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CHAIRPERSON’S CORNER 
2012-2013 COUNCIL YEAR IN REVIEW
By Thomas Anichini

T his year we initiated a few new efforts to keep you engaged and contribute to your 
continuing investment education syllabus. Here are a few highlights.

EBSCO BUSINESS SOURCE CORPORATE PLUS (EBSCO)
At the 2012 Annual Meeting, the Investment Section Council agreed to purchase access to 
EBSCO for section members. (Read my piece describing EBSCO elsewhere in this issue, 
“Your newest member benefit…”) If you do not otherwise have access to EBSCO outside 
the SOA Investment Section, I think you will find this one of the most valuable aspects 
of your section membership.

Response to this new benefit has been stellar. The week we rolled out EBSCO, I received 
an unsolicited email from a section member that began: “Tom:  Wow – this is truly awe-
some. Thank you so much for getting it done. And BTW I’ve never written the SOA to 
complement them before ...” So if you have not yet explored EBSCO, take some time 
to explore it and discover what one of your fellow section members finds so “truly awe-
some.”

INVESTMENT SYMPOSIUM AUDIO RECORDINGS 
For the first time, the Investment Symposium sessions have been recorded, thanks to 
the generous sponsorship of the Investment Section, and these audio recordings are 
available for purchase ($20 for non-members, $0 for Investment Section members) via 
the SOA web store. Visit the SOA website’s Professional Development / Presentation 
Archives / 2013 Presentations page, where you will find a link to the 2013 Investment 
Symposium presentations.

The SOA’s media team synchronized the audio recordings with the presentations, which 
I find makes the viewing experience virtually like that of a webcast. If you like what you 
hear make sure you attend next year’s Symposium in person.

INVESTMENT CONTEST
Back in the fall, the council was contemplating some ideas to prompt social networking. 
Some ideas we considered included prediction contests, e.g., guess the price of gold, 
the price of oil, the level of the Dow, the yield on the 10-year Treasury, etc. Then we 
eschewed the notion of merely guessing numbers in favor of actually building portfolios 
and decided to hold an asset allocation contest.

In April, we solicited entries from section members and received about 120 entries. 
Entrants had to build portfolios using combinations of 10 exchange-traded products 
(ETPs). We are offering prizes in three categories: cumulative return, lowest volatility, 
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and highest reward/risk ratio, measured over nearly a six-month period. We will announce 
winners at our hot breakfast at the 2013 Annual Meeting.

The original intent of the contest was as a catalyst to social activity—so visit the section 
home page and look for the “2013 Investment Contest” link. You can see all the entrants’ 
names, results to date, and if you unhide all the sheets, their allocations and predictions.

INTERACT WITH YOUR FELLOW SECTION MEMBERS AND  
YOUR COUNCIL 
Chances are, on the contest workbook or our LinkedIn sub-group page, you will see some 
names of friends and former colleagues—ping them via email or say hello via LinkedIn. 
You may find most council members listed in the SOA member directory, and several of 
us are members of our LinkedIn sub-group. Share your feedback and suggestions with the 
council. As a team of volunteers, we are here to facilitate your ideas.  

Thomas M. Anichini, ASA, 
CFA, is a Senior Investment 
Strategist at GuidedChoice. 
He may be reached at tanich-
ini@guidedchoice.com.
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reforms. My presentation offered as models the regulatory 
responses of Canada, the United States, and the European 
Union to three possible causes of the financial crisis:  
1) concentration in over-the-counter (i.e., non-exchange 
traded) derivatives, 2) questionable imprimaturs by the 
major credit rating agencies, and 3) anonymous trading in 
“dark pools.” This article both summarizes and supplements 
that presentation.

OTC DERIVATIVES
A considerable amount of regulatory response since 2009 
has been focused on credit default swaps, the oft-blamed 
but seldom understood hedges to many CDO trading 
strategies of the last decade. The nearly uniform regula-
tory response of requiring “transparent” trading of these 
instruments on regulated exchanges or trading facilities is 
designed to, among other things, both increase competition 
and provide for better pricing. 

Nearly five years after the onset of the crisis, final rules 
governing the new transparency remain debated. At first 
glance, the varied approaches to regulatory rulemaking 
provide some insight into the delay: The European Union 
employs an extra-territorial process that begins with the 
European Commission and often ends with legislative 
action at the Member State level. Canadian regulation, 
while driven by the Canadian Securities Administrators 
(CSA), might vary from province to province. Even the 
United States has seen relevant turf wars between Congress, 
the SEC, and the CFTC. 

But the political promises of repeal of these reforms now 
appear quixotic, and mandatory measures aimed at greater 
disclosure are being rolled out in the United States and 
the European Union between 2013 and 2015. Meanwhile, 
in Canada, the provincial responses such as the Quebec 
Derivatives Act of 2009 have highlighted the need to pro-
vide exemptions for sophisticated entities serving as coun-
terparties to the subject swap trades. 

One audience member during my session opined that the 
press had recently reported that U.S. default swap trading 
today so nearly resembles pre-crisis levels that Wall Street 
employers are once again recruiting new graduates with an 
expertise in the field. Indeed, while the crisis succeeded 
in highlighting the almost unfathomable degree to which 
institutions trusted this business line, the practice continues 
on a weighty world scale. 
 
CREDIT RATING AGENCIES 
The Securities Exchange Commission was authorized by 
the Dodd-Frank Act of 2010 to require greater disclo-
sures from nationally registered credit rating agencies. 
Subsequent Commission rulemaking mandated that the 
agencies, among other things, improve the quality of ratings 
and provide more transparency in attendant methodolo-
gies. But perhaps the more interesting reform contributed 
by Dodd-Frank paves the way for potential class actions 
against the agencies by private plaintiffs. Specifically, by 
eradicating its Rule 436(g) and concurrently clarifying the 
required proof of mental state for suits against agencies, the 
SEC invited the private class action Bar to the table set by 
Congress in 1933 for plaintiffs against issuers, underwrit-
ers, and broker-dealers. 

Reforms in the European Union and Canada, while also 
guaranteeing agency registration and greater disclosure, 
do not similarly empower private plaintiffs. A pending EU 
reform asks commenters for feedback on whether fines 
against certain entities would deter misleading ratings. 
 
A U.S. Department of Justice civil action from early 2013 
did allege that a major rating agency overvalued CDOs 
in 2007, perhaps succeeding foremost in raising issues of 
timely government response than rating accuracy or ear-
nestness. Overall, reforms to date have done little to alter 
the “issuer pays” model of compensation, while also stop-
ping short of subjecting the agencies to the degree of over-
sight reserved for broker-dealers and issuing companies. 

2013 SYMPOSIUM PRESENTER’S DIARY:   …  | FROM PAGE 1
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implemented with finality and publicized with force. As an 
old adage posits, Wall Street can handle anything except 
uncertainty itself.  

One audience commenter openly asked whether stricter 
regulation of the agencies is even possible, given the lack 
of the direct customer relationship that fuels broker-dealer 
supervision. 
 
DARK POOLS 
Earlier this year, The New York Times reported that such 
“off Board” trading may have peaked near 40 percent 
of the activity of some exchange listed issues in 2013. 
Nonetheless, there is no immediate plan for American 
regulators to fit that genie back into the bottle. Likewise, the 
operational requirements imposed by the EU on dark pools 
in recent years have actually been credited for their growth. 

Canada alone has taken direct action to decrease the flow of 
trading away from established stock exchanges. CSA rules 
imposed in October 2012 obligate firms to demonstrate that 
customer trades filled internally were completed at a price 
commensurate with the market. Dark pool trading was said 
to have decreased in excess of 30 percent in the month 
immediately following, thus raising questions of whether 
greater regulation may succeed foremost in driving busi-
ness to other markets. 

CONCLUSION 
To be sure, reasonable minds can differ on the wisdom of 
greater scrutiny of credit rating agencies, slowing the wave 
of off-board stock trading, and publishing details of credit 
derivative transactions akin to publically available infor-
mation about stock trades. Questions of agency capture, 
the dearth of criminal penalties, and the lingering moral 
hazard occasioned by both add to the debate. What might 
best restore confidence in world markets would be closure 
on the present slate of reforms. In a nutshell, approaches—
even where crystallized—remain somewhat undetailed 
and futuristic at present, perhaps precluding meaningful 
evaluation of results. After my presentation, I was of firmer 
conviction that measures such as Dodd-Frank need to be 

J. Scott Colesanti, LL.M., is an Associate Professor 
at the Hofstra University Maurice A. Deane School 
of Law, where he has taught Securities Regulation 
since 2002. He can be reached at (516) 463-6413, 
j.s.colesanti@hofstra.edu
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Eduard Nunes (all the way from Tokyo!) with a 4:1 score. 
Here is their game from round four:

Caleb Bousu v Eduard Nunes (Closed Sicilian) 1 e4 c5 
2 Nc3 d6 3 f4 Nf6 4 Nf3 Nc6 5 Bb5 g6 6 O-O Bg7 7 d3 
O-O 8 Bxc6 bxc6 9 Qe1 Rb8 10 Qh4 Ne8 11 e5 dxe5 12 
fxe5 Rb4 13 Ne4 f5 14 exf6 exf6 15 c3 Rb5 16 a4 Rb7 
17 Nxc5 Qb6 18 d4 Re7 19 Re1 Rxe1+ 20 Qxe1 Nd6 21 
Bf4 Re8 22 Qd1 Nc4 23 b4 a5? 24 Qb3! Be6 25 Nxe6 
Rxe6 26 Qxc4 Kf7 27 Re1 c5 28 Rxe6 Qxe6 29 Qxe6+ 
Kxe6 30 dxc5 Kd7 31 b5 f5 32 Be5 Bf8 33 Bd4 h6 … 1:0

Plans for the second speed chess networking tournament, 
to be held on the Tuesday evening of the upcoming 2013 
Annual Meeting in San Diego, are already underway. [FG]

INVESTMENT SECTION HOT BREAKFAST 
(SESSION 04)
A good mix of both larks and owls turned out for this early 
Monday morning (7:00 am!) session. Section news and 
views were delivered by Ryan Stowe and Frank Grossman, 
including a look back to the March Investment Symposium 
in New York, and a look forward to the Investment Section-
sponsored sessions at the 2013 Annual Meeting in San 
Diego. Nino Boezio arrived with perfect timing to share 
some observations about Risk & Rewards from his perspec-
tive as our long-standing co-editor, inviting those in atten-
dance to consider becoming contributors. And the section’s 
new staff partner, David Schraub, was briefly introduced.

Geoff Hancock then gave a short talk titled, “Economic 
Scenario Generators: All models are wrong—so now 
what?” in which he offered a pungent commentary for 
those actuaries able to smell the coffee at that early hour. 
During his engaging presentation, Geoff surveyed things 
that actuaries have done fairly well (e.g., increased facil-
ity with stochastic modeling), some things that haven’t 
been done that well (e.g., over-reliance on point estimates 
when delivering results rather than ranges) and areas where 
we’ve really fouled-up (e.g., making the use of ESGs and 

T he late May weather that greeted actuaries attending 
the 2013 Life & Annuity Symposium in Toronto 
was particularly clement: sunny with temperatures 

in the mid-60s. Maple Leafs fans were gleefully walking 
on air, as their team returned to the Stanley Cup playoffs 
after a nine-year hiatus. Yet Mother Nature has a way of 
asserting herself when presented with anomalous phe-
nomena. In the seventh game of their preliminary round 
series with the Leafs, the Beantown Bruins scored twice 
in the final 1:22 of regulation time to force overtime, and 
duly sent the Toronto side and their supporters packing in 
the extra frame—leaving the Ottawa Senators as the sole 
Canadian squad to advance to the quarter-finals. And the 
north wind delivered a frost warning to parts of southern 
Ontario during the week following the symposium, after 
most out-of-town attendees had safely returned home.

THOMAS C. BARHAM III SPEED CHESS 
TOURNAMENT (SESSION 01)
A dozen chess enthusiasts met on the Sunday afternoon 
prior to the meeting for the inaugural Thomas C. Barham 
III Speed Chess Tournament. This networking event is 
named for a prominent chess-playing member of the 
SOA, and was jointly sponsored by the Technology and 
Investment Sections as an opportunity for members to make 
new acquaintances, and have fun playing 10-minute speed  
chess too.

A local chess organizer, Ted Winick, and his colleagues 
at the Annex Chess Club were enlisted to run the event. 
Tournament directors Alex Ferreira, and Shabnam Abbarin, 
handled the pairings and myriad details with aplomb. 
Interestingly, Ted’s day job as the president of the Chess 
Institute of Canada is devoted to establishing chess—as 
a teaching tool for fundamental concepts such as pattern 
recognition, abstract thinking, and problem solving—on the 
grade school mathematics curriculum.

Congratulations to Caleb Bousu who finished first after five 
rounds with a clean 5:0 record. And second place went to 

SOA 2013 LIFE & ANNUITY 
SYMPOSIUM UPDATE
By Frank Grossman & Ryan Stowe

ALBERT MOORE (L) PLAYING CHESS WITH CALEB BOUSU (R).
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fewer assets (on a per client basis; the middle market itself 
is quite large) than the affluent and mass affluent markets, 
and this is one of the challenges of serving the middle 
market. The panelists focused on the challenges advisors 
face in allocating assets of the middle market to maximize 
the retirement income outcome dilemma through a concept 
similar to the efficient frontier in the investment world. [RS]

DISCOUNT RATES FOR FINANCIAL 
REPORTING PURPOSES: ISSUES AND 
APPROACHES (SESSION PD-32)
This session, presented in conjunction with the Financial 
Reporting Section, dealt with the International Actuarial 
Association’s (IAA) recent work developing an educa-
tional monograph on discount rates for financial reporting 
purposes. David Congram lead off with some background 
about the project and its sponsors, as well as the IAA’s 
broader educational mandate. Andy Dalton then provided 
an overview of the monograph itself, followed by some 
comments contrasting risk free rates in theory and in prac-
tice—accompanied by the session’s most memorable slide. 
Next, Derek Wright spoke about setting discount rates for 
pass-through products. David returned to the lectern to dis-
cuss the evolving influence of sovereign and political risk, 
and Frank Grossman concluded the session with some brief 
comments about replicating portfolios. [FG]

DO LONG-TERM GUARANTEES IN 
INSURANCE PRODUCTS MAKE SENSE? 
(SESSION D-69)
The format of this well attended session was unique; a 
“facilitated debate” between four panelists, moderated by 
Emile Elefteriadis. Jeff Adams and David Harris offered a 
Canadian perspective, while Michael Downing and Michael 
LeBoeuf delivered their comments from an American van-
tage point. The panelists addressed various questions posed, 
and attendees were also invited to share their views through 
the use of handheld interactive voting devices. 

stochastic models “too academic” and opaque for senior 
management to trust). The breakfast session concluded with 
a book-draw, and Leonard Mangini won a copy of Dan 
Areily’s Predictably Irrational. [FG]

PERSPECTIVES ON LIFE INSURANCE AND 
ANNUITIES IN THE MIDDLE MARKET 
(SESSION PD-25)
This session was a panel discussion delivered by Douglas 
Bennett, Robert Buckingham, and Walter Zultowski, 
moderated by Ryan Stowe, and co-sponsored with the 
Marketing and Distribution Section. The life insurance 
portion of this session focused on recent research from 
the second half of 2012. The life insurance middle mar-
ket (defined as “Young Families” age 25–40 with annual 
household income between $35,000–$125,000, and at least 
one dependent in the household) was segmented into three 
groups, each having different attitudes and beliefs about 
their need for life insurance, as well as different motiva-
tions for purchasing (or not purchasing) life insurance. 
“Protectors” buy life insurance to meet a need rather than 
based on a strong belief in the product. “Planners” most 
likely perceive and appreciate the long-term value of life 
insurance. “Opportunistic buyers” have less belief (e.g., 
perceived value) in the product, and typically purchase less 
coverage than other segments. They also tend to buy most 
products at their place of employment. The presentation 
provided insight into the different methods that companies 
can use to segment their target markets through data mining 
and predictive modeling, all with a view to making their 
marketing efforts more effective by targeting their custom-
ers’ preferred buying style.

The annuity portion of the session offered a different per-
spective on the middle market. The majority of the people 
who purchase annuities are age 50 or older. In fact, 26 per-
cent of Americans are baby boomers, and each day 10,000 
of them turn 65. What does this mean? That the pre-retiree 
and retired population need the guaranteed benefits that 
annuities can deliver. By definition, the middle market has 
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CONTINUED ON PAGE 8

FROM LEFT TO RIGHT: TOURNAMENT CO-ORGANIZ-
ER ALBERT MOORE, AND TOURNAMENT DIRECTORS 
SHABNAM ABBARIN AND ALEX FERREIRA, AWARD FIRST 
PLACE CERTIFICATE AND PRIZE TO CALEB BOUSU.

HANS AVERY (L) PLAYING CHESS WITH RYAN STOWE (R).







10 | RISKS AND REWARDS AUGUST 2013

PRESENT VALUES, 
INVESTMENT RETURNS AND 
DISCOUNT RATES – PART 1
By Dimitry Mindlin

returns are uncertain, a single discount rate cannot encom-
pass the entire spectrum of investment returns, hence the 
selection of a discount rate is a challenge. In general, the 
asset value required to fund an uncertain financial commit-
ment via investing in risky assets—the present value of the 
commitment—is uncertain (stochastic).1

While the analysis of present values is vital to the process of 
funding financial commitments, uncertain (stochastic) pres-
ent values are outside of the scope of this paper. This paper 
assumes that a present value is certain (deterministic)—a 
present value is assumed to be a number, not a random vari-
able in this paper. The desire to have a deterministic present 
value requires a set of assumptions that “assume away” all 
the uncertainties in the funding problem.

In particular, it is generally necessary to assume that all 
future payments are perfectly known at the present. The 
next step is to select a proper measurement of investment 
returns that serves as the discount rate for present value cal-
culations. This step—the selection of the discount rate—is 
the main subject of this paper.

One of the main messages of this paper is the selection of 
the discount rate depends on the objective of the calcula-
tion. Different objectives may necessitate different discount 
rates. The paper defines investment returns and specifies 
their relationships with present and future values. The key 
measurements of investment returns are defined in the con-
text of return series and, after a concise discussion of capital 
market assumptions, in the context of return distributions. 
The paper concludes with several examples of investment 
objectives and the discount rates associated with these 
objectives.

1. INVESTMENT RETURNS
This section discusses one of the most important concepts 
in finance—investment returns. 

T his is the first of a two-part article. The first pro-
vides the groundwork for exploring the different 
formulations of the discount rate, to support various 

sorts of objectives. It provides some useful rule of thumb 
for estimating quantiles in the distribution of discount rates 
and for relating geometric and arithmetic discount assump-
tions in a defined series of returns. The second part, to 
follow in early 2014, applies this approach to examples of 
a stochastic distribution of returns.

The concept of present value lies at the heart of finance in 
general and actuarial science in particular. The importance 
of the concept is universally recognized. Present values of 
various cash flows are extensively utilized in the pricing of 
financial instruments, funding of financial commitments, 
financial reporting, and other areas.

A typical funding problem involves a financial commitment 
(defined as a series of future payments) to be funded. A 
financial commitment is funded if all payments are made 
when they are due. A present value of a financial commit-
ment is defined as the asset value required at the present to 
fund the commitment.

Traditionally, the calculation of a present value utilizes 
a discount rate—a deterministic return assumption that 
represents investment returns. If the investment return and 
the commitment are certain, then the discount rate is equal 
to the investment return and the present value is equal to 
the sum of all payments discounted by the compounded 
discount rates. The asset value that is equal to this present 
value and invested in the portfolio that generates the invest-
ment return will fund the commitment with certainty.

In practice, however, perfectly certain future financial com-
mitments and investment returns rarely exist. While the 
calculation of the present value is straightforward when 
returns and commitments are certain, uncertainties in the 
commitments and returns make the calculation of the pres-
ent value anything but straightforward. When investment 
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3. INFLATION IN A TRADITIONAL 
INVESTMENT PORTFOLIO
A traditional equities/bonds portfolio relies on stable cor-
relation assumptions to produce diversification. Stocks and 
bonds should produce diversification in an economy domi-
nated by growth. However, periods of increased inflation 
or inflation uncertainty can have a negative impact on both 
equities and bonds.

Equities: Dividend streams may be pressured if inflation 
leads to slower economic growth while the discount rate 
is increased due to higher nominal rates and uncertainty.

Bonds: A higher discount rate would similarly lead to 
lower valuations on fixed rate bonds.

The stagflation period of the late 1970s and early 1980s 
in the United States was characterized by low single-digit 
portfolio returns coupled with high correlation (above 50 
percent) between equities and bonds.1

4. RISK FACTOR APPROACH TO ASSET 
ALLOCATION
In asset allocation circles, an increasingly favored approach 
is to focus on diversification among different sources of 
risk premiums rather than simply diversifying among asset 
classes.

Not only can CPI-linked instruments provide inflation pro-
tection, but it is also possible to use these tools to source 
risk premiums due to a number of features of the CPI-linked 
market. These features include:

- Deflation risk premium in short-dated TIPS and swaps,
- Asset swap premium in TIPS, and
- Tail risk premium in inflation options.

5. ACCESSING EXPOSURE TO THE 
INFLATION MARKET
Inflation can be traded through a variety of instruments. 
These include: TIPS, Total Return Swaps, ETFs, Inflation-
linked Notes, Inflation Swaps and Inflation Options.

TIPS (TREASURY INFLATION PROTECTED 
SECURITIES) 
TIPS are securities issued by the U.S. government that offer 
investors inflation protection. The principal is accredited 
daily based on the Headline CPI index and is repaid at 
maturity subject to a minimum of par, thus providing defla-
tion protection. Semi-annual coupons paid on TIPS are 
based on the inflation-adjusted principal. The TIPS market 
is the largest inflation-linked market in the world. Regular 
auctions are conducted in 5y, 10y and 30y TIPS.

The U.S. government issued approximately $150 billion 
of TIPS in 2012 and is expected to issue the same or more 
in 2013. Total market value of outstanding TIPS exceeds 
$900 billion and average daily trading volume is $11 billion 
(Source: Federal Reserve Bank of New York).

In addition to investing in TIPS, funds can also obtain expo-
sure to TIPS as an overlay, by entering into a Total Return 
Swap on a TIPS Index. In a total return swap, one party 
pays the return of the index in exchange for a funding rate, 
which could be quoted either as a fixed rate or as a spread to 
a floating rate. TIPS indices are typically market-weighted, 
and are available for both the aggregate TIPS market and 
for specific maturity buckets.

Some portfolio managers have employed total return swaps 
to synthetically replicate inflation-linked credit portfolios. 
The cash is utilized to invest in high-yield bonds to obtain a 
credit risk premium, and a total return swap on a TIPS index 
provides inflation exposure as well.

CONTINUED ON PAGE 20
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THE U.S. INFLATION MARKET… | FROM PAGE 19

Banks and other parties may issue Inflation-linked Notes 
that include embedded inflation swaps and inflation options. 
This provides access to these markets for clients who do not 
typically participate in the underlying derivative markets.

Inflation swaps and options have grown significantly over 
the past several years and are actively traded across a wide 
range of maturities and strikes.  

6. INFLATION RISK PREMIUM STRATEGIES
6.1. SHORT-DATED INFLATION-LINKED 
BONDS AND SWAPS
Short-dated inflation-linked bonds and swaps tend to have 
an embedded deflation risk premium. Hence, the implied 
inflation rate in TIPS and inflation-linked swaps has tended 
to systematically under-predict realized inflation over short-
term horizons.

A structural reason for this effect is that most TIPS funds 
are benchmarked to indices that only include TIPS with 
greater than one-year to maturity. Accordingly, most TIPS 
funds are forced to sell TIPS as soon as their maturities fall 
below one year in order to reduce tracking error. Money-
market funds cannot buy these short-dated TIPS as they are 
limited to fixed-rate debt, and TIPS interest is floating (with 
inflation). Accordingly, the lack of natural buyers of short 
dated TIPS results in implied inflation (TIPS breakeven 
rates) being underpriced at the front-end of the curve.

Graph 2 (pg. 21, top) shows historical1y inflation swaps and 
one-year realized inflation over the corresponding periods.

Inflation swaps, which typically imply higher inflation rates 
than TIPS, have under-predicted realized inflation by more 
than 0.50 percent. Note: past performance is no guarantee 
of future results.

Volatility of returns can be affected by energy prices.   
Accordingly, returns are less volatile if energy moves are 
hedged-out. For example, this can be achieved by buying 
one-year DB Core U.S. CPI Inflation Swaps.

A third way to obtain exposure to TIPS is via ETFs that 
reference TIPS indices2 or ETNs that reference Inflation 
Expectations as implied by the difference in yield between 
TIPS and Treasuries.3

5.2. INFLATION SWAPS AND OPTIONS
Inflation swaps offer a mechanism to trade inflation over 
a given time horizon, with mechanics similar to nominal 
interest rate swaps. At maturity, one party pays the cumu-
lative percentage increase in the reference inflation index 
over the life of the swap in exchange for an annually com-
pounded fixed rate, known as the breakeven inflation rate.

An example of the above is if the fixed rate quoted on a 
five-year inflation swap was 2 percent, and the CPI index 
rose from a level of 220 to 255 during the five-year period 
(3 percent per annum inflation), a net payment of 5.50 per-
cent of notional would be paid to the buyer of inflation. This 
is slightly more than 1 percent per annum due to the effect 
of compounding.   

It is also possible to obtain exposure to a measure of core 
inflation via inflation swaps that reference the DB Core 
U.S. CPI Index, thus mitigating volatility due to fluctua-
tions in energy prices.

U.S. CPI can be used as a proxy hedge for other correlated 
markets such as Canadian Inflation. Similarly, DB Core 
U.S. CPI can be used as a proxy for more specific measures 
of inflation such as property inflation.

Inflation Options provide asymmetric returns relative to 
CPI. Caps provide payoffs when inflation exceeds a strike 
(e.g., 4 percent), and Floors pay out when inflation is below 
an agreed strike (e.g., 0 percent in the case of a “deflation” 
floor). There are two-types of inflation options that regu-
larly trade. “Year-On-Year” Options pay annually based on 
each year’s inflation rate, whereas “Zero Coupon” Options 
pay out on the final maturity date based on cumulative infla-
tion over the period.

FOCUS ON DIFFERENT SOURCES OF 

  RISK PREMIUMS.“ “
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One way in which the deflation risk premium embedded in 
inflation floors can be earned is by systematically selling 
year-over-year deflation floors.

Graph 4 (below) reflects the performance of selling 5y year-
over-year 0 percent-strike deflation floors and rolling the 
position monthly. Note: past performance is no guarantee 
of future results.

The above strategy can be implemented by either sell-
ing the deflation floors directly or by entering into a total 
return swap on an index which is designed to replicate this 
strategy.

7. CONCLUSION
Large and liquid markets for U.S. CPI-linked exposure can 
be accessed to obtain inflation protection. Regularly traded 
CPI-linked instruments include TIPS, Inflation Swaps and 
Inflation Options. Products based on these instruments 
include Total Return Swaps and Asset Swaps, as well as 
ETFs, ETNs and Inflation-linked Notes.

Not only can these instruments be used to obtain inflation 
protection, but they can also be used to earn risk premiums 
that arise due to structural imbalances in the CPI market. 
Examples include cheapness in the front-end of the inflation 
curve, relative value between inflation swaps and TIPS, and 
richness of deflation floors.

Much of the content for this paper was sourced from the Deutsche 
Bank presentation and webinar titled, “Inflation Risk Factor and Risk 
Premia Strategies.” For access to the presentation or webinar, or for 
further information, please contact the author: email: allan.levin@
db.com.

Risk Magazine ranked Deutsche Bank No.1 for US Inflation 
Swaps and No.1 for US Inflation Options for 2012.   

Greenwich Associates ranked Deutsche Bank No.1 for Global Fixed 
Income for 2012, 2011 & 2010 and No.1 Overall US Fixed Income for 
2012, 2011 & 2010.
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6.3 DEFLATION FLOOR RISK PREMIUM
Inflation options are often bought as tail-risk hedges. Equity 
macro hedge funds have purchased deflation floors as an 
alternative to equity put options due to their relatively low 
premiums and expected good performance in deflationary 
markets.

As a result of these purchases, inflation options appear rich 
under various metrics, such as comparing realized with 
implied volatility; or implied deflation probabilities relative 
to the distribution of inflation rates predicted by surveys of 
professional forecasters. Accordingly, inflation caps embed 
an inflation risk premium, and inflation floors embed a 
deflation risk premium. Generally, floors are considered 
richer than caps, especially since the FOMC is  averse to 
deflation and would likely take extreme steps to prevent 
deflationary scenarios.
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LAYERING YOUR OWN 
VIEWS INTO A STOCHASTIC 
SIMULATION—WITHOUT A 
RECALIBRATION
By Tony Dardis, Loic Grandchamp and David Antonio

The maximum entropy for these scenarios will always 
be achieved by equally weighting these scenarios, and 
is calculated as follows:

FIVE SCENARIOS EQUALLY WEIGHTED

One-year 
projected

Scenario rate Weight Entropy

1 2.0% 0.20 0.3219

2 2.0% 0.20 0.3219

3 3.0% 0.20 0.3219

4 4.0% 0.20 0.3219

5 4.0% 0.20 0.3219

Avg/total 3.0% 1.00 1.6094

Let us now say that we have an alternative view as to 
what will transpire in the future and instead would like to 
re-weight the scenarios so that on average we hit a lower 
rate—say, 2.5 percent. Our first inclination might be to give 
weighting only to the lowest rates from our original set of 
five scenarios, with entropy calculated as follows:

TARGET = 2.5 PERCENT;  
CHOOSE ONLY THE VERY LOW WEIGHTS

                             One-year  
                     projected

Scenario rate Weight Entropy

1 2.0% 0.25 0.3466

2 2.0% 0.25 0.3466

3 3.0% 0.50 0.3466

4 4.0% 0.00 0.0000

5 4.0% 0.00 0.0000

Avg/total 2.5% 1.00 1.0397

However, weighting only the very low rates is missing a lot 
of very important information about the overall distribution 
of the rates and this becomes apparent from the entropy 
value—a much lower number than what we started with for 
the original scenario set that as equally weighted. So let’s 
now consider what happens if we give some weighting to 
all the scenarios, while still hitting the “own views” target 
of 2.5 percent: 

T here is a useful technique that is gaining some 
popularity amongst practitioners that enables 
“own views” to be superimposed on a stochasti-

cally generated scenario set without having to reca-
librate the underlying model(s). The technique won’t 
be appropriate for all applications, but it may be effec-
tive for some, such as superimposing alternative esti-
mates or creating “what-if” scenarios and stress tests. 

The approach involves the use of a statistic known as 
entropy. The value of entropy is maximized when equal 
weighting is given to each individual scenario in a given 
scenario set. Thus the objective of the “own views” exercise 
is to re-weight scenarios so that they hit your specific target, 
while maximizing the value of entropy.

Mathematically, for a set of N scenarios each with weight  
Wi the entropy S of a scenario set is defined as follows:

N

i
ii wwS

1
ln

There is potentially an infinite combination of weightings 
that would hit any specified target that we may have. The 
objective of the entropy technique is to find the optimal 
weights Wi so that we maximize S while hitting our specific 
target.

A simple example will help reinforce the concept.

Let us assume that we have calibrated a one-year interest 
rate model so that on average it hits 3 percent. We then use 
the model to generate five scenarios as follows:

SCENARIO 
RATE

ONE-YEAR  
PROJECTED

1 2.0%

2 2.0%

3 3.0%

4 4.0%

5 4.0%

Average 3.0%

Editor’s Note: This article summarizes the authors’  
presentation at the May 2013 Life and Annuity Symposium.
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In Chart 2 (pg. 25, bottom) we show a revised distribution 
of the 20-year Treasury bond equivalent yield projected 
over a 10-year horizon that starts with the 12/31/2012 
10,000 Academy scenarios, but reweights using maximum 
entropy in order to maintain the current level of the 20-year 
rate over the next five years. 

There are some very interesting features of the new distribu-
tion that should be highlighted:

•  The entropy technique has worked beautifully in hitting 
our “own views” path on average.

•  The overall characteristics of the probability distribution 
in terms of dispersion and tails are similar under the origi-
nal and the reweighted scenario sets.

•  It will be noted that the lower band of the reweighted set at 
the second percentile level is well below the original set. 
This doesn’t mean to say that we are weighting scenarios 
that were outside the original scenario set, but rather that 
we are now giving a lot more weighting to scenarios that 
were originally outside the second percentile level. This 
highlights another important characteristic of the entropy 
method—it will not work where our target falls outside 
any of the scenarios that were originally generated. In this 
example, this would mean that we may not be able to use 
entropy to target ultra-low 10-year rates, e.g., at or close 
to 1 percent for a prolonged period.

•  The entropy of our reweighted scenario set corresponds 
to a set of 8,353 equally weighted scenarios. This num-
ber, called the effective number of scenarios is a useful 
statistic of the entropy method which allows practitioners 
to gauge how far apart the original and reweighted sets 
are. However, the technique should not be viewed as a 
scenario reduction technique.

Note that while this article has focused on looking at inter-
est rate scenarios and how we can reweight according to 
“own views” around a target path, other variables and target 
metrics could be used equally effectively. For example, we 
might be more interested in setting a target for returns rather 
than yield, and perhaps it is equity rather than interest rate 
scenarios that are of most interest. Indeed, theoretically it 

the newly emerging statutory stochastic requirement), there 
may be some applications, such as testing of a new product 
campaign where interest rate risk is the only market driver 
of the business, where this is appropriate. This in turn leads 
to the natural question: if I download the Academy’s 10,000 
scenarios, is there a way I can rebalance these so that they 
produce an average interest rate path that is different to 
what is assumed in the Academy calibration?

The entropy technique can be used extremely effectively in 
such an example, and has great flexibility. In Chart 1 (pg. 
25, top) we show the distribution of the 20-year Treasury 
bond equivalent yield projected over a 10-year horizon 
under 10,000 Academy scenarios. These scenarios were 
generated from the Academy generator, initialized to the 
Treasury yield curve at 12/31/2012.

As will be immediately apparent, the average path of the 
20-year rate under the Academy calibration immediately 
sets off on an upward trend which persists throughout the 
projection period. What if our “own view,” however, was 
that given the current economic climate, and the very high 
expectation that the government will persist in a monetary 
policy that continues to keep interest rates at extremely low 
levels, a much more realistic expectation is that on average 
rates will remain at or very close to today’s levels for at 
least the next five years?

Our first port of call might be to download the Academy’s 
interest rate generator from actuary.org and recalibrate that 
so that it hits our target. The path of the 20-year rate in the 
generator can be controlled using two parameters: long-
term mean reversion level and a speed of mean reversion. 
There isn’t, therefore, sufficient flexibility to target a more 
general path for interest rates and the user is also con-
strained because he can only directly control the evolution 
of the 20-year rate. It may also not be obvious to the user 
what parameters should be input to achieve the desired path. 
Perhaps entropy can help?
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AUMANN-SHAPLEY 
VALUES: A TECHNIQUE 
FOR BETTER 
ATTRIBUTIONS
By Joshua Boehme

Although likely few of us have ever tried to formally list 
the properties we want a “good” attribution to satisfy, intui-
tively we have an idea of how a reasonable method should 
behave. For example, if the ith variable did not change (so 
ui = vi), we would expect its contribution to the difference 
to equal zero. Similarly, if the ith variable has no impact on 
the value of f (meaning that f(u) = f(v) whenever ui ≠ vi and 
uj = vj for all j ≠ i), then we again expect its contribution to 
equal zero.

ATTRIBUTION TECHNIQUES
Aumann-Shapley
The technique that this article focuses on, the Aumann-
Shapley value, requires f and its parameters to satisfy a few 
conditions. Specifically, f must have partial derivatives2 in 
all of its parameters along the vector between u and v. We 
do not need a closed-form version of f, but we must have 
a way to compute its partial derivatives at any given point 
on the path.

For attribution problems that satisfy these requirements, the 
Aumann-Shapley approach produces some valuable results. 
It always produces an attribution with no unexplained 
amount.3 As we will see in later examples, its results also 
show a certain desirable stability with respect to how we set 
up the problem.

For each variable we calculate the attributed amount ai as:
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The resulting integral does not always have a closed-form solution, but we can evaluate it 
numerically. 

Alternatively, we can view the Aumann-Shapley approach as a three-step process: 

1. Find the partial derivative of f with respect to its ith parameter, denoted f
xi

 here. 

2. Integrate that partial derivative along the line segment between u and v. Here, the 
dummy variable z represents the linear interpolation between u (at z = 0) and v (at 
z = 1). 

3. Multiply the result by the change in that parameter (vi – ui) 

Step-Through
Many actuaries faced with an attribution problem will solve it by stepping through the 
parameters one at a time, a technique with several important advantages. As long as we 
can evaluate the function f at each combination along the step-through, f can have any 
number of discontinuities and it can lack a closed-form solution. We can use a step-
through even when f has non-continuous inputs. Furthermore, a step-through also 
produces an attribution with no unexplained amount. 
 
Step-throughs have one well-known disadvantage, though: the results depend on the 
arbitrary order we use to step through the parameters. In the examples in this article we 
will use a modified technique to overcome this issue: we will perform the step-through 

																																																								
2The existence of partial derivatives also implies the continuity of f. The partial derivatives can contain 
non-removable discontinuities, but f itself cannot contain any along the path. 
3Except to the extent that whatever tool we use to calculate the results has finite precision, though this issue 
applies to any attribution technique. 
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 here.

A ctuaries encounter attribution problems on a regu-
lar basis. Indeed, any situation where results 
change, whether due to changes in assumptions, 

market conditions, or even just the passage of time, often 
leads to the natural follow-up question: why did the results 
change? To answer this question, actuaries use various 
techniques, each with its own strengths and weaknesses. 
However, a technique not widely known among actuar-
ies—the Aumann-Shapley value from game theory—in 
many cases can produce attributions that better satisfy our 
intuitive expectations of a good attribution.

Some authors have already applied the Aumann-Shapley 
approach to various financial problems in non-actuarial set-
tings. Denault (1999), for example, used it to allocate mar-
gin requirements among portfolios of options. However, the 
Aumann-Shapley approach has yet to receive widespread 
exposure within the actuarial community.

FORMALIZING THE PROBLEM
Suppose we have a multivariate function f and two vectors 
of parameters u and v representing the previous and latest 
parameters respectively. In the most general form of the 
problem we place almost no restrictions on the function f or 
its parameters. In some applications f may contain discon-
tinuities or may lack a closed-form solution. The function f 
could take non-continuous parameters as well. For example, 
a binary variable could indicate whether to use one method 
or another, such as curtate versus continuous mortality.

In an attribution problem we seek to explain the difference 
f(v)-f(u) by assigning to the ith variable an amount ai rep-
resenting its contribution to the difference, where i ranges 
from 1 to the number of inputs to the function f.

Ideally the total of the ai values would equal f(v)-f(u), but 
in practice that does not always happen. Any remaining 
difference, which sometimes goes by the term untraced or 
unexplained, represents some portion of the change that the 
attribution method in question could not allocate to one of 
the input variables.
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“HAPPY IS THE ONE WHO KNOWS THE CAUSES OF THINGS.” 
–VIRGIL1
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Partial derivatives have as one major advantage their fre-
quent ease of computation and interpretation. For example, 
from the duration of a bond, a relatively intuitive concept, 
we can quickly estimate the change in its value due to a 
change in interest rates.

The main difference between a partial derivative attribu-
tion and the Aumann-Shapley approach comes from where 
we evaluate the partial derivative. In the Aumann-Shapley 
approach, we evaluate it along the entire path between u and 
v. For the partial derivative, we evaluate it at a single point, 
usually the beginning point.5 This difference, though, leads 
to the major drawback of a partial derivative approach: the 
attribution generally has a nonzero unexplained amount. 
This may suffice for a quick estimate. Other times, though, 
we may want a complete attribution of the difference.

EXAMPLES
Example 1: Zero-Coupon Bond
Consider a zero-coupon 10-year bond with a maturity value 
of $1 million. For a given yield to maturity y, the following 
formula gives its value at time t:

for every possible order, then average the attributions together.4 This removes the 
dependency on an arbitrarily chosen order. As we will see with a later example, though, 
even this modified step-through method still has a significant weakness. Despite that, in 
situations where we cannot satisfy the requirements of the Aumann-Shapley approach, a 
step-through remains a viable alternative. 
 
Partial Derivatives 
Actuaries already frequently use derivatives or approximations to the derivative to 
perform attributions. Some partial derivatives come up so often that they have specific 
names, such as the “Greeks” (delta, gamma, vega, rho, theta, etc.) or duration. In some 
cases, we use formulas to directly calculate the partial derivatives; other times, we shock 
one of the parameters a small amount to numerically estimate the derivative. 
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f (y, t)  ey(10 t ) 106 	
Suppose we have the following parameter sets: 

 y t f(y, t) 

u 5.00% 1 637,628 

v 8.00% 2 527,292 

Difference -110,336 

 

We then get the following attributions from the three methods discussed above: 

 y t Total Attributed Unexplained 

																																																								
4This corresponds to the Shapley value from game theory. 
5Evaluating it at the end point instead or at both points does not eliminate its drawbacks. For the examples 
in this article we will use the partial derivative at the beginning point. 
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Aumann-Shapley -147,619 37,284 -110,336 0 

Step-through -146,952 36,616 -110,336 0 

Partial derivative -172,160 31,881 -140,278 29,942 

 

As expected, both the step-through and the Aumann-Shapley approach fully attribute the 
change. They also produce comparable results. The partial derivative results, though 
easily calculable,6 do not accurately capture the total change in value. 

 

Example 2: Zero-Coupon Bond, Revisited 
Many times, we can formulate a problem in multiple ways. Suppose that instead of 
expressing the yield for the zero-coupon bond in terms of a single variable, as in the 
previous example, we express it in terms of two components: a prevailing interest rate r, 
and a credit spread c. As a formula: 

f (r,c,t)  e(rc )(10t ) 106 	
Given the modified parameter sets: 

 r c t f(r, c, t) 

u 4.00% 1.00% 1 637,628 

v 5.00% 3.00% 2 527,292 

Difference -110,336

The initial and final values have not changed from the previous example—we have 
merely separated the yields to maturity into two components. Now that we have shifted 
perspective, what happens to the attributions? 

 r c t Total Attributed Unexplained 

Aumann-Shapley -49,206 -98,413 37,284 -110,336 0 

Step-through -49,162 -98,027 36,853 -110,336 0 

Partial derivative -57,387 -114,773 31,881 -140,278 29,942 

Note in particular the step-through values. By formulating the problem in a slightly 
different way, the value attributed to the time variable t has changed! In contrast, the 
amounts attributed to t by both the Aumann-Shapley approach and the partial derivative 
have not changed from before. 
 
Now, some readers may object that this change in the attributed value for t comes from 
the fact that we stepped through every possible order of variables. In practice, most 
actuaries would use only a single order, and most likely we would step through the two 
interest rate components consecutively. Under those circumstances, the value attributed 
to t would come out equal under both formulations. For example, if we use the order y, t 

																																																								
6The attribution for t, for example, equals 5 percent of the initial value. 
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can evaluate the function f at each combination along the  
step-through, f can have any number of discontinui-
ties and it can lack a closed-form solution. We can use 
a step-through even when f has non-continuous inputs. 
Furthermore, a step-through also produces an attribution 
with no unexplained amount.

Step-throughs have one well-known disadvantage, though: 
the results depend on the arbitrary order we use to step 
through the parameters. In the examples in this article we 
will use a modified technique to overcome this issue: we 
will perform the step-through for every possible order, then 
average the attributions together.4 This removes the depen-
dency on an arbitrarily chosen order. As we will see with 
a later example, though, even this modified step-through 
method still has a significant weakness. Despite that, in 
situations where we cannot satisfy the requirements of the 
Aumann-Shapley approach, a step-through remains a viable 
alternative.

Partial Derivatives
Actuaries already frequently use derivatives or approxima-
tions to the derivative to perform attributions. Some partial 
derivatives come up so often that they have specific names, 
such as the “Greeks” (delta, gamma, vega, rho, theta, etc.) 
or duration. In some cases, we use formulas to directly 
calculate the partial derivatives; other times, we shock one 
of the parameters a small amount to numerically estimate 
the derivative.
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actuaries would use only a single order, and most likely we 
would step through the two interest rate components con-
secutively. Under those circumstances, the value attributed 
to t would come out equal under both formulations. For 
example, if we use the order y, t in the first example and c, 
r, t in the second, then in both cases we attribute $40,540 
to t. However, any particular order comes from an arbitrary 
choice on our part. Nothing intrinsic in the order itself 
would lead us to conclude that we should choose one order 
over another. The equally natural order t, y (or t, c, r) would 
lead us to attribute $32,692 to t.

In the end, when using a step-through, we must either 
accept that we have chosen an arbitrary order, or we must 
accept that the results could vary if we re-formulate the 
problem in an equivalent way. Either way, step-throughs 
produce non-unique results.

Example 3: Binary Call
Suppose we own a binary call on a particular security, with 
a strike K at 100. For illustrative purposes we will hold 
the interest rate r constant at 2 percent and the volatility σ 
constant at 25 percent, and we will assume the underlying 
security pays no dividends. For the current asset spot price 
S and time to option maturity t, the value of our call equals:
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However, any particular order comes from an arbitrary choice on our part. Nothing 
intrinsic in the order itself would lead us to conclude that we should choose one order 
over another. The equally natural order t, y (or t, c, r) would lead us to attribute $32,692 
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arbitrary order, or we must accept that the results could vary if we re-formulate the 
problem in an equivalent way. Either way, step-throughs produce non-unique results. 
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illustrative purposes we will hold the interest rate r constant at 2 percent and the volatility 
σ constant at 25 percent, and we will assume the underlying security pays no dividends. 
For the current asset spot price S and time to option maturity t, the value of our call 
equals: 

f (S, t)  ert(d2) 	
where		

(x) 
1
2

e 1
2 u2

du


x

 	
	

and	
	

d2 
ln S

K  (r   2

2 )t
 t

	
	
At	the	boundary	where	t	=	0,	its	value	equals	
	

f (S,0) 
1 if S K
0 if S K




	
	
Given the parameters: 

 S t f(S, t) 

u 90 1 0.314 

v 110 0 1.000 

Difference 0.686 

 

The three methods disagree significantly about the nature and magnitude of the time 
component’s contribution: 

 S t Total Attributed Unexplained
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The three methods disagree significantly about the nature and magnitude of the time 
component’s contribution: 

 S t Total Attributed Unexplained

As expected, both the step-through and the Aumann-
Shapley approach fully attribute the change. They also 
produce comparable results. The partial derivative results, 
though easily calculable,6 do not accurately capture the total 
change in value.

Example 2: Zero-Coupon Bond, Revisited
Many times, we can formulate a problem in multiple ways. 
Suppose that instead of expressing the yield for the zero-
coupon bond in terms of a single variable, as in the previous 
example, we express it in terms of two components: a pre-
vailing interest rate r, and a credit spread c. As a formula:

Aumann-Shapley -147,619 37,284 -110,336 0 

Step-through -146,952 36,616 -110,336 0 

Partial derivative -172,160 31,881 -140,278 29,942 

 

As expected, both the step-through and the Aumann-Shapley approach fully attribute the 
change. They also produce comparable results. The partial derivative results, though 
easily calculable,6 do not accurately capture the total change in value. 
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Many times, we can formulate a problem in multiple ways. Suppose that instead of 
expressing the yield for the zero-coupon bond in terms of a single variable, as in the 
previous example, we express it in terms of two components: a prevailing interest rate r, 
and a credit spread c. As a formula: 

f (r,c,t)  e(rc )(10t ) 106 	
Given the modified parameter sets: 

 r c t f(r, c, t) 

u 4.00% 1.00% 1 637,628 

v 5.00% 3.00% 2 527,292 

Difference -110,336

The initial and final values have not changed from the previous example—we have 
merely separated the yields to maturity into two components. Now that we have shifted 
perspective, what happens to the attributions? 

 r c t Total Attributed Unexplained 

Aumann-Shapley -49,206 -98,413 37,284 -110,336 0 

Step-through -49,162 -98,027 36,853 -110,336 0 

Partial derivative -57,387 -114,773 31,881 -140,278 29,942 

Note in particular the step-through values. By formulating the problem in a slightly 
different way, the value attributed to the time variable t has changed! In contrast, the 
amounts attributed to t by both the Aumann-Shapley approach and the partial derivative 
have not changed from before. 
 
Now, some readers may object that this change in the attributed value for t comes from 
the fact that we stepped through every possible order of variables. In practice, most 
actuaries would use only a single order, and most likely we would step through the two 
interest rate components consecutively. Under those circumstances, the value attributed 
to t would come out equal under both formulations. For example, if we use the order y, t 

																																																								
6The attribution for t, for example, equals 5 percent of the initial value. 
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We have defined f as a multivariate function of the xi 
variables. However, over the attribution region we can 
also view f as a function of z alone, denoted f(z) for clarity. 
The linear interpolation between u and v connects the two:  
f(z)(z) = f((1-z)u+zv). Thus f(z)(0), for example, would mean 
to calculate the values of each xi for z=0, then evaluate f at 
those values—in other words, f(z)(0) equals our initial value 
f(u). We can now write out an equation for the difference 
we seek to attribute:

Aumann-Shapley 0.435 0.251 0.686 0 

Step-through 0.653 0.033 0.686 0 

Partial derivative 0.312 -0.060 0.252 0.434 

 

The price crosses the strike during the attribution period, but the call does not reach full 
value immediately at that time. Its value still includes a discount for the probability of a 
subsequent decrease. The passage of time eventually drives that probability to zero, 
bringing the option to its full value. At the beginning of the attribution period, though, the 
opposite pattern holds: the possibility that volatility will cause the asset price to exceed 
the strike recedes as we approach maturity, meaning that the passage of time reduces the 
option’s value. The partial derivative results reflect the latter effect. 
 
Thus, f’s sensitivity to time varies considerably over the attribution region. By only 
considering the edges of the region, the step-through does not accurately capture the full 
sensitivity and ends up attributing little of the change to the time component. 
 
An Intuitive Argument for Why Aumann-Shapley Produces a Complete Attribution 
Although the examples have shown that the Aumann-Shapley approach produces a 
complete attribution in those cases, they do not explain why it works in general. A quick 
(though non-rigorous) argument will help illustrate the logic underpinning the technique. 
 
We have defined f as a multivariate function of the xi variables. However, over the 
attribution region we can also view f as a function of z alone, denoted f(z) for clarity. The 
linear interpolation between u and v connects the two: f(z)(z) = f((1-z)u+zv). Thus f(z)(0), 
for example, would mean to calculate the values of each xi for z=0, then evaluate f at 
those values—in other words, f(z)(0) equals our initial value f(u). We can now write out 
an equation for the difference we seek to attribute: 

f (v) f (u)  f (z)(1)f (z)(0) 

Assuming that we have a sufficiently smooth function, we can express the difference as 
an integral: 


df (z )

dz0

1

 (z)dz  

We still need to relate this back to the original xi variables, and we do this by applying 
the chain rule. Note that we have switched back to the original multivariate function f: 


f
xi


dxi

dzi
 ((1 z)u zv)










0

1

 dz  

Since z represents our linear interpolation variable, the derivative of xi equals the 
difference between the final and initial values. With that substitution, and separating out 
the individual terms inside the integral, we finally obtain: 
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can express the difference as an integral:
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Since z represents our linear interpolation variable, the derivative of xi equals the 
difference between the final and initial values. With that substitution, and separating out 
the individual terms inside the integral, we finally obtain: 

Since z represents our linear interpolation variable, the 
derivative of xi  equals the difference between the final and 
initial values. With that substitution, and separating out the 
individual terms inside the integral, we finally obtain:

f (v)  f (u)  (vi  ui)
i
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xi

((1 z)u  zv)
0
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where the term on the right hand side corresponding to each xi gives that variable’s 
attribution. 
 
From this argument, we can also see why jump discontinuities cause this approach to fail, 
since they cause changes in the value of f that do not get captured by the derivative. 
However, as long as we have a sufficiently smooth function (and a sufficiently accurate 
calculator for the integral) we will always get a complete attribution from the Aumann-
Shapley approach. 
 
Accuracy of Numeric Integration 
Since the Aumann-Shapley results come from a numeric integration, a natural question 
arises: how much confidence should we have in their accuracy? In practice we can obtain 
very rapid convergence using Simpson’s rule.7 Example 1’s results earlier used 1,000 
points to ensure a highly accurate result, but even if we evaluate the integrals at just three 
points and use Simpson’s rule we get almost identical results: 

      Contributions to integrals

z y t f f
y

 (10  t) f
f
t

 yf f
y  

f
t  

0.00 5.00% 1.00 637,628 -5,738,653 31,881 -956,442 5,314 

0.50 6.50% 1.50 575,509 -4,891,829 37,408 -3,261,219 24,939 

1.00 8.00% 2.00 527,292 -4,218,339 42,183 -703,057 7,031 

    Total -4,920,718 37,283 

    (vi-ui) 3.00% 1.00 

    (vi-ui) Total -147,622 37,283 

Previous Results for Comparison -147,619 37,284 

 

Thus, even a quick calculation can produce reasonable results. Furthermore, by using a 
spreadsheet or programming language we can easily evaluate more points to improve the 
accuracy. 
 
Additional Considerations 
In this article we have looked at some artificially simple examples. In real life, though, 
we may face more complex attribution problems. For example, we may wish to reflect 
the fact that interest rates vary based on the time to maturity. Even if the yield curve does 
not shift, the yield on an asset could change simply due to the passage of time. In that 
																																																								
7 f (z)dz  2

f (x  ) 4 f (x) f (x  )
6x

x

  

where the term on the right hand side corresponding to each 
xi gives that variable’s attribution.

From this argument, we can also see why jump discontinui-
ties cause this approach to fail, since they cause changes in 
the value of f that do not get captured by the derivative. 
However, as long as we have a sufficiently smooth function 
(and a sufficiently accurate calculator for the integral) we 
will always get a complete attribution from the Aumann-
Shapley approach.

Given the parameters:

in the first example and c, r, t in the second, then in both cases we attribute $40,540 to t. 
However, any particular order comes from an arbitrary choice on our part. Nothing 
intrinsic in the order itself would lead us to conclude that we should choose one order 
over another. The equally natural order t, y (or t, c, r) would lead us to attribute $32,692 
to t. 
 
In the end, when using a step-through, we must either accept that we have chosen an 
arbitrary order, or we must accept that the results could vary if we re-formulate the 
problem in an equivalent way. Either way, step-throughs produce non-unique results. 
 
Example 3: Binary Call 
Suppose we own a binary call on a particular security, with a strike K at 100. For 
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arbitrary order, or we must accept that the results could vary if we re-formulate the 
problem in an equivalent way. Either way, step-throughs produce non-unique results. 
 
Example 3: Binary Call 
Suppose we own a binary call on a particular security, with a strike K at 100. For 
illustrative purposes we will hold the interest rate r constant at 2 percent and the volatility 
σ constant at 25 percent, and we will assume the underlying security pays no dividends. 
For the current asset spot price S and time to option maturity t, the value of our call 
equals: 

f (S, t)  ert(d2) 	
where		

(x) 
1
2

e 1
2 u2

du


x

 	
	

and	
	

d2 
ln S

K  (r   2

2 )t
 t

	
	
At	the	boundary	where	t	=	0,	its	value	equals	
	

f (S,0) 
1 if S K
0 if S K




	
	
Given the parameters: 

 S t f(S, t) 

u 90 1 0.314 

v 110 0 1.000 

Difference 0.686 

 

The three methods disagree significantly about the nature and magnitude of the time 
component’s contribution: 

 S t Total Attributed Unexplained

Aumann-Shapley 0.435 0.251 0.686 0 

Step-through 0.653 0.033 0.686 0 

Partial derivative 0.312 -0.060 0.252 0.434 

 

The price crosses the strike during the attribution period, but the call does not reach full 
value immediately at that time. Its value still includes a discount for the probability of a 
subsequent decrease. The passage of time eventually drives that probability to zero, 
bringing the option to its full value. At the beginning of the attribution period, though, the 
opposite pattern holds: the possibility that volatility will cause the asset price to exceed 
the strike recedes as we approach maturity, meaning that the passage of time reduces the 
option’s value. The partial derivative results reflect the latter effect. 
 
Thus, f’s sensitivity to time varies considerably over the attribution region. By only 
considering the edges of the region, the step-through does not accurately capture the full 
sensitivity and ends up attributing little of the change to the time component. 
 
An Intuitive Argument for Why Aumann-Shapley Produces a Complete Attribution 
Although the examples have shown that the Aumann-Shapley approach produces a 
complete attribution in those cases, they do not explain why it works in general. A quick 
(though non-rigorous) argument will help illustrate the logic underpinning the technique. 
 
We have defined f as a multivariate function of the xi variables. However, over the 
attribution region we can also view f as a function of z alone, denoted f(z) for clarity. The 
linear interpolation between u and v connects the two: f(z)(z) = f((1-z)u+zv). Thus f(z)(0), 
for example, would mean to calculate the values of each xi for z=0, then evaluate f at 
those values—in other words, f(z)(0) equals our initial value f(u). We can now write out 
an equation for the difference we seek to attribute: 

f (v) f (u)  f (z)(1)f (z)(0) 

Assuming that we have a sufficiently smooth function, we can express the difference as 
an integral: 


df (z )

dz0

1

 (z)dz  

We still need to relate this back to the original xi variables, and we do this by applying 
the chain rule. Note that we have switched back to the original multivariate function f: 


f
xi


dxi

dzi
 ((1 z)u zv)










0

1

 dz  

Since z represents our linear interpolation variable, the derivative of xi equals the 
difference between the final and initial values. With that substitution, and separating out 
the individual terms inside the integral, we finally obtain: 

The price crosses the strike during the attribution period, 
but the call does not reach full value immediately at that 
time. Its value still includes a discount for the probability 
of a subsequent decrease. The passage of time eventually 
drives that probability to zero, bringing the option to its full 
value. At the beginning of the attribution period, though, 
the opposite pattern holds: the possibility that volatility 
will cause the asset price to exceed the strike recedes as 
we approach maturity, meaning that the passage of time 
reduces the option’s value. The partial derivative results 
reflect the latter effect.

Thus, f’s sensitivity to time varies considerably over the 
attribution region. By only considering the edges of the 
region, the step-through does not accurately capture the full 
sensitivity and ends up attributing little of the change to the 
time component.

AN INTUITIVE ARGUMENT FOR WHY 
AUMANN-SHAPLEY PRODUCES A 
COMPLETE ATTRIBUTION
Although the examples have shown that the Aumann-
Shapley approach produces a complete attribution in those 
cases, they do not explain why it works in general. A quick 
(though non-rigorous) argument will help illustrate the logic 
underpinning the technique.

CONTINUED ON PAGE 32
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The Aumann-Shapley approach applies in those more com-
plex cases as well. We do need a way to interpolate smooth-
ly between the observed points. However, to perform any 
attribution we generally need some form of interpolation 
anyway since our valuation points will rarely correspond 
exactly to the market-observable points. Some common 
methods include linear interpolation and cubic splines, both 
of which provide differentiable interpolations.

Although this article has focused on asset valuation exam-
ples, we can use the Aumann-Shapley approach for other 
applications. However, we do need to verify that our 
function f meets the requirements. Liabilities in particular, 
though, often contain features that can potentially create 
discontinuities, including:

1.  Charges, guaranteed rates of return, or other features 
based on market values rounded to the nearest percent, 
nearest 25 basis points, or some other multiple.

2.  Any feature involving rebalancing something back to 
a target, but only if outside some tolerance band. For 
example, due to an investment strategy we have adopted 
or due to a contractual agreement we have entered into, 
we might rebalance a particular asset allocation back 
to 80 percent equity at end of each quarter if the cur-
rent asset allocation deviates from that by more than 5 
percent.

3. Franchise deductibles.

4. Digital payoffs.

5.  Features activated or deactivated at certain thresholds, 
including knock-in and knock-out features.

Keep in mind, though features such as these do not automat-
ically imply a problem. In example 3 our function contained 
a discontinuity at the point (S, t) = (100, 0), but the path 
between u and v did not pass through that point. In gen-
eral, the specific circumstances of the problem will dictate 
whether we can use the Aumann-Shapley approach or not.

ACCURACY OF NUMERIC INTEGRATION
Since the Aumann-Shapley results come from a numeric 
integration, a natural question arises: how much confidence 
should we have in their accuracy? In practice we can obtain 
very rapid convergence using Simpson’s rule.7 Example 
1’s results earlier used 1,000 points to ensure a highly 
accurate result, but even if we evaluate the integrals at  
just three points and use Simpson’s rule we get almost 
identical results:

f (v)  f (u)  (vi  ui)
i
 f

xi

((1 z)u  zv)
0

1

 dz  

where the term on the right hand side corresponding to each xi gives that variable’s 
attribution. 
 
From this argument, we can also see why jump discontinuities cause this approach to fail, 
since they cause changes in the value of f that do not get captured by the derivative. 
However, as long as we have a sufficiently smooth function (and a sufficiently accurate 
calculator for the integral) we will always get a complete attribution from the Aumann-
Shapley approach. 
 
Accuracy of Numeric Integration 
Since the Aumann-Shapley results come from a numeric integration, a natural question 
arises: how much confidence should we have in their accuracy? In practice we can obtain 
very rapid convergence using Simpson’s rule.7 Example 1’s results earlier used 1,000 
points to ensure a highly accurate result, but even if we evaluate the integrals at just three 
points and use Simpson’s rule we get almost identical results: 

      Contributions to integrals

z y t f f
y

 (10  t) f
f
t

 yf f
y  

f
t  

0.00 5.00% 1.00 637,628 -5,738,653 31,881 -956,442 5,314 

0.50 6.50% 1.50 575,509 -4,891,829 37,408 -3,261,219 24,939 

1.00 8.00% 2.00 527,292 -4,218,339 42,183 -703,057 7,031 

    Total -4,920,718 37,283 

    (vi-ui) 3.00% 1.00 

    (vi-ui) Total -147,622 37,283 

Previous Results for Comparison -147,619 37,284 

 

Thus, even a quick calculation can produce reasonable results. Furthermore, by using a 
spreadsheet or programming language we can easily evaluate more points to improve the 
accuracy. 
 
Additional Considerations 
In this article we have looked at some artificially simple examples. In real life, though, 
we may face more complex attribution problems. For example, we may wish to reflect 
the fact that interest rates vary based on the time to maturity. Even if the yield curve does 
not shift, the yield on an asset could change simply due to the passage of time. In that 
																																																								
7 f (z)dz  2

f (x  ) 4 f (x) f (x  )
6x

x

  

Thus, even a quick calculation can produce reasonable 
results. Furthermore, by using a spreadsheet or program-
ming language we can easily evaluate more points to 
improve the accuracy.

ADDITIONAL CONSIDERATIONS
In this article we have looked at some artificially simple 
examples. In real life, though, we may face more complex 
attribution problems. For example, we may wish to reflect 
the fact that interest rates vary based on the time to matu-
rity. Even if the yield curve does not shift, the yield on an 
asset could change simply due to the passage of time. In 
that case, it may make more sense to assign the change in 
value solely to time, not due to a nonexistent movement in 
the yield curve.

To further complicate matters, when valuing options we 
could view volatility as depending on both the time to 
expiration and the moneyness of the option, leading to a 
two-dimensional volatility surface.


























	2013 Symposium Presenter's Diary: Responses to the Global Financial Crisis
	Chairperson'a Corner 2012-2013 Council Year in Review
	SOA 2013 Life & Annuity Symposium Update
	Present Values, Investment Returns and Discount Rates - Part 1
	The U.S. Inflation Market What it is and How to Profit From it
	Layering Your Own Views into a Stochastic Simulation - Without a Recalibration
	Aumann-Shapley Values: A Technique for Better Attributions
	Have You Tried Your Latest Member Benefit - EBSCO Business Source Corporate Plus?



