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A B S T R A C T

In the conclusion to Shapiro (2013), where future lifetime was modeled as a fuzzy random variable
(FRV), it was suggested that a logical next step would be to merge a FRV future lifetime with a FRV
interest rate, and to use them to evaluate various accumulation and discount models in insurance.
Andrés-Sánchez and González-Vila Puchades (2017), who constructed a FRV by merging a fuzzy
discount rate with a stochastic mortality rate, expressed a similar sentiment. This paper is a follow-up
to those suggestions. Building on Shapiro (2013) and Wang (2019), we show how to conceptualize
life annuities when both future lifetime and interest rates are fuzzy random variables.

1. Introduction

The purpose of this study is to conceptualize both the interest rate and the future lifetime as FRVs, and then to use them
to model life annuities. The essential feature of this model is that it explicitly merges the stochastic component of mortality
with its fuzzy component and the stochastic component of the interest rate with its fuzzy component. In this sense, both the
mortality and interest components of the model are said to be granulated.

We focus on the variability inherent in the life annuities; only traditional life annuities are considered. L-R type fuzzy
numbers are used for modeling, so we discuss what they are and how they are applied. This version of our model should be
viewed as a prototype, and preliminary.

2. Some previous key life annuity models

Figure 1 shows the chronology of some previous key contributions to life annuity modeling.
Starting with Ulpian (211) [see Chapter 6 in Poitras et al. (2000)], who developed a crude life annuity model based on

median life expectancy, and seems to have been among the earliest to quantify an annuity. Then de Witt (1671) advocated
the use of age at issue for life annuities. Apparently, at the time, the present value of annuities were based on a hypothetical
duration, which was an advantage for those who would game the system. Halley (1693), of comet fame, introduced mortality
rates (via the Breslau mortality table) into the annuity computation.
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It took almost 250 years before an analysis of the randomness associated with annuities began to appear in the literature.
Piper (1933) was among the first in that endeavor when he examined the distribution for a life annuity based on a random
future lifetime. Figure 2 shows how Piper conceptualized this distribution.

The curve on the left and the first vertical line represent the distribution for a life annuity for a life aged 80 and its
expected value, respectively. The area to the right of the vertical line represents the probability of the annuity exceeding its
mean. Similarly, the second curve and the second vertical line represent the distribution for a life annuity for a life aged 65
and its expected value, respectively. The rectangles on the right of the figure represent probabilities of dying during a given
year of age (𝑡|𝑞𝑥). These are interesting representations, since they were accomplished long before computers were available.

Piper (1933) focused on the mortality aspects of randomness. Boyle (1990), in contrast, took the mortality rate as given
and investigated the impact of stochastic rates of return, and the associated mean and standard deviation of annuities certain
and life annuities. In passing, Boyle (1976: 700) made the observation that “It would be possible to set up a model where
the 𝑡|𝑞𝑥 themselves are regarded as random . . . .” So he recognized that a model involving both a random interest component
and a random mortality component would be a future innovation.

This came to pass when Beekman and Fuelling (1990), among others, investigated the impact on annuities when both
the interest rate and the future life time were random variables. Finally, with respect to the fuzzy random variable (FRV)
context, we note that Sánchez et al (2017) investigated life annuities based on their version of FRVs, which combined a
random mortality component with a fuzzy discount rate (ie., their FRV was not granulated).
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Figure 1: Chronology of some previous key life annuity models

Figure 2: Distributions of a life annuity
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3. The present value of a random future payment stream

In this study, we build on Beekman and Fuelling’s (1990) model for the present value of a random future payment stream,
where:

n is the term of the annuity
𝛿 is the constant force of interest
V(s) is a stochastic process, at time s, that perturbs 𝛿
W(s) = 𝛿 + V(s), 0 ⩽ 𝑠 ⩽ 𝑛, are the variable forces of interest, 4

Z(t)=∫ 𝑡
0 𝑉 (𝑠) 𝑑𝑠, 0 ⩽ 𝑡 ⩽ 𝑛, is the cumulative stochastic process. 5

Then the force of interest accumulation function (Beekman and Fuelling’s term), is given by:

∫

𝑡

0
𝑊 (𝑠)𝑑𝑠 = 𝛿𝑡 +𝑍(𝑡), 𝑡 ⩾ 0. (1)

and the stochastic process 𝑒−(𝛿𝑡+𝑍(𝑡)), 𝑡 ⩾ 0, can be viewed as a random discount function. The present value of the random
future payment stream, per unit of payment, is given by

�̄�𝑛 𝑊 = ∫

𝑛

0
𝑒− ∫ 𝑡

0 𝑊 (𝑠) 𝑑𝑠𝑑𝑡 = ∫

𝑛

0
𝑒−[𝛿𝑡+𝑍(𝑡)]𝑑𝑡, (2)

which is what one would expect.

4. Incorporating the random future lifetime component

Following Beekman and Fuelling (1990: 190), the fixed term of the annuity depicted in (2), is replaced with the random
future lifetime of the annuitant, T(x).

Then, writing T for T(x), the random present value of a future payment stream, per unit of payment, is given by

�̄�𝑇 𝑊 = ∫

𝑇

0
𝑒− ∫ 𝑡

0 𝑊 (𝑠) 𝑑𝑠𝑑𝑡 = ∫

𝑇

0
𝑒−[𝛿𝑡+𝑍(𝑡)]𝑑𝑡 (3)

an extension, of which, to FRVs, forms the basis of our model.
Beekman and Fuelling noted that their model is encapsulated in the following Law of Iterated Expectations statement:

𝐸[�̄�𝑇 𝑊 ] = 𝐸𝑊 𝐸𝑇 [�̄�𝑇 𝑊 |𝑊 ] (4)

That is, given W, the variable force of interest, the expected value of the annuity, relative to T, the future lifetime, is formulated.
Then, taking the EV of that quantity, with respect to the variable force of interest, gives the expected value of the annuity,
the LHS.

4We use W(s), rather than Beekman and Fuelling’s R(s), since we reserve the letter R for L-R type fuzzy numbers.
5We use Z(t), rather than Beekman and Fuelling’s X(t), since we reserve the letter X for the random age at death.
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5. Notation used in this article

This section defines some of the notation is used in this article:
FV: Fuzzy Variable
RV: Random Variable
FRV: Fuzzy Random Variable
𝑇 (𝑥): RV future lifetime of a life aged x (abbreviated T)
�̃� (𝑥): FRV future lifetime of a life aged x (abbreviated �̃� )
𝑍(𝑡), 𝑡 ⩾ 0 : RV cumulative stochastic process (abbreviated Z)
�̃�(𝑡), 𝑡 ⩾ 0 : FRV cumulative stochastic process (abbreviated �̃�)
�̄�𝑇 (𝑇 ,𝑍): continuous life annuity given 𝑇 (𝑥) and 𝑍(𝑡)

�̄�𝑇 (�̃� , �̃�): continuous life annuity given �̃� (𝑥) and �̃�(𝑡)

�̄�𝑥(𝑇 ,𝑍) : EV of a continuous life annuity given 𝑇 (𝑥) and 𝑍(𝑡)

�̄�𝑥(�̃� , �̃�) : EV of a continuous life annuity given �̃� (𝑥) and �̃�(𝑡)

We have already mentioned the first 7 items. The last 4 items will be used in the pages to follow, and constitute new
notation.

In particular, the �̄�𝑇 (𝑇 ,𝑍) on the 4th line from the bottom, denotes a continuous life annuity, based on the RVs T(x) and
Z(t). In a similar vein, the �̄�𝑥(�̃� , �̃�), on the bottom line, denotes the expected value of a continuous life annuity, based on the
FRVs �̃� (𝑥) and �̃�(𝑡).

6. Continuous life annuity as a RV

Given a random future lifetime, T(x), and a random cumulative stochastic process, Z(t), (5) shows that its definitional
term (its 2nd term) morphs into its operational term (its 3rd term).

�̄�𝑥(𝑇 ,𝑍) = 𝐸
[

∫

𝑇 (𝑥)

0
𝑒−(𝛿𝑡+𝑍(𝑡))𝑑𝑡

]

= ∫

∞

0
𝐸(𝑒−(𝛿𝑡+𝑍(𝑡))) 𝑡𝑝𝑥𝑑𝑡 (5)

The validation of (5) is as follows:

�̄�𝑥(𝑇 ,𝑍) = 𝐸
[

∫

𝑇 (𝑥)

0
𝑒−(𝛿𝑡+𝑍(𝑡))𝑑𝑡

] (6)

= ∫

∞

0
𝐸(𝑒−(𝛿𝑡+𝑍(𝑡))𝐼{𝑡<𝑇 (𝑥)})𝑑𝑡

= ∫

∞

0

[

𝐸(𝑒−(𝛿𝑡+𝑍(𝑡)) ⋅ 1)𝑃 (𝐼{𝑡<𝑇 (𝑥)} = 1)

+ 𝐸(𝑒−(𝛿𝑡+𝑍(𝑡)) ⋅ 0)𝑃 (𝐼{𝑡<𝑇 (𝑥)} = 0)
]

𝑑𝑡

= ∫

∞

0

[

𝐸(𝑒−(𝛿𝑡+𝑍(𝑡)))
]

𝑡𝑝𝑥𝑑𝑡,
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where 𝐼 denotes an indicator function of a set, here

𝐼{𝑡<𝑇 (𝑥)} =

⎧

⎪

⎨

⎪

⎩

1, 𝑡 < 𝑇 (𝑥)

0, 𝑡 ⩾ 𝑇 (𝑥).
(7)

As indicated, we start with the definitional term on the RHS of line 1 of (6), which gives the EV of a continuous life
annuity, whose term is T(x). Then, using the indicator function, we transition from line 1 to line 2 of (6), which is a key step.
Finally, we morph into the intuitive operational statement in the last line of (6).

7. Continuous life annuity as a FRV

Given the RV version of the Beekman and Fuelling (1990) model, our study extends their model to a FRV context. That
is, starting with (5), which is based on the RVs future lifetime and cumulative stochastic process, our goal is to extend the
model along the lines of (8).

�̄�𝑥(�̃� , �̃�) = 𝐸
[

∫

�̃� (𝑥)

0
𝑒−(𝛿𝑡+�̃�(𝑡))𝑑𝑡

]

, (8)

which is based on the FRV versions of the future lifetime,�̃� (𝑥), and cumulative stochastic process, �̃�(𝑡).
We note that Wang (2019) did preliminary modeling along these lines.

8. FRV future lifetime of a life aged x

So what do we mean by a FRV future lifetime, �̃� (𝑥)? Here is one representation of that.6

The solid line represents the pdf of the RV future lifetime of a life aged x. Coinciding with that, is the mode of its fuzzy
component, whose grade of membership, 𝜇 is equal to 1. The dashed lines on either side of the solid curve, represent a GOM
of 0, 𝜇 = 0, of the fuzzy component. The combination of the RV future lifetime and its FV component, together, form the
FRV future lifetime.

A similar explanation holds for a FRV cumulative stochastic process,�̃�.

9. Dubois and Prade’s L-R type fuzzy numbers

In this study, in order to improve the computational speed of our model, we use the Dubois and Prade (1980) L-R type
fuzzy numbers. Sections 9 and 10 describe the nature of these L-R type fuzzy numbers, and how they are implemented.7.

6Adapted from Möller et al. (2005)
7Sections 9 and 10 are based on Shapiro (2022)
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Figure 3: FRV future lifetime
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Readers familiar with these topics can skip these sections.
Triangular fuzzy numbers (TFNs) are used to simplify the illustrations.

9.1. L-R type fuzzy numbers

Assuming a TFN, the general characteristics of the membership function (MF) of a L-R type fuzzy number are shown in
Figure 4, where 𝜇�̃�(𝑥) denotes the membership function for a fuzzy variable u. 8

As indicated, the key components are:
m, the mode of the MF
l > 0, the left-hand spread of the MF
r > 0, the right-hand spread of the MF

We write ũ = (m, l, r)𝐿𝑅 to denote the L-R type fuzzy number ũ.
Formally, a fuzzy number is said to be a L-R type FN, iff it satisfies (9).

𝜇�̃�(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝐿(𝑚−𝑥𝑙 ), 𝑥 ⩽ 𝑚, 𝑙 > 0,

𝑅(𝑥−𝑚𝑟 ), 𝑥 ⩾ 𝑚, 𝑟 > 0.
(9)

Figures 5(a) and (b) are representations of the L and R-type shape functions referred to in (9).

Note that, since these are TFNs, they take the simple form of max[0, 1-y], where the value of y depends on whether it
represents the left or right spread.

8A general limitation of L-R type fuzzy numbers is that they only apply to uni-modal fuzzy numbers. However, there is a work around for trapezoidal-
type FNs, see Dubois and Prade (2000), p. 512.
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Figure 4: L-R type TFN

Figure 5: L-R type shape functions
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As indicated, these shape functions:
Are functions on [0,∞)

Are non-increasing
Are left continuous
Satisfy L(0) = R(0) = 1
Satisfy L(1) = R(1) = 0

Zimmermann (2001: 65) counsels that finding an appropriate function in a specific context may be a problem.
9.2. The inverted shape functions 𝐿−1(𝛼) and 𝑅−1(𝛼)

Equation (10), which is based on the inf and sup of the 𝛼-cut of the fuzzy number ũ, and will be used in the pages to
follow, depends on the inverted shape functions 𝐿−1(𝛼) and 𝑅−1(𝛼)

�̃�𝛼 =
[

𝑚 − 𝑙 𝐿−1(𝛼), 𝑚 + 𝑟 𝑅−1(𝛼)
]

, 𝛼 ∈ [0, 1]. (10)

(11) defines the 𝐿−1(𝛼) function,

𝐿−1(𝛼) ∶= sup{𝑠 ∈ ℝ|𝐿(𝑠) ⩾ 𝛼}, (11)

while (12) defines the 𝑅−1(𝛼) function,

𝑅−1(𝛼) ∶= sup{𝑠 ∈ ℝ|𝑅(𝑠) ⩾ 𝛼}. (12)

Their representations are shown in Figures 6(a) and (b):

As shown in the figure, since we are dealing with TFN, the inverted shape functions are simply equal to 1 − 𝛼.
Essentially, referring to (11) and Figure 6(a), 𝐿−1(𝛼) is the largest value on the horizontal axis for which L(s) ⩾ 𝛼.
Similarly, referring to (12) and Figure 6(b), 𝑅−1(𝛼) is the largest value on the horizontal axis for which R(s) ⩾ 𝛼.
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Figure 6: L-R type shape functions
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9.3. Using inverted shape functions to create 𝛼-cuts

Given an L-R type FN and its parameters, ũ = (m, l, r)𝐿𝑅 , the related inverted functions, 𝐿−1(𝛼) and 𝑅−1(𝛼), can be used
to recover the MF. Essentially, as shown in (13)

�̃�𝛼 =
[

𝑚 − 𝑙 𝐿−1(𝛼), 𝑚 + 𝑟 𝑅−1(𝛼)
]

, 𝛼 ∈ [0, 1] (13)

and Figure 7, the inf of the MF at 𝛼 is given by m - l L−1(𝛼) and the sup of the MF at 𝛼 is given by m + r R−1(𝛼).

The entire MF is constructed by juxtaposing each of these 𝛼 slices, 0 < 𝛼 ⩽ 1.

10. L-R type fuzzy number arithmetic

Given the general nature of L-R type fuzzy numbers, this section provides a brief overview of the arithmetic of L-R type
fuzzy numbers that will be used in this article. The topics covered include: the addition of L-R type fuzzy numbers, the
negative of an L-R type fuzzy number, the subtraction of L-R type fuzzy numbers, and the multiplication of L-R type fuzzy
numbers.
10.1. The addition of L-R type fuzzy numbers

We turn first to the addition of two L-R type fuzzy numbers. (14) gives the formula for this addition:

(𝑚1, 𝑙1, 𝑟1)𝐿𝑅 ⊕ (𝑚2, 𝑙2, 𝑟2)𝐿𝑅 = (𝑚1 + 𝑚2, 𝑙1 + 𝑙2, 𝑟1 + 𝑟2)𝐿𝑅, (14)

The result is what you would expect, i.e., the modes are added together, as are the left and right spreads.
The more complicated equation has to do with the 𝛼-cuts, shown in (15):

�̃�𝛼 =
[

(𝑚1 + 𝑚2) − [𝑙1𝐿−1
1 (𝛼) + 𝑙2𝐿

−1
2 (𝛼)], (𝑚1 + 𝑚2) + [𝑟1𝑅−1

1 (𝛼) + 𝑟2𝑅
−1
2 (𝛼)]

] (15)

If, as here, each FN has a unique MF, their inverted shape functions will also be different, and the new left and right
spreads will be the sum of two unique components, as shown in (15).

Of course, if the FNs have the same MF or the MFs are TFNs, (15) could be simplified accordingly.
Figure 8 provides a simple example of fuzzy number addition, showing that the modes are added together (20+60=80),

as are the left and right spreads, (10+20=30).
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10.2. The negative of a L-R type FN

We turn now to the negative of a L-R type FN, which we use in our analysis. Its formula is given by (16):

−(𝑚, 𝑙, 𝑟)𝐿𝑅 = (−𝑚, 𝑟, 𝑙)𝑅𝐿 (16)

As indicated, the resulting L-R type FN
Has a negative mode, -m, and
The references l and r exchange positions

The rationale for this result is conceptualized in Figure 9,

where Figure 9(a) depicts the original MF while Figure 9(b) depicts its negative, as a mirror image about the vertical axis.
10.3. The subtraction of an L-R type fuzzy number

(17) shows the formulas for the subtraction of two L-R type fuzzy numbers:

(𝑚1, 𝑙1, 𝑟1)𝐿𝑅 ⊖ (𝑚2, 𝑙2, 𝑟2)𝐿𝑅 (17)
= (𝑚1, 𝑙1, 𝑟1)𝐿𝑅 ⊕ (−𝑚2, 𝑟2, 𝑙2)𝐿𝑅

= (𝑚1 − 𝑚2, 𝑙1 + 𝑟2, 𝑟1 + 𝑙2)𝐿𝑅

The result is what one might expect, given the equations for the addition and the negative of a L-R type fuzzy number.
The 𝛼-cut of the subtraction of two L-R type fuzzy numbers is given by (18):

�̃�𝛼 =
[

(𝑚1 − 𝑚2) − [𝑙1𝐿−1
1 (𝛼) + 𝑟2𝑅

−1
2 (𝛼)], (𝑚1 − 𝑚2) + [𝑟1𝑅−1

1 (𝛼) + 𝑙2𝐿
−1
2 (𝛼)]

] (18)

A simple example of the subtraction of two L-R type fuzzy numbers is given in Figure 10:
As mentioned previously, if the FNs have the same MF or the MFs are TFNs, (18) would be simplified accordingly.
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Figure 8: Example of fuzzy number addition

Figure 9: The negative of a L-R type FN
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10.4. The multiplication of L-R type fuzzy numbers

This subsection shows the formulas associated with the multiplication of L-R type fuzzy numbers.
To begin, consider (19). Briefly, the fuzzy product shown in the LHS of (19) results in the 3 groupings on the RHS: the

product of the modes, the terms involving the LH spreads, and the terms involving the RH spreads.

(𝑚1, 𝑙1, 𝑟1)𝐿𝑅 ⊗ (𝑚2, 𝑙2, 𝑟2)𝐿𝑅 = (𝑚1 𝑚2, 𝑚1 𝑙2 + 𝑚2 𝑙1 + 𝑙1 𝑙2, 𝑚1 𝑟2 + 𝑚2 𝑟1 + 𝑟1 𝑟2)𝑅𝐿, 𝑚1, 𝑚2 > 0 (19)

The 𝛼-cut is shown in (20):

�̃�𝛼 =

⎧

⎪

⎨

⎪

⎩

(𝑚1 × 𝑚2) − [𝑚2 𝑙1 𝐿−1
1 (𝛼) + 𝑚1 𝑙2 𝐿−1

2 (𝛼) + 𝑙1 𝑙2(𝐿−1
1 (𝛼) × 𝐿−1

2 (𝛼))],

(𝑚1 × 𝑚2) + [𝑚2 𝑟1 𝑅−1
1 (𝛼) + 𝑚1 𝑟2 𝑅−1

2 (𝛼) + 𝑟1 𝑟2(𝑅−1
1 (𝛼) × 𝑅−1

2 (𝛼))]
(20)

Note, in particular, that the last term of each line of (20) involves the products of the inverted shape functions, along with
the product of their spreads.

Finally, Figure 11 provides an example of the multiplication of L-R type fuzzy numbers.

Notice the bowled nature of the product (the dark line) in Figure 11(b).

11. Assumptions used in this study

We assume that:
The FRVs future lifetime, �̃� (x) and cumulative interest rate, �̃�(t) can be represented as L-R type FRNs. Specifically, taking
the RVs T(x) and Z(t) as modes,

�̃� (𝑥) = (𝑇 (𝑥), 𝑙𝑇 , 𝑟𝑇 ) (21)

�̃�(𝑡) = (𝑍(𝑡), 𝑙𝑍 , 𝑟𝑍 ) (22)
10

Figure 10: Subtraction of two L-R type fuzzy numbers

Figure 11: Example of Multiplication of L-R FNs
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V(s), the stochastic process, at time s, that perturbs 𝛿, the constant force of interest, is an iid random variable.
T(x), 0 ⩽ x < 𝜔, is independent of Z(t), 0 ⩽ t < ∞,
�̃� (𝑥), 0 ⩽ x < 𝜔, is independent of �̃�(𝑡), 0 ⩽ t < ∞.

12. Continuous life annuity as a FRV (cont)

With sections 9 and 10 as background, we return to the problem at hand. Given the Beekman and Fuelling version of the
continuous life annuity as a RV, (5), our goal is to extend their model to the FRV context, given by (8).

13. The 𝛼-cut for a FRV version of a continuous life annuity

The general form of the 𝛼-cut for a FRV version of a continuous life annuity, for a life aged x, is given by (23):

�̄�𝑥(�̃� , �̃�)𝛼 =
[

inf �̄�𝑥(�̃� , �̃�)𝛼 , sup �̄�𝑥(�̃� , �̃�)𝛼
]

. (23)

Consider first the inf term of (23), which is expressed in (24). The basic components are: the 𝛼-cut of the FRV future lifetime
for a life aged x, �̃�𝛼(x), and the 𝛼-cut of the FRV cumulative stochastic process at time t, �̃�𝛼(t).

inf �̄�𝑥(�̃� , �̃�)𝛼 = min
{

𝐸
(

∫

inf �̃�𝛼(𝑥)

0
𝑒− inf (𝛿𝑡+�̃�𝛼(𝑡))𝑑𝑡

)

, (24)

𝐸
(

∫

inf �̃�𝛼(𝑥)

0
𝑒− sup (𝛿𝑡+�̃�𝛼(𝑡))𝑑𝑡

)

,

𝐸
(

∫

sup �̃�𝛼(𝑥)

0
𝑒− inf (𝛿𝑡+�̃�𝛼(𝑡))𝑑𝑡

)

,

𝐸
(

∫

sup �̃�𝛼(𝑥)

0
𝑒− sup (𝛿𝑡+�̃�𝛼(𝑡))𝑑𝑡

)}

.

By implementing Zadeh’s extension principle, we choose the minimum of the 4 EV’s in (24) as the overall inf.
In contrast, to obtain the sup, we choose the maximum of the 4 EV’s in (25):

sup �̄�𝑥(�̃� , �̃�)𝛼 = max
{

𝐸
(

∫

inf �̃�𝛼(𝑥)

0
𝑒− inf (𝛿𝑡+�̃�𝛼(𝑡))𝑑𝑡

)

, (25)

𝐸
(

∫

inf �̃�𝛼(𝑥)

0
𝑒− sup (𝛿𝑡+�̃�𝛼(𝑡))𝑑𝑡

)

,

𝐸
(

∫

sup �̃�𝛼(𝑥)

0
𝑒− inf (𝛿𝑡+�̃�𝛼(𝑡))𝑑𝑡

)

,

𝐸
(

∫

sup �̃�𝛼(𝑥)

0
𝑒− sup (𝛿𝑡+�̃�𝛼(𝑡))𝑑𝑡

)}

.

In the pages to follow, we will use L-R type FNs to evaluate the inf and sup of �̄�𝑥(�̃� , �̃�)𝛼 .

14. The morphing of the �̃�𝛼(𝑥) portion of the integrals in §13

The following summarizes the steps in the morphing of the integral of 0 to the inf of the 𝛼-cut of the FRV future lifetime,
line 1 of (26), to its implementation form, line 4 of (26).9

9Only the portion of the integral involving �̃�𝛼(𝑥) is included in this equation and the "⋯" signifies that the discount portion of the equation is suppressed
(not shown).
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𝐸 ∫

inf �̃�𝛼(𝑥)

0
⋯ 𝑑𝑡, (26)

= 𝐸 ∫

𝑇 (𝑥) − 𝑙𝑇 𝐿−1(𝛼)

0
⋯ 𝑑𝑡,

= ∫

∞

0
𝑃 (𝑡 < 𝑇 (𝑥) − 𝑙𝑇 𝐿−1(𝛼)) ⋯ 𝑑𝑡,

= ∫

∞

0
𝑡 + 𝑙𝑇 𝐿−1(𝛼) 𝑝𝑥⋯ 𝑑𝑡

Note that:
Line 2 of (26) replaces the inf of the 𝛼-cut of the FRV with its L type FN representation,
Line 3 of (26) substitutes an equivalent probability statement for line 2, and
Finally, line 4 of (26) puts it into a probability of persisting configuration.
Similarly, the integral of 0 to the sup of the 𝛼-cut of the FRV future lifetime, line 1 of (27), can be morphed into its

implementation form, line 4 of (27).

𝐸 ∫

sup �̃�𝛼(𝑥)

0
⋯ 𝑑𝑡, (27)

= 𝐸 ∫

𝑇 (𝑥) + 𝑟𝑇 𝑅−1(𝛼)

0
⋯ 𝑑𝑡,

= ∫

∞

0
𝑃 (𝑡 < 𝑇 (𝑥) + 𝑟𝑇 𝑅−1(𝛼)) ⋯ 𝑑𝑡,

= ∫

∞

0
𝑡 − 𝑟𝑇 𝑅−1(𝛼) 𝑝𝑥⋯ 𝑑𝑡

15. Discounted value in L-R form

Similarly, the inf of the discounted value can be morphed into its L-R form:

𝑒− 𝑖𝑛𝑓 (𝛿 𝑡 + �̃�𝛼(𝑡)) (28)
= 𝑒−𝛿 𝑡𝑒− 𝑖𝑛𝑓 �̃�𝛼(𝑡)

= 𝑒−𝛿 𝑡𝑒−[𝑍(𝑡) − 𝑙𝑍 (𝑡) 𝐿−1(𝛼)]

= 𝑒−𝛿 𝑡𝑒[−𝑍(𝑡) − 𝑟𝑍 (𝑡) 𝑅−1(𝛼)]

Finally we morph the sup of the discounted value into its L-R form:

𝑒− 𝑠𝑢𝑝 (𝛿 𝑡 + �̃�𝛼(𝑡)) (29)
= 𝑒−𝛿 𝑡𝑒− 𝑠𝑢𝑝 �̃�𝛼(𝑡)

= 𝑒−𝛿 𝑡𝑒−[𝑍(𝑡) + 𝑟𝑍 (𝑡) 𝑅−1(𝛼)]

= 𝑒−𝛿 𝑡𝑒[−𝑍(𝑡) + 𝑙𝑍 (𝑡) 𝐿−1(𝛼)]
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16. 𝛼-cuts for a FRV continuous life annuity in terms of L-R type FNs

This section formulates the 𝛼-cuts for a FRV continuous life annuity in terms of L-R type FNs.
Once again, we start with the RHS of (23) as an explicit statement of the boundary conditions, that is, of the inf and sup

of the 𝛼-cuts.
Then (30) seeks the minimum of the 4 integrals of the products of persisting and expected discount:

inf �̄�𝑥(�̃� , �̃�)𝛼 = min
{

∫

∞

0
𝑡+ 𝑙𝑇 (𝑥) 𝐿−1(𝛼) 𝑝𝑥 𝑒−𝛿𝑡 𝐸𝑒 [−𝑍(𝑡) − 𝑟𝑍 (𝑡) 𝑅−1(𝛼)] 𝑑𝑡, (30)

∫

∞

0
𝑡+ 𝑙𝑇 (𝑥) 𝐿−1(𝛼) 𝑝𝑥 𝑒−𝛿𝑡 𝐸𝑒 [−𝑍(𝑡) + 𝑙𝑍 (𝑡) 𝐿−1(𝛼)] 𝑑𝑡,

∫

∞

0
𝑡− 𝑟𝑇 (𝑥) 𝑅−1(𝛼) 𝑝𝑥 𝑒−𝛿𝑡 𝐸𝑒 [−𝑍(𝑡) − 𝑟𝑍 (𝑡) 𝑅−1(𝛼)] 𝑑𝑡,

∫

∞

0
𝑡− 𝑟𝑇 (𝑥) 𝑅−1(𝛼) 𝑝𝑥 𝑒−𝛿𝑡 𝐸𝑒 [−𝑍(𝑡) + 𝑙𝑍 (𝑡) 𝐿−1(𝛼)] 𝑑𝑡

}

Similarly, (31) seeks the max of the 4 integrals of the products of persisting and expected discount

sup �̄�𝑥(�̃� , �̃�)𝛼 = max
{

∫

∞

0
𝑡+ 𝑙𝑇 (𝑥) 𝐿−1(𝛼) 𝑝𝑥 𝑒−𝛿𝑡 𝐸𝑒 [−𝑍(𝑡) − 𝑟𝑍 (𝑡) 𝑅−1(𝛼)] 𝑑𝑡, (31)

∫

∞

0
𝑡+ 𝑙𝑇 (𝑥) 𝐿−1(𝛼) 𝑝𝑥 𝑒−𝛿𝑡 𝐸𝑒 [−𝑍(𝑡) + 𝑙𝑍 (𝑡) 𝐿−1(𝛼)] 𝑑𝑡,

∫

∞

0
𝑡− 𝑟𝑇 (𝑥) 𝑅−1(𝛼) 𝑝𝑥 𝑒−𝛿𝑡 𝐸𝑒 [−𝑍(𝑡) − 𝑟𝑍 (𝑡) 𝑅−1(𝛼)] 𝑑𝑡,

∫

∞

0
𝑡− 𝑟𝑇 (𝑥) 𝑅−1(𝛼) 𝑝𝑥 𝑒−𝛿𝑡 𝐸𝑒 [−𝑍(𝑡) + 𝑙𝑍 (𝑡) 𝐿−1(𝛼)] 𝑑𝑡

}

Essentially, the solutions to (30) and (31) give us our bottom line.

17. Comments

The purpose of this article was to discuss the conceptualizing of life annuities as fuzzy random variables.
The essential features of our model was that:

It explicitly merged the stochastic components of mortality and interest with their fuzzy component, and
L-R type fuzzy numbers were employed.

In this article, we focused on methodology, and an explanation of that methodology.
Subsequent studies will address the implementation of the methodology.
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