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Dealing With  
Difficult Data
By Joshua Boehme

This does not necessarily mean 
that this data refutes the as-
sumption that worse ratings 
have higher default rates. As a 
hypothetical example, suppose 
BB- has a true (unobservable) 
default rate of 1.80 percent and 
B+ has a true rate of 2.10 per-
cent. Given the sample sizes we 
have available in the exposure 
amounts above, we would have 
a roughly 43 percent chance of 
observing a higher default rate 
for BB- than for B+.

Since we cannot “re-run” 2012, 
we cannot gather more data.2 

Since the data covers a single 
type of company and a single 
year, we have no obvious vari-
ables to divide the data into 
smaller cohorts. If we want an 
assumption where companies 
with lower ratings have higher 
default rates, we will have to 
work with this data further. In 

the annual default rates for fi-
nancial institutions in 2012 by 
S&P rating category.

As the basis for setting as-
sumptions, this data has many 
shortcomings. The 12 highest 
rating levels all have the same 
observed default rate. In addi-
tion, the observed default rates 
do not increase monotonically, 
since BB- has a higher default 
rate than B+ and likewise for B 
and B-.

particular, we want to produce 
an assumption that satisfies this 
constraint:

Monotonicity: the default rate 
must strictly increase as ratings 

get worse.

THREE POTENTIAL 
TECHNIQUES
To work with this data, we move 
from looking at single point 
estimates to looking at distri-
butions of estimates. This shift 
in perspective makes it easier 
to adjust the data to reflect any 
constraints we want to impose 
(such as monotonicity). With 
point estimates, we may know 
that we need to make an adjust-
ment, but the individual values 
do not provide us with enough 
information to determine the 
size of the adjustment to make. 
With distributions, though, we 
can eliminate any regions that 
fall outside of our constraints; 
in effect, we take the distribu-
tions and make them condi-
tional on our constraints.

The resulting distributions de-
pend on the model we apply. 

NORMAL DISTRIBUTION 
APPROACH
One possible approach, which 
many actuaries may already 
know, uses the normal ap-
proximation for the maximum 
likelihood estimator. Given d 
defaults and exposure n, this 
normal distribution has mean

  
and variance

.

Since the normal distribution 
can take any real values, we will 
reject any iterations that pro-
duce values outside of the [0, 
1] interval. This will truncate 
the normal distribution so that 

Life, so they say, brings 
with it the two certain-
ties of death and taxes. 

Actuaries could perhaps make 
a convincing case that life also 
offers a third certainty: imper-
fect data.

Actuaries often encounter dif-
ficult data. Traditionally, we 
deal with problematic data in 
a number of ways. We check 
for data quality issues—such 
as incorrectly mapped codes—
and correct them where possi-
ble. We question our precon-
ceptions about what the data 
“should” look like and revise 
our working assumptions as 
needed. Mindful of how Simp-
son’s paradox can lead us to in-
correct conclusions, we check 
for additional, confounding 
variables. When we can, we 
gather additional data to reduce 
the influence of random noise. 
These techniques definite-
ly have their worth and often 
solve the problem. Sometimes, 
though, they don’t. When the 
standard methods fail, actuaries 
can turn to statistical methods 
to make the most of uncooper-
ative data.

AN ILLUSTRATIVE 
PROBLEMATIC DATA SET
To illustrate the issues and some 
of the potential techniques to 
deal with them, consider the 
follow data set, which shows 

S&P Rating Defaults Exposure Default Rate
AAA 0 10 0.00%

AA+ 0 25 0.00%

AA 0 12 0.00%

AA- 0 72 0.00%

A+ 0 119 0.00%

A 0 130 0.00%

A- 0 107 0.00%

BBB+ 0 108 0.00%

BBB 0 134 0.00%

BBB- 0 92 0.00%

BB+ 0 48 0.00%

BB 0 50 0.00%

BB- 1 47 2.13%

B+ 1 56 1.79%

B 2 65 3.08%

CCC/C 2 13 15.38%

Table 1
One-year default rates for financial institutions (2012)1

Note: the summary here excludes withdrawn ratings.
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mated default rates in the table 
represent the means of sam-
ples drawn from the respective 
distributions (and in the case 
of the rejection method—dis-
cussed in more detail below—
filtered to exclude observations 
outside the acceptance region). 
Note in particular that all of the 
techniques produce results that 
satisfy the monotonicity con-
straint.

The “Rejection” and “Gibbs” 
approaches are alternate sam-
pling methods used to imple-
ment each technique. The “Pri-
or/Adjustment” input is used in 
revising the initial result. These 

are explained more fully below.

For clarity, the results focus 
on just the ratings from BB- 
through B- (inclusive). The 
same techniques could apply to 
the entire table; the results in 

it produces estimates of default 
probability between 0 percent 
and 100 percent.

BOOTSTRAPPING 
APPROACH WITH THE 
BINOMIAL DISTRIBUTION 
Another approach makes direct 
use of the empirical distribu-
tion to draw new samples of 
the same size and with replace-
ment from the observed results. 
In other words, we draw from 
a binomial distribution with n 
trials and d/n event probabili-
ty. This technique—known as 
bootstrapping—offers a quick 
way to estimate parameters or 
variances in situations where 
we observe a process with an 
unknown distribution function 
and do not have a closed for-
mula available.

BAYESIAN APPROACH 
WITH BETA PRIOR 
DISTRIBUTION
A third technique would take 
a Bayesian approach, which 
combines an assumed prior 
distribution and the observed 
data to produce a posterior dis-
tribution for our parameters. 
In this approach, the prior dis-
tribution and the data each are 
assigned a weight based on the 
credibility of the data; the more 
observed data points, the great-
er the relative weight assigned 
to the data. The example below 
uses the beta distribution as the 
prior distribution. The beta 
distribution is a convenient 
conjugate prior distribution for 
binomial data.

The table below presents the 
results of these techniques, 
each applied in several differ-
ent ways, over 5,000 iterations 
using the same set of random 
numbers in each case. The esti-

that case, though, would differ 
slightly.3 

Although the specific values 
vary from technique to tech-
nique, some high-level simi-
larities emerge across all the 
results. If we believe in our 
monotonicity constraint, then 
we might assume a significantly 
higher default for B- than we 
actually observed. Each of our 
models suggests this. The size 
of the increase in default rate 
from B to B- resulting from 
each model above may look 
surprising. However there is 
an intuitive explanation. If we 
were to evaluate only the B- de-

fault rate in isolation, we would 
have a range of plausible default 
probabilities with the observed 
rate (2.94 percent) most likely 
somewhere in the middle of the 
range. Applying the constraint, 
though, chops off any rates 

lower than B’s default rate (ob-
served at 3.08 percent), which, 
as a very rough approximation, 
removes the left half of the dis-
tribution.4 The remaining por-
tion has a mean value out in the 
right tail of our original uncon-
strained distribution.

Similarly, we see the results in-
dicate we should assume a low-
er rate from BB- than we ob-
served. The results show some 
disagreement about B+ and B, 
but most suggest somewhat 
higher default rates than we 
observed.

MULTIVARIATE SAMPLING 

METHODS - REJECTION 
AND GIBBS SAMPLING
For the normal and Bayesian 
approaches, Table 2 shows two 
different methods of drawing 
from the respective constrained 

CONTINUED ON PAGE 22

                                                                                              Default Rates

Technique Prior/
Adjustment BB- B+ B B- Rejection %

Observed Data Not applicable 2.13% 1.79% 3.08% 2.94% Not applicable

Normal/
Rejection 0 1.21% 2.26% 3.61% 6.04% 95.3%

Normal/Gibbs 0 1.24% 2.33% 3.77% 5.87% 0%

Bootstrapping 0 0.32% 2.24% 4.20% 7.68% 97.1%

Bayesian/
Rejection 0 0.63% 1.47% 3.00% 6.10% 92.1%

Bayesian/
Gibbs 0 0.62% 1.47% 2.95% 5.84% 0%

Normal/
Rejection 0.5 1.62% 2.96% 4.62% 7.47% 94.3%

Normal/Gibbs 0.5 1.69% 3.07% 4.72% 7.39% 0%

Bootstrapping 0.5 0.83% 2.91% 4.92% 8.71% 95.5%

Bayesian/
Rejection 0.5 1.14% 2.27% 4.01% 7.58% 91.9%

Bayesian/
Gibbs 0.5 1.15% 2.27% 3.96% 7.32% 0%

Table 2
Results of estimation techniques
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that still satisfy the monotonic-
ity constraint. Similarly, in the 
Bayesian case, we end up with 
truncated univariate beta distri-
butions.

When we apply the rejection 
method, we treat the distribu-
tions as independent, making it 
easier to draw samples; howev-
er, many of the samples get re-
jected. Gibbs sampling, though 
less intuitively straightforward 
and requiring more up-front 
setup, draws precisely from the 
region of interest, making it 
more efficient. 

In the end, both methods give 
us samples from the same distri-
bution; the specific application 
dictates which works better. 
As the number of constraints 
increases, the rejection meth-
od rejects a greater proportion 
of the samples.7 The rejection 
method, though, takes less time 
to program and to explain to 
non-technical stakeholders.

THE BAYESIAN PRIOR AND 
PSEUDO-OBSERVATIONS
The “Prior/Adjustment” col-
umn in Table 2 represents the 
number of pseudo-observations 
added to the observed number 
of defaulting and of non-de-
faulting companies. This 
provides a mathematical ad-
justment that reduces the cred-
ibility of the observed number 
of defaults. This is done as an 
adjustment for the relatively 
small number of exposures in 
each rating category.  

For the Bayesian techniques, it 
represents the value of the alpha 
and beta parameters for the as-
sumed beta prior distribution.8

The concept of an adjustment 
factor may seem strange to 
some actuaries at first. To un-
derstand why one would add 
pseudo-observations to our 
actual data, consider the impli-
cations of not using an adjust-
ment factor. In the extreme, 
this would mean, for example, 
that if a rating category had 
only one exposure and it rep-
resented a default we would 
assume a default probability of 
100 percent in that rating cat-
egory. This would clearly be a 
rather extreme approach. 

A factor of 0.5, on the other 
hand, means that if we observe 
one default event after one trial, 
we would estimate the default 
probability for that rating cate-
gory as (1 + 0.5) / (1 + 0.5 · 2) = 
3/4—not an outlandish place to 
start given a sample size of one.9 

SELECTING A  
SINGLE TECHNIQUE
So, with a plethora of tech-
niques to choose from, how do 
we narrow things down? The 
choice depends on the specif-
ic situation and must reflect 
non-technical factors, such as 
stakeholder buy-in. In this ex-
ample, though, the technical 
factors favor one approach over 
the others. 

First, given the small sample 
sizes and the even smaller num-
ber of defaults observed, the 
normal approximation seems 
dubious; in addition, the fact 
that the normal distribution 
ends up putting a significant 
proportion of the distribution 
on negative values gives us an-
other reason to question it. 

distributions. The rejection 
method draws each parameter 
independently from its distri-
bution (normal or beta), ig-
noring our monotonicity con-
straint. In each random draw, 
if the resulting four sample de-
fault probabilities do not meet 
the constraints (i.e., among 
[0,1] and monotonic),  they are 
discarded. We can envision this 
as drawing samples from a larg-
er (but easier to simulate) dis-
tribution than the one we actu-
ally want. We then retain only 
the observations within the 
desired region—also known as 
the acceptance region—which 
leaves us with a sample from 
the desired (but more difficult 
to simulate) distribution.

Gibbs sampling, on the other 
hand, allows us to sample di-
rectly from complex distribu-
tions. The key to Gibbs sam-
pling comes from observing 
that each variable, taken one at 
a time instead of collectively, 
has a distribution with a more 
tractable form. For example, in 
the case of the normal distri-
bution we have four normally 
distributed variables, which 
depend on each other via the 
monotonicity constraint. Thus, 
the overall multivariate distri-
bution has the same joint distri-
bution as four independent nor-
mal variables, except truncated 
down to the region that satisfies 
our constraints (and scaled pro-
portionally so the integral of 
the density still equals 1). That 
truncation makes it difficult to 
directly sample from it. If we 
look at just a single variable at a 
time, though, we have a univar-
iate normal distribution subject 
to upper and lower bounds. As 
long as we know the other three 
variables, we know the bounds 

for the distribution of the 
fourth and thus can easily draw 
a sample from it. It turns out 
that the approach suggested by 
this observation—namely, sam-
ple from each variable individ-
ually based on the most recent 
value of the others—converges 
to the correct multivariate dis-
tribution.

Specifically, starting with an ar-
bitrarily picked initial observa-
tion, Gibbs sampling generates 
additional observations through 
the following algorithm:

Loop through each variable, 
one at a time:5

1.	 Determine the distri-
bution for the current 
variable, conditional on 
the current values of all 
other variables; and

2.	 Set the current vari-
able equal to the value 
generated from a single 
random draw from that 
conditional distribution.

Each time we loop through 
all variables once, we pro-
duce one observation. We 
repeat this process as many 
times as needed to produce 
the desired number of obser-
vations.6

In our case, those conditional 
distributions take the form of 
a truncated univariate normal 
distribution, with the upper 
and lower bounds coming from 
the largest and smallest values 

Dealing With Difficult Data

ASOP 23 should be consulted 
for additional guidance on data 
gathering and disclosure.
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On the other hand, the boot-
strapping technique can only 
produce certain discrete values 
(0/n, 1/n, 2/n, etc.). Since the 
monotonicity constraint leads 
us to eliminate certain overlap-
ping regions of the parameters’ 
distributions, the discreteness 
of the values leads to questions 
about the accuracy of the final 
distribution. (Consider, for ex-
ample, the difference between a 
particular probability mass fall-
ing just inside the constrained 
region versus falling just out-
side the region.)

This leaves the Bayesian tech-
nique as the strongest approach. 
Further, as discussed above, us-
ing a non-zero parameter for 
the prior distribution produces 
better results. 

In the end, though, these only 
reflect the technical consider-
ations. The context of the work 
must guide the selection of the 
final technique.  Actuarial Stan-
dard of Practice 23 should be 
consulted for additional guid-
ance on data gathering and dis-
closure requirements.

In life we often encounter im-
perfect data. By using these 
and other statistical techniques, 
though, actuaries can prevent 
uncooperative data from caus-
ing as much unpleasantness as 
life’s other certainties. n

Joshua Boehme, 
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1	 Table 52 from http://www.nact.org/
resources/NACT_2012_Global_Corpo-
rate_Default.pdf, accessed 2/14/2015

2	 Ignoring the challenge of incorporating 
data from prior years consistently

3	 For example, including the BB rating 
means that our assumption for BB- 
now has a nonzero lower bound. This 
would cause us to exclude some of its 
smallest potential values and would 
thus increase its estimate. Similarly, 
including CCC/CC puts a ceiling on our 
assumed default rate for B-.

4	 The extent of the adjustment depends 
on the likelihood of B’s default rate at 
the given point. If we consider a point 
much lower than B’s observed default 
rate (i.e., in B’s left tail), it is highly like-
ly that B’s true value is greater than or 
equal to that point. Thus, given our 
monotonicity constraint it is highly 
unlikely B- can have a rate that small 
since it must exceed B’s rate. In the ab-
sence of the constraint we would have 
assigned some probability to B-‘s rate 
being that small; with the constraint, 
though, there is an even smaller 
chance. Conversely, for values much 
larger than B’s observed rate (i.e., in 
B’s right tail), there is a relatively small 
chance that B has a default that large; 
therefore, applying the constraint has 
only a minor impact on the likelihood 
of B- having a rate that high. 

5	 Or multiple variables at a time, in 
which case we draw from the joint dis-
tribution conditional on all the other 
variables.

6	 In practice, we often make some ad-
justments to the resulting series of 
observations. Because of the iterative 
nature of the process, consecutive ob-
servations exhibit correlation – we do 

not get independent samples. In addi-
tion, depending on the initial starting 
point it may take some number of iter-
ations to converge to the desired dis-
tribution. We can correct for auto-cor-
relation by thinning the observations 
and for non-convergence by dropping 
observations from an initial burn-in 
period. Since this paper only considers 
means, we do not need to correct for 
auto-correlations. In addition, for sim-
plicity the results do not discard any 
initial burn-in period (based on a visual 
inspection, the results quickly con-
verge to the stationary distribution). 
Readers interested in further details 
can consult the extensive literature 
available on Gibbs sampling.

7	 The inefficiency of the rejection meth-
od can reach rather extreme levels. 
The author encountered one situation 
involving a two-dimensional ratings 
transition matrix where the rejection 
method produced less than one valid 
result per million samples.

8	 For 0, view this as the limit of the pos-
terior distribution as alpha and beta go 
to zero.

9	 The exact choice of a factor (or a prior 
distribution in general for Bayesian ap-
proaches) can present some problems 
beyond the scope of this article, but 
the illustrative 0.5 factor in this case 
has three desirable properties. First, in 
the extreme case of n=1 it produces de-
fensible results. Second, for Bernoulli 
trials, a Beta distribution with parame-
ters α = ½ and β = ½ is the Jeffreys pri-
or.  As the Jeffreys prior, it has a certain 
invariance under re-parameterization. 
Third, it still results in a whole number 
of total observations, since 0.5 gets 
added to both the number of defaults 
and the number of non-defaults.
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