
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Article from:  

Risks & Rewards 

February 2012 – Issue 59 

 

  

  
 



16 | RISKS AND REWARDS FEBRUARY 2012

A FRESH lOOK AT 
lOgNORmAl  
FORECASTINg
By Richard R. Joss

It has been common to assume that this distribution may 
be described by a lognormal probability density function. 
(See Appendix 1) Once the parameters mu and sigma are 
selected for the lognormal distribution, the mathematical 
approach may be used to provide probabilistic forecasts 
that are equivalent to forecasts developed using the Monte 
Carlo techniques.

However, actual experience (such as that exhibited by 
401(k) plan participants) has fallen short of expected 
results. This 401(k) shortfall even made the Nightly News 
on NBC on Feb. 27, 2011, and was the lead article in the 
Oct. 19, 2009, issue of TIME Magazine. Both these general 
news sources cited studies showing that the average near-
term 401(k) retiree only had about 25 percent of the funds 
that he or she was expected to have in order to be able to 
retire. Thus, the shortfall is really quite significant. While it 
is easy to blame the markets or poor investment choices on 
the part of participants as a significant part of the shortfall, 
perhaps faulty forecasting is also a contributing factor. With 
that as background, this article takes a fresh look at lognor-
mal forecasting.

logNormAl forecAstiNg
As noted above, it has been common to assume that dis-
tributions of stock market returns may be modeled using 
the lognormal probability density function. To select the 
lognormal probability density function parameters, finance 
textbooks provide detailed instructions using the arithmetic 
mean and sample standard deviation from a set of historical 
returns. What is often missing, however, is a comparison of 
the actual historical results, and the expected results pro-
vided by the lognormal probability density function. This 
comparison is not as good as one might expect given the 
widespread use of this particular model. To illustrate this 
point, the 2008 Ibbotson and Associates SBBI Yearbook 
provides of history of 984 months of large company stock 
return data. The chart to the left compares the distribution 
of the actual data with the expected distribution provided by 
the best estimate lognormal density function.

O ne of the significant contributions of modern 
academic finance has been to introduce the con-
cept of stochastic investment forecasting. For 

example, using a Monte Carlo simulation, a forecaster can 
use actual historical returns to create a whole series of pos-
sible future scenarios. Using this technique it is possible 
not only to provide an expected rate of investment return, 
but a complete distribution of such returns. In short, using 
the Monte Carlo technique one could say that the expected 
return on large company stock investments might be 12 
percent, but that there is a 30 percent chance that such an 
investment could exceed a return of 25 percent for the year. 
On the down side, it is also possible to say that there is a 30 
percent chance that the equity investment could lose money 
for the year.

Instead of using the Monte Carlo technique, it is possible 
to create a mathematically derived formula that can be 
used to create the probability distribution of stock returns. 

Actual Data Distribution Compared with Lognormal Assumption
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As one contemplates the source of historical investment 
return data, it is clear that they are periodic observations 
of a single long-term historical asset growth. As such, the 
mathematical theory of probability and statistics would 
place this single observation at the mean of long-term 
results, with each of the periodic returns being described by 
a conditional lognormal probability density function. (See 
Appendix 1) When this one change is made, the comparison 
between the actual historical results and those described by 
the probability density function improves dramatically, as is 
shown in the following chart.

Not only is this large company stock return comparison 
improved, but the same level of improvement is seen if one 
does a similar comparison with other data sources, such as 
SBBI Yearbook data for stock returns in small companies or 
for the Dow Jones Industrial Average. The concept of using 
a conditional probability to match historical data is not 
only well-grounded based on the underlying mathematics 
coupled with the source of actual historical data, tests using 
actual data confirm the improvement.

As an example of the difference between the two distribu-
tions, the actual distribution shows that for 118 of the 984 
months (12 percent of the total) stock returns were 5.8 per-
cent or more for the month. Whereas the best estimate log-
normal density function assumes that 186 out of 984 months 
(19 percent of the total) will have a return that is 5.8 percent 
or more in the future. This is a substantial difference. It calls 
into question the use of the basic lognormal probability 
density function to describe the historical data, and seems to 
indicate that there may be a fundamental problem with the 
common lognormal approach.

usiNg coNditioNAl ProBABilities
It is interesting to note that the traditional method of select-
ing lognormal parameters involves the use of the arithmetic 
mean of a set of historical data. The arithmetic mean of a set 
of historical data must, of mathematical necessity, always 
exceed the actual rate of wealth growth. If a fund is to grow 
at a 5 percent annual rate for a given day, the arithmetic 
mean of the hourly returns (when expressed as annualized 
values) must exceed this number. If an investment is to 
grow at a 0 percent rate for a given month, the arithmetic 
mean of the annualized daily values must be positive. In 
each case these higher arithmetic means are just a natural 
byproduct of the wealth accumulation process. The higher 
arithmetic means add nothing to the ending wealth.

It has been common in academic finance to say that the 
best estimate of next year’s return will be 12 percent. But 
the only way that this can occur is if the monthly returns for 
the year exceed their long-term average of 1 percent. The 
monthly returns would have to have an average of 1.2 per-
cent or so in order for the end of year wealth to be at the 12 
percent rate, assuming stocks exhibit their normal volatility. 
If it is assumed that the arithmetic mean of the returns for 
the next 12 months will be the 1 percent historical average, 
the annual return for the year must be a number that is less 
than the historically observed 12 percent return, perhaps a 
number like the geometric mean of 10 percent. It is math-
ematically impossible to have both the 1 percent monthly 
rate and the 12 percent annual rate occur simultaneously, if 
one assumes stocks exhibit normal volatility. CONTINUED ON PAGE 18
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Management about 15 years ago, and the more recent col-
lapses of Bear Stearns and Lehman Brothers Holdings.

summAry
Actuaries are used to dealing with data. And it is common 
for them to consider the appropriateness of historical data 
when using the data to make forecasts. For example, using 
data from smokers to make estimates of general population 
mortality is clearly unwarranted. In this article, actuaries 
are asked to take a second look at investment return data. 
The data seems to be conditional in nature, and to the extent 
that it is, treating it as if it is determined independently may 
also be unwarranted. This one concept could be critical in 
dealing with the recent financial crises that has created so 
much concern. 

fiNANciAl imPAct
Not only is the comparison significantly improved, but this 
one change helps explain the disastrous 401(k) plan results 
that have been seen. This change in density function causes 
the best estimate rate of a future return to change from an 
arithmetic mean of historical returns to the lower geometric 
mean of historical returns. Given that employee participants 
have been led to believe that they would receive the higher 
arithmetic mean returns, it is not surprising that they are 
disappointed with the actual geometric mean results.

In addition, this one conceptual change helps explain some 
of the turmoil that has been seen recently in the financial 
services industry. When followed through completely, the 
concept that historical data is conditional data, not uncorre-
lated data, helps explain the collapse of Long-Term Capital 
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“ “Not oNly is tHe comPArisoN sigNificANtly 
imProved, But tHis oNe cHANge HelPs exPlAiN tHe 

disAstrous 401(K) PlAN results tHAt HAve BeeN seeN. 
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The formula below is for the traditional lognormal probability density function:

The formula below is for the conditional lognormal probability density function given the assumption that the one 
observed result is at the mean of the expected distribution of long-term investment results:


