean G, and variance V are calculated as follows.

A =  1 
  
(-1% + 15%) = 7.00%

       2

CONTINUED ON PAGE 26

Note that  (1+ G )2 = (1+ A)2 -V , so formula (R2) is exact in 
this example. Given $1 at the present, future value FV is

FV = 1× (1-1%)(1+15%) = 1.1385

If we apply arithmetic return A to $1 at the present for two 
years, we get

(1+ 7%)2
  
= 1.1449

which is greater than future value FV = 1.1385.

If we apply geometric return G to $1 at the present for two 
years, we get

(1+ 6.70%)2
  
= 1.1385

which is equal to future value FV, as expected.

Given $1 in two years, present value PV is

PV =  	          1              = 0.8783
           (1 -1%) (1 +15%)

If we discount $1 in two years using geometric return G, 
we get
        1         

(1 + 6.70%)2   
= 0.8783

which is equal to present value PV, as expected.

If we discount $1 in two years using arithmetic return A, 
we get

        1         

(1 + 7.00%)2   
= 0.8734

which is less than present value  PV = 0.8783.
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Given parameters μ and σ, the Pth percentile of the return 
distribution is equal to the following:

RP = exp (m + sF-1 ( P)) -1			   (3.5)

where F is the standard normal distribution. In particular, 
if P = 50%, then F-1 ( P ) = 0. Therefore, the median of 
the return distribution under the lognormal return factor 
assumption is calculated as follows.

R0.5  = exp ( m ) -1				    (3.6)

Example 3.1. Let us consider two uncorrelated asset classes 
with mean returns 8.00% and 6.00% and standard devia-
tions 20.00% and 10.00% correspondingly. If a portfolio 
has 35% of the first class and 65% of the second class, its 
mean and variance are calculated as follows.

A = 8.00% × 35% + 6.00%× 65% = 6.70%

V = (20.00% × 35%)2
  
+ (10.00% × 65%)2

  
= 0.9125%

It is interesting to note that the standard deviation of the 
portfolio is 9.55% , which is lower than the 
standard deviations of the underlying asset classes (20.00% 
and 10.00%). Assuming that the return factor of this port-
folio has lognormal distribution, the parameters of this 
distribution are

From (3.5), the median return for this portfolio is

3. CAPITAL MARKET ASSUMPTIONS AND 
PORTFOLIO RETURNS
This section introduces capital market assumptions for 
major asset classes and outlines basic steps for the estima-
tion of portfolio returns.

It is assumed that the capital markets consist of n asset 
classes. The following notation is used throughout this sec-
tion:

mi	 mean (arithmetic) return;
si	 standard deviation of return;
cij	 correlation coefficient between asset classes i and j.

A portfolio is defined as a series of weights {wi } , such that 
Each weight wi  represents the fraction of the portfo-

lio invested in the asset class i.

Portfolio mean return A and variance V are calculated as 
follows:

 (3.1)

		             (3.2)

Let us also define return factor as 1 + R. It is common to 
assume that the return factor has lognormal distribution 
(which means ln(1 + R) has normal distribution). Under this 
assumption, parameters µ and σ of the lognormal distribu-
tion are calculated as follows:

s 2 = ln (1 + V (1 + A)-2
 
)	 (3.3)

Using σ calculated in (3.3), parameter μ of the lognormal 
distribution is calculated as follows:

m = ln (1 + A) - 1
   
s 2	 (3.4)

	         2
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From (3.5), the 45th percentile for this portfolio is

4. MEASUREMENTS OF INVESTMENT 
RETURNS: RETURN DISTRIBUTIONS

The previous section presented the relationships between 
the arithmetic and geometric averages defined for a series 
of returns. This section develops similar results when return 
distribution R is given.

In this case, the arithmetic average (mean) return A is 
defined as the expected value of R:

A = E ( R )		 	 	 	 (4.1)

The geometric average (mean) return G is defined as fol-
lows:

G = exp ( E (ln (1 + R ))) -1			   (4.2)

These arithmetic and geometric average returns are the limits 
of the arithmetic and geometric averages of appropriately 
selected series of independent identically distributed returns. 
Specifically, let {rk} be a series of independent returns that has 
the same distribution as R. Let us define arithmetic averages 
An and geometric averages Gn for r1, …, rn :

 		  (4.3)

					     (4.4)

According to the Law of Large Numbers (LLN), An con-
verge to E. Also, from (4.4) we have. 

					     (4.5)
			 

Again, according to the LLN, converges to the 

expected value E (ln (1+ R )). From (4.5), 1n(1+Gn) converg-
es to  E (ln (1 + R)) as well. Consequently, Gn converge to exp 
( E (ln (1 + R))) -1 , which, according to (4.2), is equal to G.

To recap, An converges to A and Gn. converges to G when 
n tends to infinity. As discussed above, the approximations 
(R1) – (R4) are true for An and Gn , where Vn is defined as 
in (2.6):
                                                                           (4.6)

Since Vn converge to the variance of returns V when n 
tends to infinity, the approximations (R1) – (R4) are true 
for A and G as well. As was discussed before, if the primary 
objective of  discount rate selection is to connects the start-
ing and ending asset values, then the geometric mean is a 
reasonable choice for the discount rate.

This conclusion, however, is valid over relatively long time 
horizons only. Over shorter time horizons, the geometric 
average of series {rk } has non-trivial volatility and cannot 
be considered approximately constant. More importantly, 
the investor may have objectives other than connecting 
the starting and ending asset values. All in all, additional 
conditions of stochastic nature may be required to select a 
reasonable discount rate. Such conditions are discussed in 
the next section.

For large n, the Central Limit Theorem (CLT) can be used 
to analyze the stochastic properties ofthe geometric aver-
age. According to the CLT applied to , the 
geometric average return
factor 1 + Gn defined as

CONTINUED ON PAGE 28
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V = 0.9125%. According to (4.7),

which is equal to the median return calculated in Example 
3.1. Note that the geometric returns for the individual asset 
classes are 6.19 percent and 5.53 percent. It is noteworthy 
that the geometric return for the portfolio that has 35 percent 
of the first class and 65 percent of the second class is 6.27 
percent, which is higher than the geometric returns of the 
individual classes.

Let us take a look at the stochastic properties of the geomet-
ric average for this portfolio. Under the lognormal return 
factor assumption, the parameters of the return distribution 
are m = 0.0609 and s = 0.0893 (see Example 3.1). If n = 10, 
then the geometric average return factor 1 + Gn is approxi-
mately lognormally distributed with parameters m = 0.0609 
and s = 0.283. The mean, median and standard deviation 
are 6.32 percent, 6.27 percent and 3.00 percent correspond-
ingly. Note significant decreases of the mean and standard 
deviation of the geometric average compared to the original 
return distribution (6.32 percent vs. 6.70 percent and 3.00 
percent vs. 9.55 percent), while the median remains the same.

5. EXAMPLES OF DISCOUNT RATE 
SELECTION
As was discussed in the previous section, the investor may 
have objectives other than connecting the starting and end-
ing asset values. This section discusses and presents three 
additional examples of such objectives that lead to the 
selection of discount rates.

Let us consider a simple modification of the funding prob-
lem discussed earlier in the paper. Think of an investor that 
has made a commitment to accumulate $F at the end of the 
period by means of investing in a portfolio that generates 
(uncertain) investment return R. To fund the commitment, 
the investor wants to make a contribution that is subject to 
certain conditions.

is approximately lognormally distributed. If the mean and 
standard deviation of  ln (1 + rk) are m and  s correspondingly, 
then the parameters of the geometric average return factor 
are m and .

Assuming that the return factor has lognormal distribution, 
it can be shown that relationship (R4) is exact:9

1 + G = (1+ A) (1+ V (1+ A)-2)-1/2 		  (4.7)

An important property of lognormal return factors is the 
geometric mean return is equal to the median return. 
Indeed, if m and s are the parameters of the lognormal dis-
tribution, then ln (1 + R ) is normal and

G = exp ( E (ln (1 + R ))) -1 = exp ( m ) -1		 (4.8)

which is the median of the return distribution according to 
(3.6).

Thus, if a discount rate were chosen at random (not that this 
is a great idea), then there would be a 50 percent chance 
for the discount rate to be greater than the geometric mean 
and a 50 percent chance to be less than the geometric 
mean. Similarly, if a present value were calculated using a 
randomly selected discount rate, then there would be a 50 
percent chance that a present value is greater than the pres-
ent value calculated using the geometric mean.10

Given arithmetic mean A and variance V, formula (4.7) pro-
duces geometric return G. If there is a need to calculate the 
arithmetic mean when the geometric mean and the variance 
are given, then the arithmetic mean is calculated as follows:

					     (4.9)

Example 4.1. This example is a continuation of Example 
3.1. In this example, A = 6.70% and
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mean return. Hence, the right discount rate df  for this objec-
tive is the arithmetic mean return:

d f  = E ( R )	 	 	 	 (5.3)

As discussed in a prior section, there is a certain symmetry 
and fundamental connection between future and present 
values. In light of this discussion, the following objective is 
a natural counterpart to Objective 3.

Objective 4: No expected gains/losses at the present.

At first, this objective looks somewhat peculiar. Everything 
is supposed to be known at the present, so what kind of 
gains/losses can exist now? But remember that the asset 
value required to fund the commitment—the present value 
of the commitment—is uncertain at the present. Therefore, 
the objective “today’s contribution is the mean of the 
present value of the commitment” is as meaningful as the 
objective “the commitment is the mean of the future value 
of today’s contribution” discussed in Objective 3.

If Cp is the contribution the investor makes at the present, 
then the objective “no expected gains/losses at the present” 
implies the following equation.

		  (5.4)

Equation (5.4) gives the following formula for contribu-
tion Cp (subscript p in Cp indicates that the objective is “no 
expected gains or losses at the present”):

				    (5.5)

Formula (5.5) shows that the objective “no expected gains 
or losses at the present” leads to contribution CP  that is 
equal to the present value of the commitment using discount 
rate d p:

For convenience, let us recall Objective 1 introduced in 
Section 2:

Objective 1: To “connect” the starting and ending asset 
values.

As was demonstrated in Section 2, the right discount rate for 
this objective is the geometric return.

Objective 2: To have a “safety cushion.”

Let us assume that the investor’s objective is to have more 
than a 50 percent chance that investment returns are greater 
than the discount rate (the “safety cushion”). For example, 
if it is required to have a P% chance that the investment 
return is greater than the discount rate, then the discount rate 
that delivers this safety level is the (100 - P)th percentile of 
the return distribution.

Objective 3: No expected gains/losses in the future.

Let us assume that the investor’s objective is to have neither 
expected gains nor losses at the end of the period. If Cf is 
the investor’s contribution at the present, then this objective 
implies that the commitment is the mean of the (uncertain) 
future value of Cf :

0 = E ( FV ) = E (Cf (1+ R) - F )	 	 (5.1)

Equation (5.1) gives the following formula for contribu-
tion Cf  (subscript f in Cf indicates that the objective is “no 
expected gains or losses in the future”):

	 	 	
	 	 	 	 	 (5.2)

Formula (5.2) shows that the objective “no expected gains 
or losses in the future” leads to contribution Cf  calculated 
as the present value of the commitment using the arithmetic 

CONTINUED ON PAGE 30



30 | RISKS AND REWARDS FEBRUARY 2014

Example 5.1. This example is a continuation of Example 3.1 
and Example 4.1. As in these examples, A = 6.70% and V = 
0.9125% . Then  PR = 1.0080 and

d f    = 6.70%
d p   = 5.85%

The 45th percentile of the return distribution is R0.45 = 5.09% 
(see Example 3.1).

CONCLUSION
The selection of a discount rate is one of the most important 
assumptions for the calculations of present values. This 
paper presents the basic properties of the key measurements 
of investment returns and the discount rates associated with 
these measurements.

The paper shows that the selection of the discount rate 
depends on the objective of the calculation. The paper dem-
onstrates the selection of discount rates for the following 
four objectives.

Objective 1: To "connect" the starting and ending asset 
values. The correct discount rate for this objective is the 
geometric mean return.

Objective 2: To have a certain "safety cushion." The cor-
rect discount rate for this objective is the (100 - P)th per-
centile of the return distribution if it is required to have a 
P% chance that the investment return is greater than the 
discount rate.

Objective 3: No expected gains/losses in the future. The 
correct discount rate for this objective is the arithmetic 
mean return.

Objective 4: No expected gains/losses at the present. The 
correct discount rate for this objective is given in formula 
(5.7).

			 
(5.6)

where d p  is calculated from (5.5) and (5.6) as

			   (5.7)

Note that Jensen inequality entails

		  (5.8)

Therefore, d p  < d f  .

Under the lognormal return factor assumption, we can tell 
more about discount rate dp .
Defining  as

			   (5.9)

where V is the variance of return R, it can be shown that the 
expected value of the reciprocal return factor is

	 	 	 	 (5.10)

Combining (5.7) and (5.10), we get

			   (5.11)

Furthermore, under the lognormal return factor assumption, 
there is an interesting relationship between the geometric 
mean return G and discount rates d p and d f  generated by 
Objective 3 and Objective 4:

		
(5.12)

Thus, the geometric mean return G is the "geometric mid-
point" between the discount rates generated by the objectives 
of no expected gains/losses in the future and at the present.
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ENDNOTES
1 �	� There are exceptions, e.g., an inflation-adjusted cash flow with a matching TIPS portfolio.
2 �	 See Mindlin [2009] for more details.
3 	� That is as long as the returns in the series are not the same.
4 	� For the purposes of this paper, the concerns that the sample variance as defined in (2.6) 

is not an unbiased estimate are set aside.
5 	� This fact is a corollary of the Jencen’s inequality.
6 	� For example, see Bodie [1999], p. 751, Jordan [2008], p. 25, Pinto [2010], p. 49, Siegel 

[2008], p. 22, DeFusco [2007], p 128, 155.
7 	� That is, obviously, as long as the returns in the series are not the same and V > 0.
8 	� Mindlin [2010] contains a simple example for which (R1) > (R2).
9 	 See Mindlin [2010] for more details.
10 	� The presence of discount rate is critical for these observations. In general, the median 

of the present value distribution calculated using the full range of returns (and without 
discount rates) is not equal to the present value calculated using the geometric mean 
(except when the cash flow contains just one payment). In other words, the median of 
present value is not the same as the present value at the median return. See Mindlin 
[2009] for more details regarding stochastic present values.
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It is worth reminding that the main purpose of a discount 
rate is to calculate a deterministic present value. Yet, 
present values associated with vital funding problems are 
inherently stochastic. As a result, the presence of a discount 
rate assumption has significant pros and cons. The primary 
advantage of a discount rate is the simplicity of calculations. 
The main disadvantage is a discount rate based determin-
istic present value cannot adequately describe the present 
value of an uncertain financial commitment funded via 
investing in risky assets. This author believes that the direct 
analysis of present values and their stochastic properties is 
the most appropriate approach to the process of funding 
financial commitments, but this subject is outside of the 
scope of this paper.

This author hopes that the paper would be useful to prac-
titioners specializing in the area of funding financial com-
mitments.
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