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On The Importance Of 
Hedging Dynamic Lapses 
In Variable Annuities 
By Maciej Augustyniak and Mathieu Boudreault

maturity, he is entitled to max-
(AT,G) at time T where G de-
notes the amount of the guar-
antee (for a return-of-premium 
guarantee, we have G=A0). If 
AT < G, the guarantee matures 
in-the-money and the insurer 
is responsible for the shortfall, 
i.e., its liability is the payoff of a 
put option: max(G - AT, 0).

If the policyholder surrenders 
his contract at any time prior 
to the maturity of the policy, 
he receives the balance of the 
sub-account value minus a sur-
render charge which we sup-
pose is expressed as a fraction κ 
K of At. Therefore, the surren-
der value at time t corresponds 
to At(1-K).

DECOMPOSITION OF 
THE PAYOFF TO THE 
POLICYHOLDER
We integrate dynamic lapsation 
into the GMMB contract by 
assuming that the policyholder 
will surrender his contract at 
the first moment (before ma-
turity) the sub-account value 
net of surrender charges hits a 
predetermined barrier known 
as the moneyness threshold 
or level. We will use the term 
moneyness ratio when this 
moneyness threshold is ex-
pressed relative to the guaran-
tee G. Table 1 shows that the 

money, the policyholder has 
a strong incentive to lapse the 
contract and choose an alterna-
tive investment product. This 
is simply because the insured is 
paying high fees (fees are gen-
erally deducted in proportion 
to the sub-account’s value) for 
a guarantee that is very unlike-
ly to be triggered in the future. 
Therefore, dynamic lapses are 
generally driven by the money-
ness of the guarantee and since 
the evolution of markets affects 
most VA contracts in a similar 
fashion, these lapses are clearly 
very difficult to diversify.

There is growing evidence that 
dynamic lapsation is important 
to take into account in vari-
able annuities. For example, 
Milliman (2011) and Knoller 
et al. (2015), found a strong 
statistical relationship between 
lapse rates and the moneyness 
of the guarantee in empirical 
data. Moreover, the Canadian 
Institute of Actuaries (2002) 
and the American Academy of 
Actuaries (AAA) (2005) both 
recommended to take dynam-
ic lapsation into account by 
varying the lapse rate with the 
moneyness of the guarantee. 
According to a survey from the 
Society of Actuaries performed 
in 2011, approximately 60 per-
cent and 80 percent of partic-
ipating insurers followed this 

Variable annuities (U.S.) 
and segregated funds 
(Canada) are life insur-

ance contracts offering benefits 
that are tied to the returns of a 
reference portfolio. These pol-
icies include various forms of 
capital and income protection 
in the event of market down-
turns such as a guaranteed min-
imum death benefit (GMDB) 
or a guaranteed minimum 
withdrawal benefit (GMWB).

An important feature of vari-
able annuities is the possibility 
for the policyholder to lapse or 
surrender the contract. In the 
latter case, the policyholder 
gives up the underlying insur-
ance protection, ceases to pay 
fees to the insurer and receives 
a surrender value. Lapse as-
sumptions are critical inputs in 
pricing and hedging models of 
variable annuity guarantees and 
can be divided into two types: 
deterministic (or static) and 
dynamic lapses (see Eling and 
Kochanski, 2013, for more de-
tails). Deterministic lapses are 
due to unforeseen events in the 
policyholder’s life (for example, 
loss of employment creating 
liquidity needs) and are gen-
erally seen as diversifiable. On 
the other hand, dynamic lapses 
result from an investment deci-
sion on the part of the policy-
holder. For instance, when the 
guarantee is deep out-of-the-

practice when modeling death 
and living benefits, respectively.

The objective of this article is 
to investigate the importance 
of hedging dynamic lapses in 
variable annuities. More pre-
cisely, we aim to answer one 
very practical question, that is, 
what is the impact on hedging 
effectiveness when an insurance 
company chooses not to hedge 
dynamic lapses, or alternative-
ly, to hedge them but with the 
wrong assumptions.

GMMB CONTRACT
Suppose that an insured invests 
in a guaranteed minimum ma-
turity benefit (GMMB) prod-
uct with a set maturity T. The 
sub-account value is credited 
with the returns of an under-
lying reference portfolio and 
fees are continuously deducted 
from the sub-account as a per-
centage of the account balance. 
Denoting the value of the ref-
erence portfolio at time t by St, 
the sub-account value at time t 
is given by

At = St e-at

where a is the aforementioned 
annual fee rate, and A0=S0 is 
the initial investment.

If the policyholder does not 
surrender his contract before 

Components of the 
portfolio

Barrier is hit before 
maturity

Barrier is not hit 
before maturity

(I) Up-and-out put 0 max(G - AT,0)

(II) Rebate option Moneyness level paid 
upon surrender 0

(III) Up-and-out call 
with zero strike 0 AT

Total payoff Moneyness level paid 
upon surrender max(AT, G)

Table 1
Decomposition of the payoff of a GMMB  
contract with dynamic lapsation risk
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payoff of a GMMB contract 
with dynamic lapsation can be 
viewed as a basket of barrier 
options.

The decomposition presented 
in Table 1 renders the anal-
ysis of the GMMB product 
tractable because closed-form 
expressions for each of the un-
derlying options are available 
under the Black-Scholes model 
(see McDonald, 2006, Section 
22). Therefore, the valuation 
of a GMMB contract (from a 
financial engineering perspec-
tive) under dynamic lapsation 
risk and the computation of 
Greeks required for establish-
ing a dynamic hedging strate-
gy are both straightforward to 
perform.

FAIR FEE
Having decomposed the pay-
off to the policyholder into a 
basket of barrier options, we 
now focus on how to compute 
the fee rate for the GMMB 
contract. Defining the insur-
er’s net liability as the payoff 
of the contract net of fees and 
surrender charges, we say that 
the fee is fair if it is determined 
such that the net liability of the 
policy is zero at inception of the 
contract. This is similar to the 
equivalence principle in actuar-
ial mathematics.

To analyze the effect of dynamic 
lapsation and surrender charges 
on the fair fee, we begin with a 
baseline contract in which sur-
rendering is not allowed. For 
an initial investment of $100, a 
fixed guarantee of $100, a (con-
tinuously compounded) risk-
free rate of 3 percent, an asset 
volatility of 16.5 percent (see 
below) and a contract maturity 
of 10 years, the fair fee rate is 

1.07 percent per annum. This 
contract is equivalent to a plain 
vanilla put option financed by 
fees deducted periodically from 
the sub-account.

We now incorporate dynam-
ic lapsation into the pricing 
framework and assume that 
there are no surrender charges. 
Figure 1 illustrates the behav-

ior of the fair fee as a function 
of the moneyness ratio. As ex-
pected, if the policyholder only 
lapses when the moneyness 
ratio is extremely large, the 
fair fee converges to the one 
computed for the baseline case 
where surrendering was not al-
lowed. However, if the insured 
lapses at smaller moneyness 
ratios, the fee needs to be in-
creased to compensate the in-
surer for its lost future income. 
Indeed, when the guarantee is 
deep out-of-the-money, it is 
very unlikely that the guaran-
tee will cost something to the 
insurer and surrender therefore 
leads to a loss for the insurer.

Figure 1 shows that dynamic 
lapsation can be priced into the 

contract by raising the fee rate. 
However, we observe that the 
required fee increase is rather 
steep: at a moneyness ratio of 
about 150 percent, the fair fee 
almost doubles. One way to re-
duce this fair fee is to include 
surrender charges. In fact, 
when a surrender charge of 4 
percent is applied at the mo-
ment of surrender, the fair fee 

lies in between 1 percent and 
1.2 percent for any given mon-
eyness ratio. Therefore, the ad-
dition of a surrender charge has 
almost totally mitigated the ef-
fects of dynamic lapsation risk 
on the fair fee. In the follow-
ing section, we examine how 
dynamic lapsation risk impacts 
hedging effectiveness.

HEDGING EFFECTIVENESS
When fees are collected as a 
percentage of the sub-account 
value, the fee income is affect-
ed by fluctuations in the value 
of the reference portfolio. For 
example, in a bear market, the 
sub-account value drops, the 
guarantee is in-the-money and 
the fee income decreases (at 
the worst possible time for the 

insurer). In contrast, the fee in-
come is much greater in a bull 
market, but policyholders also 
tend to lapse more. 

These observations show that 
both the payoff of the contract 
(at maturity or on surrender) 
and the fee income should be 
hedged if the objective of the 
hedge is to protect the insurer 
against changes in its net liabili-
ty. In what follows, we lay down 
the main market and hedging 
hypotheses needed to analyze 
the impact of dynamic lapsation 
on hedging effectiveness.

MARKET ASSUMPTIONS
We will assess hedging effec-
tiveness under two different 
types of market environments.

(1) The ideal case in which the 
value of the reference portfolio 
follows a geometric Brownian 
motion, exactly as in the Black-
Scholes model. In this case, 
log-returns are independent 
and identically distributed as 
normal random variables. Be-
cause Greeks will be computed 
under the Black-Scholes model 
as well (see below), there will 
be no discrepancy between the 
hedging and market models in 
this scenario, i.e., there will be 
no model risk.

(2) A (two) regime-switching 
GARCH (RS-GARCH) mar-
ket model that captures most 
of the stylized facts of asset re-
turns (see Campbell et al., 1996; 
Tsay, 2012). In a RS-GARCH 
model, the state of the econo-
my is driven by a latent Mar-
kov chain and in each state, the 
market follows a GARCH(1,1) 
model. This model encom-
passes the regime-switching 
log-normal (RSLN) model of 
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Figure 1
Fair fee as a function of the moneyness  
ratio assuming no surrender charges

CONTINUED ON PAGE 14
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is available on Maciej Augus-
tyniak’s website.

HEDGING ASSUMPTIONS
In what follows, we assume that 
the insurer uses delta-hedg-
ing under the Black-Scholes 
model to manage the risk of 
the GMMB contract in a fric-
tionless market (no transaction 
costs, no constraints on short 
selling, lending, etc.). For the 
insurer to be delta-hedged at 
time t, it must ensure to hold 
a position of Dt in the underly-
ing index. This can be accom-
plished using futures or, equiva-
lently, by taking a long position 
in Dt shares of the underlying 
index and borrowing the cost 
or lending the proceeds. The 
Greek Dt corresponds to the 
first derivative of the insurer’s 
net liability with respect to the 
asset price and can be comput-
ed in closed-form based on the 

decomposition presented in 
Table 1.

Four hedging scenarios are an-
alyzed.

I. Baseline: The insurer 
hedges a GMMB product 
assuming that the policy-
holder will not surrender 
his contract and the poli-
cyholder conforms to this 
behavior. The fair fee in 
that case has already been 
calculated and corresponds 
to 1.07 percent.

Hardy (2001). Furthermore, 
Hardy et al. (2006) showed that 
the RS-GARCH model has a 
better overall fit than the sto-
chastic volatility model of the 
American Academy of Actuar-
ies. We believe that this bet-
ter fit is achieved because the 
RS-GARCH model allows for 
jumps in the mean return and 
volatility dynamics.

The data set used to esti-
mate the parameters of these 
two market models consists 
of weekly log-returns on the 
S&P500 index from Dec. 30, 
1987 to Aug. 1, 2012. Data was 
extracted on Wednesdays to 
avoid most holidays. The time 
series includes 1283 observa-
tions and descriptive statistics 
are provided in Table 2 (the 
mean and standard deviation 
(abbreviated StDev) are given 
on an annualized basis).

Both market models were es-
timated by maximum likeli-
hood (ML). Estimation of the 
Black-Scholes model by ML 
is straightforward as one only 
needs to compute the sample 
mean and variance of log-re-
turns. The RS-GARCH model 
is more complicated to estimate 
because of a path-dependence 
problem. The most common 
ML estimation algorithm used 
for the RS-GARCH model is 
given by Gray (1996), but Au-
gustyniak et al. (2015) general-
ized Gray’s approach to reduce 
bias in the estimated parame-
ters. R code for this technique 

II. Correct moneyness as-
sumption: The insurer 
hedges a GMMB product 
assuming that the pol-
icyholder will lapse his 
contract if the moneyness 
ratio hits 150 percent and 
the policyholder conforms 
to this behavior. A surren-
der charge of 4 percent 
is applied in the event of 
surrender. This scenario 
allows us to better analyze 
the magnitude of the dis-
crepancies in an inappro-
priate hedge scenario (see 
scenarios III and IV). The 
fair fee in this scenario is 
1.17 percent per annum 
which is only slightly high-
er than in scenario I since 
surrender charges approxi-
mately cover the loss in fee 
income due to lapsation.

III. Dynamic lapsation is 
not hedged: The insurer 
hedges a GMMB product 
assuming that the policy-
holder will not surrender 
his contract but the poli-
cyholder does not conform 
to this behavior and lapses 
when the moneyness ratio 
hits 150 percent. A surren-
der charge of 4 percent is 
also applied. This situation 
allows us to assess the im-
pact of dynamic lapsation 
on a hedging program 
when this risk is ignored. 
We assume that the prod-
uct is correctly priced (1.17 
percent per annum) even if 
the hedge is not properly 
constructed. This prevents 
hedging errors from being 
inflated because of a mis-
pricing.

IV. Incorrect moneyness as-
sumption: The insurer 

hedges a GMMB product 
assuming that the pol-
icyholder will lapse his 
contract if the moneyness 
ratio hits 175 percent, but 
the policyholder actually 
lapses his contract once 
the moneyness ratio hits 
150 percent. A surrender 
charge of 4 percent is also 
applied. This situation al-
lows us to assess the impact 
of incorrectly setting lapse 
assumptions on hedging 
effectiveness. As in scenar-
ios II and III, the fee is set 
to 1.17 percent per annum 
which implies that the 
product is correctly priced 
but the hedge is not prop-
erly constructed.

For these four hedging scenari-
os, we will analyze the distribu-
tion of the net hedging error at 
maturity. If the GMMB prod-
uct is held until maturity, the 
net hedging error at maturity 
for a given scenario is

max(G - AT, 0) + accumulated 
mark-to-market hedging gains/
losses -  accumulated value of 

fees.

If the GMMB is surrendered 
prior to maturity, the net hedg-
ing error becomes

accumulated mark-to-market 
hedging gains/losses - accu-
mulated value of surrender 

charges and fees.

ANALYSIS OF  
HEDGING ERRORS
Table 3 shows the mean, stan-
dard deviation (StDev), 95 per-
cent Conditional Tail Expec-
tation (CTE) and 99 percent 
Value-at-Risk (VaR) of the net 
hedging error at maturity as-
suming weekly rebalancing of 

Mean StDev Skewness Kurtosis Minimum Maximum

7.0% 16.5% -0.61 7.3 -16.5% 10.2%

Table 2:
Descriptive statistics of weekly log-returns on  
the S&P500 index from 12/30/1987 to 08/01/2012

On The Importance Of Hedging Dynamic Lapses In Variable Annuities
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the hedge portfolio for each 
of the four scenarios that were 
presented and under the two 
market models considered 
(200,000 paths of the log-re-
turn process were generated 
for each model). As before, we 
assume an initial investment of 
$100, a fixed guarantee of $100, 
a risk-free rate of 3 percent, an 
asset volatility of 16.5 percent 
and a contract maturity of 10 
years.

We can first focus our analysis 
on the results obtained under 
the Black-Scholes model. By 
analyzing scenarios I and II, 
it is quite obvious that hedg-
ing under ideal conditions (no 
model or policyholder behav-
ior risks) yields an important 
risk reduction (for example, 
the 95 percent CTE of the net 
unhedged loss at maturity is 
28 if the policyholder does not 
lapse). However, the relevant 
practical issue is to determine 
whether it is advantageous for 
the insurer to hedge dynam-
ic lapsation risk if he is unsure 
about the exact moneyness level 
at which the policyholder exer-
cises his option to surrender. To 
address this issue, we must com-
pare scenarios II, III and IV. For 
the Black-Scholes model, when 
there is no discrepancy between 
the hedging and market mod-
els, we observe that even if the 
moneyness ratio assumption 

is set wrong in the hedge, the 
risk measures in scenario IV are 
much lower than those obtained 
in scenario III where dynam-
ic lapsation risk is not hedged 
at all. In fact, the standard de-
viation and risk measures in 
scenario IV (wrong moneyness 
ratio) are approximately twice 
as large as in scenario II (perfect 
hedge), but under scenario III 
(dynamic lapses are not hedged 
at all), they are five times larger. 

Therefore, even if the assump-
tion on the moneyness ratio is 
set wrong in the hedge, it is still 
possible to achieve a very signif-
icant risk reduction by hedging 
dynamic lapses.

The last question that remains 
is to determine whether the 
results that we obtain are ro-
bust to a more realistic mar-
ket model. Comparing results 
for the Black-Scholes and RS-
GARCH market models, it is 
not surprising to observe an 
increase in the standard devi-
ation when hedging under the 
RS-GARCH model. Howev-
er, even if the market model 
significantly deviates from the 
Black-Scholes model, we ob-
serve that the insurer is still 
much better off hedging dy-
namic lapses with the wrong 
moneyness ratio assumption, 
than not hedging them at all 
(for instance, the standard de-

viation and risk measures are 
halved).

Finally, it is comforting to note 
that even when assumptions 
used to construct the hedge 
strongly deviate from reality, 
dynamic hedging can still result 
in an important risk reduction 
relative to the actuarial ap-
proach. For example, under an 
RS-GARCH model, the stan-
dard deviation of the net un-

hedged loss at maturity is 13-15 
percent of the initial invest-
ment (depending on whether 
the policyholder lapses or not) 
whereas it is between 2-4 per-
cent when hedging is used. Tail 
risk measures also decrease by 
a very important margin in this 
context.

FURTHER READING
We note that Panneton and 
Boudreault (2011) have inves-
tigated the pricing of lapses 
in a simpler framework where 
lapses can only occur at spe-
cific dates during the contract. 
Moreover, we recommend 
reading Eling and Kochanski 
(2013) for a recent overview of 
the research on lapse in life in-
surance and Kling, et al. (2014), 
for a thorough analysis of the 
impact of policyholder behav-
ior on hedging effectiveness in 
the context of guaranteed life-
time withdrawal benefits. n
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