

Article from
Risk and Rewards
February 2018
Issue 71

Can Large Pension Funds Use Derivatives to Effectively Manage Risk and Enhance Investment Performance-Case Study: Key Rate Duration Adjustment

By David Gibbs

Tbis paper was originally presented in January 2017 shortly after the U.S. General Elections. We decided to keep the data as-is from that time (vs. refreshing it) for a few reasons: (1) the lessons to be taken from that time are just as relevant today, (2) the rates market has not seen much material change since that time and (3) the examples can provide a better illustration, from that time period than later in the same year. The election results, especially for President, resulted in a short-term spike in volatility as well as a significant move higher in U.S. interest rates. The move in rates was great enough (approximately 50.0 bps in 10-year equivalents) to get the attention of risk managers and risk traders.

Since the initial move bigher in rates (to roughly 2.63 percent in UST 10-year in mid-December 2016) yields bave traded lower reaching an intra year low of approximately 2.04 percent in early September 2017. Currently, 10-year yields are around 2.40 percent close to the mid-range for the year.

Additionally, from November 2016 to November 2017 the average duration and rough composition of the Citi World Government Bond Index (WGBI) is basically unchanged.

Likewise, the CTD considerations, basispoint values, and resulting hedge ratios of the CME Group U.S. Treasury futures contracts from November 2016 to present (adjusting for contract month) are very similar.

Due to all these factors, the concepts and results presented in the paper are as valid today as when originally written. Given the magnitude of the initial reaction to the election,
the trading activity during that time frame provided an excellent laboratory to test the key rate duration adjustment with real market data.

When traders and risk managers evaluate a security or portfolio's sensitivity to changes in interest rates, they usually refer to two measurements: 1) basis point value, sometimes expressed as BPV, VBP and DV01, which measures the financial change to a 0.01 percent change in yield; or 2) modified duration, sometimes referred to as duration, which expresses the financial change expressed in percentage change to a 1 percent change in yield. For example, a security could have a basis point value of $\$ 646$ per million and a modified duration of 6.501 years. If the yield to maturity of this security rose from 2.36 percent to 2.37 percent it is said to have gone up by 1 basis point (0.01 percent) and the financial change to the holder would be a loss of $\$ 646$ per million. If that same security's yield rose to 3.36 percent, or 1.00 percent (100 basis points) the security's financial change would be a loss of approximately 6.501 percent in value.

Most portfolio managers (PM) tend to evaluate their exposure to interest rate risk using duration. Additionally, they are frequently evaluated by how well or poorly their management of the fixed income portfolio performs versus a recognized benchmark or index. PMs routinely monitor and adjust their portfolio's target duration either to maintain an alignment to a benchmark or for tactical trading reasons.

One consequence of the long bull market in interest rates is the steady extension of portfolio and benchmark bond index duration. Even if positions are left unchanged the gradual and steady rise in bond prices resulting from historically low global interest rates causes the duration of portfolios and benchmark indices to "creep" out to higher levels. (see Figure 1, page 10)

Figure 1
Barclays Aggregate: Yield and Duration

Figure 1 shows the gradual decline in average yield and increasing level of duration of the Barclays Aggregate Bond Index, one of the most referenced benchmarks for fixed income portfolio managers. Beginning in 2009 with interest rates moving sharply lower (blue line) notice the diverging increase in duration (red line). One consequence of higher duration portfolios in an historically low interest rate environment is the "break-even" rate, or the interest rate at which the portfolio produces zero return, moves lower and closer to current interest rate levels. For example, one global bond benchmark is the Citi World Government Bond Index (WGBI). According to the November 2016 report Citi marks the North American (largely USD) average yield-to-maturity of the index at 1.79 percent and its duration at 6.10 years. The break-even rate (B/E) is defined as YTM (in basis points) divided by the duration (in years). In this example it would look like this: $\mathrm{B} / \mathrm{E}=179 / 6.10=29.3 \mathrm{bps}$.

In other words if interest rates were to rise by 29.3 bps over the next 12 months, the portfolio's return for the year would be zero. Any interest rate move higher than 29.3 bps would result in a negative annual return on the portfolio.

PMs have many ways to modify their portfolios to adjust the target duration. They can buy and sell securities and move weightings up or down the maturity curve. This takes time and can be expensive given transaction and market impact costs. An alternative is to use US Treasury futures and options traded and cleared
at CME Group to effectively adjust key rate duration (KRD) targets across the entire portfolio.

CASE STUDY \#1: KEY RATE DURATION ADJUSTMENT USING FUTURES

Assume you are a portfolio manager (PM) with \$10 Billion exposure to U.S. interest rates. The portfolio is diversified across the yield curve according to the maturity allocations of the WGBI.

If provided with the current portfolio and the new benchmark weightings, can the PM use CME Group U.S. Treasury futures to adjust the portfolio closer to the benchmark, or some other tactical duration target?

Table 1 (page 11) shows the current portfolio. Table 2 (page 11) shows the targeted duration of the benchmark and the change needed to the portfolio.

In order to determine the proper hedge ratio per futures contract we need more information about the values attributed to CME Group's U.S. Treasury futures. (see Table 3, page 11)

Now that we have more information about the futures contracts we can begin to calculate our key rate duration (KRD) adjustment bringing our current portfolio into closer alignment to the desired benchmark.

Table 1
Theoretical Portfolio

Tranche	Yield	Modified Duration (years)	DV01 (per \$1mm face value)	Position (in \$1mm face value)	Aggregate DV01
$1-3$ years	0.591%	2.16	$\$ 218.80$	2,375	$\$ 519,650$
3-5 years	0.905%	4.51	$\$ 457.10$	1,950	$\$ 891,345$
$5-7$ years	1.188%	6.37	$\$ 652.60$	1,325	$\$ 864,695$
$7-10$ years	1.374%	8.45	$\$ 916.30$	1,375	$\$ 1,259,912$
$10+$ years	2.042%	$\underline{18.24}$	$\mathbf{8 . 8 2}$		$\underline{2,975}$
			$\$ 10$ billion	$\$ 10,146,052$	

Theoretical data
Table 2
Benchmark or Target Portfolio Durations

Tranche	Benchmark Duration	Duration Adjustment
1-3 years	1.92	-0.111
3-5 years	3.85	-0.146
5-7 years	5.66	-0.111
$7-10$ years	7.91	-0.064
$10+$ years	$\underline{16.24}$	-0.110
	$\mathbf{7 . 8 1}$	

Source: Citigroup Index LLC. Data as of 11/30/2016
Table 3
Futures Contract BPVs Based on CTD Issue Analysis

CME Group CTD Analysis

U.S. Treasury Contract	CTD Issue (Dec-2016 contracts)	Modified Duration (CTD)	DV01 (per contract \$100K)
2-Year	$1-3 / 8 \% 9 / 30 / 2018$	1.80	$\$ 39.15^{\star}$
5-Year	$1-1 / 8 \% 2 / 28 / 2021$	4.11	$\$ 48.64$
10-Year	$2-1 / 2 \% 8 / 15 / 2023$	6.10	$\$ 76.75$
Ultra $10-Y e a r$	$1-5 / 8 \% 5 / 15 / 2026$	8.66	$\$ 116.18$
Long Bond	$5 \% 5 / 15 / 2037$	13.89	$\$ 209.89$
Ultra Bond	$3-1 / 8 \% 2 / 15 / 2042$	17.22	$\$ 277.38$

* adjusted for 2-Year Note \$200,000 notional amount

Source Bloomberg, and CME Group

Typically a futures hedge ratio (HR) is defined as the value atrisk divided by the value of the futures contract. In this example the value at-risk is the individual tranche Aggregate DV01 (basis point value or dollar value of a 0.01 percent) shown in the last column of Table 1. The values for each futures contract are shown in the last column of Table 3. If we were constructing a simple HR with futures the equation might look like this:

[^0]But in this exercise, we take an additional step of adjusting the duration target for each tranche of the portfolio to bring it into alignment with the benchmark. This requires adding a duration adjustment factor to our simple hedge ratio equation. The duration adjustment factor can be expressed as:

Duration adjustment (DA) $=($ Dtarget - Dcurrent $) \div$ Dcurrent.

We will include the DA factor in the adjusted hedge ratio calculation for each tranche. (see Table 4, page 12)

Table 4
Portfolio Duration Adjustments by Tranche

Tranche	Dcurrent	Dtarget	Dadjustment	Aggregate DV01
1-3 years	2.16	1.91	-0.111	$\$ 519,650$
3-5 years	4.51	3.85	-0.146	$\$ 891,345$
5-7 years	6.37	5.66	-0.111	$\$ 864,695$
7-10 years	8.45	7.91	-0.064	$\$ 1,259,912$
10+ years	18.24	16.24	-0.110	$\$ 6,610,450$
	8.82	7.81		$\$ 10,146,052$

Table 5
Futures Contract Hedge Ratios by Tranche

Tranche	BPV risk	BPV contract	DA factor	HR $=($ Risk \div contract $)$ x DA	Contract (Globex code)
$1-3$ years	$\$ 519,650$	$\$ 39.15$	-0.111	$\mathbf{- 1 , 4 7 3}$	ZT
$3-5$ years	$\$ 891,345$	$\$ 48.64$	-0.146	$\mathbf{- 2 , 5 7 6}$	ZF
$5-7$ years	$\$ 864,695$	$\$ 76.75$	-0.111	$\mathbf{- 1 , 2 5 1}$	ZN
$7-10$ years	$\$ 1,259,912$	$\$ 116.18$	-0.064	$\mathbf{- 6 9 4}$	TN
$10+$ years	$\$ 6,610,450$	$\$ 277.38$	-0.110	$\mathbf{- 2 , 6 2 1}$	ZB

Now, with all inputs available, we calculate our adjusted hedge ratio per tranche (see Table 5) as:
$H R=(B P V$ risk $\div B P V$ contract $) \times D A$
Simply apply this calculation for each tranche and round to a whole number. Notice the results in the fifth column of Table 5. Each result is a negative number. This shows us the duration is being adjusted lower from the current level to the new lower target level. In this case the negative number also denotes selling of futures contracts. For example, to adjust the one to three year tranche the PM would sell 1,473 U.S. Treasury Two-Year Note (ZTZ6) contracts. By placing all of these hedge positions versus the physical positions in the portfolio, the PM effectively reduces the portfolio's duration to the benchmark or new target levels. Also, the same approach can be used to express tactical views on interest rates. In this example we reduced the portfolio's duration by selling U.S. Treasury futures. We could just as easily added duration by buying futures contracts if that fits with a tactical trading decision.

Referring to Figure 2 (page 13) one can see a key benefit of using CME Group U.S Treasury futures as a duration adjustment tool is the deep pool of actionable liquidity available to traders, even during non-U.S. trading hours. The duration adjustment hedge ratios above are of a scale easily executed on CME Globex even during Asian and European trading hours. Additional benefits of this type of overlay strategy in-
clude ease of execution and lower transaction costs of futures over physical bonds.

CASE STUDY \#1 (CONTINUED): MARKET SIMULATION

What happens to our model portfolio under a rising interest rate environment?

Tables 1 and 5 show the unhedged portfolio and suggested hedge ratios per tranche to adjust the duration lower, in line with targeted duration of the benchmark.

The price/yield movements from Oct. 14 to Nov. 23, 2016, provide a good laboratory to test our duration adjustment strategy. This time frame overlaps the U.S. general election held on Nov. 8, 2016. The U.S. election, especially for president, was highly contested and the outcome was unclear up to election day despite most media prognosticators pointing decidedly in one direction. When it became clear the outcome was different than expected the markets reacted swiftly with big swings in prices and volatility. U.S. Treasury futures sold off as market expectations for higher yield drove Asian-trading zone (U.S. nighttime) volumes to new record highs. The selloff in Treasuries continued over the next couple of weeks.

Let's consider the results. To measure the impact let's use the on-therun (OTR) 2-, 5-, 7-, 10-, and 30-year U.S. Treasuries as surrogates

Figure 2
Q416 Treasury Futures Hourly ADV

Source: CME Group
Table 6
Unhedged Portfolio Performance

Tranche	OTR Treasury	14-Oct Price/yield	$\begin{gathered} 23-\text { Nov } \\ \text { Price / yield } \end{gathered}$	Change P\&L
1-3 years	0.75\% 9/30/18	99-26+ / 0.837\%	99-11 / 1.108\%	-(\$11,503,906)
3-5 years	1.125\% 9/30/21	99-07 / 1.287\%	96-21 / 1.851\%	-(\$49,968,750)
5-7 years	1.375\% 9/30/23	98-19 / 1.591\%	95-01 / 2.158\%	-(\$47,203,125)
7-10 years	1.50\% 8/15/26	97-10 / 1.799\%	92-16 / 2.369\%	-(\$66,171,875)
10+ years	2.25\% 8/15/46	93-19 / 2.559\%	84-18 / 3.042\%	-(\$268,679,688)
		Unadjusted portfolio	Total $=$	$(\$ 443,527,344)$

Table 7
Futures Hedge Overlay Performance

Tranche	Contract (Globex code)	HR $=($ Risk \div contract) \times DA	14-Oct Price	23-Nov Price	Change P\&L
$1-3$ years	ZT	$-1,473$	$109-01$	$108-19+$	$\mathbf{\$ 5 , 7 5 3 , 9 0 6}$
$3-5$ years	ZF	$-2,576$	$120-26+$	$118-11$	$\mathbf{\$ 6 , 3 9 9 , 7 5 0}$
$5-7$ years	ZN	$-1,251$	$129-27+$	$125-11+$	$\mathbf{\$ 5 , 6 2 9 , 5 0 0}$
$7-10$ years	TN	-694	$141-29+$	$135-01+$	$\mathbf{\$ 4 , 7 7 1 , 2 5 0}$
$10+$ years	ZB	$-2,621$	$176-19$	$161-29$	$\mathbf{\$ 3 8 , 4 9 5 , 9 3 7}$
				Total $=$	$\mathbf{\$ 6 1 , 0 5 0 , 3 4 3}$

for our respective portfolio tranches. Then compare the results of our model portfolio with and without the futures key rate duration adjustment. (see Table 6)

If we look at just the 10 -year OTR (seven to 10 years tranche) price/yield move we see yields rose from 1.799 percent to 2.369 percent or a 57.0 bps rise over this short period. The portfolio's total loss is consistent with expectations given an average
duration of 8.82 years and an average rate increase of roughly 50.0 bps. What about the futures duration adjustment hedge? (see Table 7)
$(\$ 443,527,344)+\$ 61,050,343=(\$ 382,447,001)$ net loss.
This is reasonable considering the $\$ 382.5$ million dollar net loss represents roughly a 7.64 year duration (versus a

Table 8
Initial Futures Contract Margin Requirement

Contract (Globex code)	HR $=($ Risk \div contract $) \times$ DA	Initial margin Per contract*	Initial capital requirement
ZT	$-1,473$	$\$ 660$	$\$ 972,180$
ZF	$-2,576$	$\$ 935$	$\$ 2,408,560$
ZN	$-1,251$	$\$ 1,595$	$\$ 1,995,345$
TN	-694	$\$ 2,420$	$\$ 1,679,480$
ZB	$-2,621$	$\$ 6,160$	$\$ 16,145,360$
		Total $=$	$\$ 23,200,925$

*Margins set by and subject to change without notice by CME Clearing.
target of 7.81 years) resulting from an approximately 50.0 bps rise in rates. The futures hedge effectively reduced the portfolio's duration by one year, reducing portfolio losses by $\$ 61$ million.

How much capital was required to open and maintain the futures adjustment hedge? Exchange operators like CME Group require performance bond or "margins" to secure and maintain open futures positions. (see Table 8)

The total capital needed to open the futures duration adjustment hedge was a little more than $\$ 23$ million. If rates fell and the hedge positions remained in place additional funds might be required to keep the futures positions in place. The additional funds are the result of variation margin, required as the market moves against the open positions.

As demonstrated, U.S. Treasury futures can be used to effectively adjust a large bond portfolio's duration to align with a benchmark or for tactical trading reasons. CME Group U.S. Treasury futures trade actively 23 -hours per trading day giving risk managers access to liquidity even during non-U.S. trading hours. Because market-shaping events can occur at any time of the global 24 -hour day, it is important to have access to liquidity around the clock.

Is this the only way to hedge or modify an existing position subject to interest rate risk? No. Let's now consider options on U.S. Treasury futures and two simple strategies to help manage rising interest rate risk.

CASE STUDY \#2: HEDGING INTEREST RATE RISK WITH OPTIONS, LONG SINGLE PUT

Let's go back to the same market conditions in Case \#1, but instead of utilizing only futures to adjust KRD for the portfolio we will use some options on U.S. Treasury futures available through CME Group.

Options are attractive to both risk managers and traders because unlike futures which respond to changes in price in a linear fashion, options exhibit an asymmetrical risk/reward profile. That is, if one is buying options one's risk is limited to the premium paid but the potential rewards are theoretically endless. Due to the dynamic aspects of how long option positions respond to favorable price movements in the underlying, their value increases at an increasing rate much like convexity in bonds. Price volatility contributes to an option's premium so when market volatility rises it has a favorable impact on a long options position.

For illustrative purposes we will take one tranche of our portfolio and consider the effects of substituting an options position in place of futures. Looking at five to seven year tranche, we previously adjusted the target duration using 10-year futures (Globex symbol ZN). We calculated a hedge ratio of selling 1,251 contracts to adjust the portfolio's KRD lower to help manage the risk of rising interest rates. Now, assume the PM is interested in buying rising rate protection using out-the-money (O-T-M) puts on U.S. Treasury 10 -year notes. Our PM targets a rate rise of 50.0 bps from current (Oct. 14) levels as a risk target.

The first step is to identify a futures price level that roughly corresponds with a 50.0 bps move in rates. Understanding how

> Options are attractive to both risk managers and traders because unlike futures which respond to changes in price in a linear fashion, options exhibit an asymmetrical risk/reward profile.

Table 9
Single Put Option Analysis

Option	Price	Delta	Gamma	Theta	Vega	Volatility
Z126 Put	3	-0.05	0.0420	-0.0023	0.0436	5.36%

Data: Quikstrike and CME Group
Table 10
Single Put Option Hedge Analysis

Option/Date	Price	Delta	Gamma	Theta	Vega	Volatility
Z126P-10/14	3	-0.05	0.0420	-0.0023	0.0436	5.36%
Z126P-11/23	44	-0.85	0.3787	-0.0371	0.0208	6.75%
Change	41					

Data: Quikstrike and CME Group

CME Group U.S. Treasury futures price is essential to this step. Normally we would consult a pricing model or spreadsheet and input the appropriate changes to solve for the revised price level. There are software and market data providers, like Bloomberg for example, that have analytical tools to provide this function. Using a CME Group model we calculate a December 10-year note futures price of 125-25. The nearest O-T-M strike, also for December expiry (on Nov. 25, 2016) is the 126-00 put.

Looking into the December 10-year note 126 put on Oct. 14, we find the information illustrated in Table 9.

Taking the DEC 126 put delta and our previously identified hedge ratio of futures contracts we can calculate the number of puts to buy.

Put amount $=$ HR-in futures contracts/delta $=1,251 / 0.05=$ 25,020 or buy 25,020 December 12610 -year note puts at .03 , or 3-1/64ths.

Each $1 / 64$ th is equal to $\$ 15.625$, therefore the total cost and capital outlay is $25,020 \times 3 \times 15.625=\$ 1,172,813$. Buying, or going long, an option (put or call) requires full payment at time of execution. It also defines the total risk of the position. For a long option holder the risk is limited to the total premium paid.

CASE STUDY \#2 (CONTINUED): MARKET SIMULATION
From Oct. 14 to Nov. 23, 2016, the price of the December 10-year note futures (Globex code ZNZ6) fell from $129-27+$ to $125-11+$. How did the DEC 126 put perform? Table 10 illustrates the answer to that question.

The price of the ZNZ6 futures fell far enough to place the DEC 126 Puts from O-T-M to in-the-money (I-T-M) and as a result greatly increased their value. As you can see from the Table

10 , not only did the premium of the option increase, so did its delta, gamma, theta, and volatility. The only measurement that decreased was the vega. Without going deeply into options pricing theory, what needs highlighting here is the fact that a long options position conveys convexity. In other words, because this was a long put option position and futures prices moved lower, the magnitude of change in the delta increased with each downtick in price, which contributed to the premium moving higher. Futures contracts exhibit a delta of 1.0 , which means their prices change in a linear fashion. One of the benefits of a long option position is positive gamma, or convexity. The put position increased in value more than the short futures position.

To determine the profit \& loss ($\mathrm{P} \& \mathrm{~L}$) of the option overlay, take the amount $(25,020)$ and multiply the value of each option ($\$ 15.625$) multiplied by the net change ($41-1 / 64 \mathrm{~s}$)
$P \& L=25,020 \times 15.625 \times 41=\$ 16,028,438$
Let's compare the single put overlay to the futures overlay.

Table 11

Single Put Option Versus Futures

	Single Put	Futures
Result	$\$ 16,028,438$	$\$ 5,629,500$
Capital outlay	$\$ 1,172,813$	$\$ 1,995,345$

While the results heavily favor the single option strategy, it should be noted that had the price of ZNZ6 futures fallen to only 126-01, the put option would have been O-T-M and unless offset or rolled forward, could have expired worthless. Both futures and options on futures have pluses and minuses regarding their usefulness as hedging tools. Let's consider another simple options strategy that could be used in this capacity.

Table 12
Put Option Spread Analysis

Option	Price	Delta	Gamma	Theta	Vega	Volatility
Z127P-10/14	6	-0.09	0.0752	-0.0043	0.0723	5.00%
Z125P-11/23	$\underline{2}$	$\underline{-0.03}$	$\underline{0.0258}$	$\underline{-0.0022}$	$\underline{0.0301}$	$\underline{6.03 \%}$
Net	$\mathbf{4}$	$\mathbf{- 0 . 0 6}$	$\mathbf{0 . 0 4 9 4}$	$\mathbf{- 0 . 0 0 2 1}$	$\mathbf{0 . 0 4 2 2}$	

Table 13
Put Option Spread Hedge Analysis

Option	14-Oct	23-Nov	Change
Z127 Put	6	105	99
Z125 Put	$\underline{2}$	$\underline{6}$	4
Net	$\mathbf{4}$	$\mathbf{9 9}$	

Table 14
Options Versus Futures

	Put Spread	Single Put	Futures
Result	$\$ 32,252,344$	$\$ 16,028,438$	$\$ 5,629,500$
Capital outlay*	$\$ 1,303,125$	$\$ 1,172,813$	$\$ 1,995,345$

CASE STUDY \#3: HEDGING INTEREST RATE RISK WITH OPTIONS, PUT SPREAD

Another strategy that may provide effective rising rate risk coverage is a long put spread. A spread is a simultaneous purchase and sale of two options with different strikes, different months or different types. The combination of possible spreads is almost endless. We will limit this example to a simple long put spread. Using the same risk target as the previous example (125-25), we want to "bracket" the target by buying a higher strike put and selling a lower strike put in equivalent amounts. Since 125-25 is between 125-00 and 127-00, we will buy the DEC 127 puts and sell the DEC 125 puts. How do we determine how many to buy/sell? (see Table 12)

Since this is a spread position we are concerned with net effects of our initial position. The spread is a net debit, which means we have to pay to buy it. It also means our losses are limited to our

> A spread is a simultaneous purchase and sale of two options with different strikes, different months or different types.
net premium paid. The delta is net negative which implies the spread should increase in value if the underlying futures price goes down. It has positive net gamma suggesting it exhibits convexity and that the delta will increase as the underlying's price moves lower. It has a small degree of time decay and a slight degree of positive sensitivity to higher volatility. How many spreads to buy? Same ratio calculation as the single option:

Put spread amount $=\mathrm{hr}$-in futures contracts/net delta $=$ $1,251 / 0.06=20,850$, therefore buy 20,850 DEC 127 puts and sell 20,850 DEC 125 puts. Using the same market dates and price data as before, how did the put spread perform? (see Table 13)

CASE STUDY \#3 (CONTINUED): MARKET SIMULATION

As you can see from table 13, the nearer O-T-M 127 puts out performed the far O-T-M 125 puts. The futures price level of $125-11+$ on Nov. 23 was in between the two strikes creating good profit potential. Let's review the numbers.

$P \& L=20,850 \times 15.625 \times 99=\$ 32,252,344$

Why did the put spread outperform the single put? The gamma on the 127 put was greater than the gamma of the 126 put. Additionally, the short 125 put position contributed by reducing the initial cost and also lowering the net delta. The fact that the price of the underlying futures contract ended above the 125
strike reduced the drag of the short put side of the spread. (see Table 14)

SUMMARY

There are clear differences among these simple strategies and many more that could be considered. We have limited our review to these few to simply illustrate the effectiveness of a KRD adjustment and compare the dynamic aspects of long options positions to an equivalent straight futures hedge. What is important to remember is there is no "silver bullet," or single risk overlay strategy that works perfectly at all times. Futures and options on futures are very efficient risk management tools. Additionally, liquidity in CME Group U.S. Treasury futures and options is deep and bid/offer spreads very tight, even during non U.S. trading hours. In order to apply the best risk management or hedging strategy it is essential to understand and quantify the underlying price risk. It is equally important to
understand the pricing mechanism and trading behavior of the derivative products used to offset that risk. Global interest rates are near record low levels, with correspondingly high levels of duration in institutional portfolios and bond index benchmarks, the break-even levels for fixed income risk managers is very close to current market rates. It will only take a small rise in rates to tip annualized investment returns negative. Transaction and capital charges favor the use of exchange traded derivatives (futures) as a duration adjustment tool. Their effective use can help large institutional asset managers manage risk and enhance returns.

Staff Corner by David Schraub

Volunteers are the true engine of the Society of Actuaries (SOA). In this new column, however, we will shed some light on SOA staff who work in the shadows to support the section; rest assured this is not comparable to the movie "Hidden Figures."

Of French descent (and accent) with a German last name, I am a staff actuary at the SOA and guide the volunteers' efforts in the investment space. I first studied and worked as an actuary in France for a few years before moving to the U.S. where I worked both as a consultant and in-house on risk management in the life/annuity space. I was exposed to investment, as it is the largest risk for a life insurance company. I did some volunteer work for the SOA, which included a term on a section council, prior to working for the SOA five years ago.

Supporting a section means a wide range of activities from peer reviewing newsletter articles, playing the devil's advocate on research projects, suggesting speakers and providing feedback on draft presentations, or liaising with various internal SOA stakeholders and/or with our section's friends to move a project forward. I am deeply involved in the Investment Symposium, our yearly flagship event. Since I am also supporting other sections, I can leverage ideas seen elsewhere and suggest them to the Investment Section Council.

My view of the intersect between investments and actuarial function is multifaceted. Not all investment experts are actuaries. For this sub-group, the education and research performed by the SOA is complemented by education and research done by other organizations, either not-for-profit associations' or for-profit organizations' thought leadership departments. The SOA research and continuing education arms are working to ensure our offering is relevant, unique and of good quality for this target audience; the Investment Symposium is a clear example of this high-quality, relevant, continuing education product. Another role performed by the section is to support the liability side in performing valuation, pricing and analysis work by providing continuing education content in both pension and insurance. A clear example of this is the series of sessions sponsored by the Investment Section for the SOA Annual Meeting and Exhibit.

But the section activities are not limited to work and we also have fun with a few games; including a crossword puzzle in each issue of this newsletter, the yearly asset allocation contest with a cash prize and invaluable bragging rights for the ones best at managing portfolios with cash flows in and out. There are also essay contests offered on a regular basis.

None of us is as smart as all of us, says the Japanese proverb. Please let me know if you have any suggestions that could help us, any idea you'd like to discuss or any interest in volunteering. I look forward to hearing from you.

David Schraub, FSA, CERA, AQ, MAAA, is a staff actuary for the SOA. He can be contacted at dschraub@soa.org.

[^0]: HedgeRatio $(H R)=$ BPVrisk \div BPVcontract.

