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AUmAnn-ShApley 
VAlUeS: A TechniqUe 
for BeTTer 
ATTriBUTionS
By Joshua Boehme

Although likely few of us have ever tried to formally list 
the properties we want a “good” attribution to satisfy, intui-
tively we have an idea of how a reasonable method should 
behave. For example, if the ith variable did not change (so 
ui = vi), we would expect its contribution to the difference 
to equal zero. Similarly, if the ith variable has no impact on 
the value of f (meaning that f(u) = f(v) whenever ui ≠ vi and 
uj = vj for all j ≠ i), then we again expect its contribution to 
equal zero.

Attribution techniques
Aumann-Shapley
The technique that this article focuses on, the Aumann-
Shapley value, requires f and its parameters to satisfy a few 
conditions. Specifically, f must have partial derivatives2 in 
all of its parameters along the vector between u and v. We 
do not need a closed-form version of f, but we must have 
a way to compute its partial derivatives at any given point 
on the path.

For attribution problems that satisfy these requirements, the 
Aumann-Shapley approach produces some valuable results. 
It always produces an attribution with no unexplained 
amount.3 As we will see in later examples, its results also 
show a certain desirable stability with respect to how we set 
up the problem.

For each variable we calculate the attributed amount ai as:
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For each variable we calculate the attributed amount ai as: 

ai  (vi  ui)
f
xi

(1 z)u  zv dz
0

1

 	
The resulting integral does not always have a closed-form solution, but we can evaluate it 
numerically. 

Alternatively, we can view the Aumann-Shapley approach as a three-step process: 

1. Find the partial derivative of f with respect to its ith parameter, denoted f
xi

 here. 

2. Integrate that partial derivative along the line segment between u and v. Here, the 
dummy variable z represents the linear interpolation between u (at z = 0) and v (at 
z = 1). 

3. Multiply the result by the change in that parameter (vi – ui) 

Step-Through
Many actuaries faced with an attribution problem will solve it by stepping through the 
parameters one at a time, a technique with several important advantages. As long as we 
can evaluate the function f at each combination along the step-through, f can have any 
number of discontinuities and it can lack a closed-form solution. We can use a step-
through even when f has non-continuous inputs. Furthermore, a step-through also 
produces an attribution with no unexplained amount. 
 
Step-throughs have one well-known disadvantage, though: the results depend on the 
arbitrary order we use to step through the parameters. In the examples in this article we 
will use a modified technique to overcome this issue: we will perform the step-through 

																																																								
2The existence of partial derivatives also implies the continuity of f. The partial derivatives can contain 
non-removable discontinuities, but f itself cannot contain any along the path. 
3Except to the extent that whatever tool we use to calculate the results has finite precision, though this issue 
applies to any attribution technique. 
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 here.

A ctuaries encounter attribution problems on a regu-
lar basis. Indeed, any situation where results 
change, whether due to changes in assumptions, 

market conditions, or even just the passage of time, often 
leads to the natural follow-up question: why did the results 
change? To answer this question, actuaries use various 
techniques, each with its own strengths and weaknesses. 
However, a technique not widely known among actuar-
ies—the Aumann-Shapley value from game theory—in 
many cases can produce attributions that better satisfy our 
intuitive expectations of a good attribution.

Some authors have already applied the Aumann-Shapley 
approach to various financial problems in non-actuarial set-
tings. Denault (1999), for example, used it to allocate mar-
gin requirements among portfolios of options. However, the 
Aumann-Shapley approach has yet to receive widespread 
exposure within the actuarial community.

FormAlizing the Problem
Suppose we have a multivariate function f and two vectors 
of parameters u and v representing the previous and latest 
parameters respectively. In the most general form of the 
problem we place almost no restrictions on the function f or 
its parameters. In some applications f may contain discon-
tinuities or may lack a closed-form solution. The function f 
could take non-continuous parameters as well. For example, 
a binary variable could indicate whether to use one method 
or another, such as curtate versus continuous mortality.

In an attribution problem we seek to explain the difference 
f(v)-f(u) by assigning to the ith variable an amount ai rep-
resenting its contribution to the difference, where i ranges 
from 1 to the number of inputs to the function f.

Ideally the total of the ai values would equal f(v)-f(u), but 
in practice that does not always happen. Any remaining 
difference, which sometimes goes by the term untraced or 
unexplained, represents some portion of the change that the 
attribution method in question could not allocate to one of 
the input variables.
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Partial derivatives have as one major advantage their fre-
quent ease of computation and interpretation. For example, 
from the duration of a bond, a relatively intuitive concept, 
we can quickly estimate the change in its value due to a 
change in interest rates.

The main difference between a partial derivative attribu-
tion and the Aumann-Shapley approach comes from where 
we evaluate the partial derivative. In the Aumann-Shapley 
approach, we evaluate it along the entire path between u and 
v. For the partial derivative, we evaluate it at a single point, 
usually the beginning point.5 This difference, though, leads 
to the major drawback of a partial derivative approach: the 
attribution generally has a nonzero unexplained amount. 
This may suffice for a quick estimate. Other times, though, 
we may want a complete attribution of the difference.

exAmPles
Example 1: Zero-Coupon Bond
Consider a zero-coupon 10-year bond with a maturity value 
of $1 million. For a given yield to maturity y, the following 
formula gives its value at time t:

for every possible order, then average the attributions together.4 This removes the 
dependency on an arbitrarily chosen order. As we will see with a later example, though, 
even this modified step-through method still has a significant weakness. Despite that, in 
situations where we cannot satisfy the requirements of the Aumann-Shapley approach, a 
step-through remains a viable alternative. 
 
Partial Derivatives 
Actuaries already frequently use derivatives or approximations to the derivative to 
perform attributions. Some partial derivatives come up so often that they have specific 
names, such as the “Greeks” (delta, gamma, vega, rho, theta, etc.) or duration. In some 
cases, we use formulas to directly calculate the partial derivatives; other times, we shock 
one of the parameters a small amount to numerically estimate the derivative. 
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f (y, t)  ey(10 t ) 106 	
Suppose we have the following parameter sets: 

 y t f(y, t) 

u 5.00% 1 637,628 

v 8.00% 2 527,292 

Difference -110,336 

 

We then get the following attributions from the three methods discussed above: 

 y t Total Attributed Unexplained 

																																																								
4This corresponds to the Shapley value from game theory. 
5Evaluating it at the end point instead or at both points does not eliminate its drawbacks. For the examples 
in this article we will use the partial derivative at the beginning point. 
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Suppose we have the following parameter sets: 
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We then get the following attributions from the three methods discussed above: 
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4This corresponds to the Shapley value from game theory. 
5Evaluating it at the end point instead or at both points does not eliminate its drawbacks. For the examples 
in this article we will use the partial derivative at the beginning point. 

Aumann-Shapley -147,619 37,284 -110,336 0 

Step-through -146,952 36,616 -110,336 0 

Partial derivative -172,160 31,881 -140,278 29,942 

 

As expected, both the step-through and the Aumann-Shapley approach fully attribute the 
change. They also produce comparable results. The partial derivative results, though 
easily calculable,6 do not accurately capture the total change in value. 

 

Example 2: Zero-Coupon Bond, Revisited 
Many times, we can formulate a problem in multiple ways. Suppose that instead of 
expressing the yield for the zero-coupon bond in terms of a single variable, as in the 
previous example, we express it in terms of two components: a prevailing interest rate r, 
and a credit spread c. As a formula: 

f (r,c,t)  e(rc )(10t ) 106 	
Given the modified parameter sets: 

 r c t f(r, c, t) 

u 4.00% 1.00% 1 637,628 

v 5.00% 3.00% 2 527,292 

Difference -110,336

The initial and final values have not changed from the previous example—we have 
merely separated the yields to maturity into two components. Now that we have shifted 
perspective, what happens to the attributions? 

 r c t Total Attributed Unexplained 

Aumann-Shapley -49,206 -98,413 37,284 -110,336 0 

Step-through -49,162 -98,027 36,853 -110,336 0 

Partial derivative -57,387 -114,773 31,881 -140,278 29,942 

Note in particular the step-through values. By formulating the problem in a slightly 
different way, the value attributed to the time variable t has changed! In contrast, the 
amounts attributed to t by both the Aumann-Shapley approach and the partial derivative 
have not changed from before. 
 
Now, some readers may object that this change in the attributed value for t comes from 
the fact that we stepped through every possible order of variables. In practice, most 
actuaries would use only a single order, and most likely we would step through the two 
interest rate components consecutively. Under those circumstances, the value attributed 
to t would come out equal under both formulations. For example, if we use the order y, t 

																																																								
6The attribution for t, for example, equals 5 percent of the initial value. 

2.  Integrate that partial derivative along the line segment 
between u and v. Here, the dummy variable z repre-
sents the linear interpolation between u (at z = 0) and v  
(at z = 1).

3.  Multiply the result by the change in that parameter  
(vi – ui)

Step-Through
Many actuaries faced with an attribution problem will 
solve it by stepping through the parameters one at a time, a 
technique with several important advantages. As long as we 
can evaluate the function f at each combination along the  
step-through, f can have any number of discontinui-
ties and it can lack a closed-form solution. We can use 
a step-through even when f has non-continuous inputs. 
Furthermore, a step-through also produces an attribution 
with no unexplained amount.

Step-throughs have one well-known disadvantage, though: 
the results depend on the arbitrary order we use to step 
through the parameters. In the examples in this article we 
will use a modified technique to overcome this issue: we 
will perform the step-through for every possible order, then 
average the attributions together.4 This removes the depen-
dency on an arbitrarily chosen order. As we will see with 
a later example, though, even this modified step-through 
method still has a significant weakness. Despite that, in 
situations where we cannot satisfy the requirements of the 
Aumann-Shapley approach, a step-through remains a viable 
alternative.

Partial Derivatives
Actuaries already frequently use derivatives or approxima-
tions to the derivative to perform attributions. Some partial 
derivatives come up so often that they have specific names, 
such as the “Greeks” (delta, gamma, vega, rho, theta, etc.) 
or duration. In some cases, we use formulas to directly 
calculate the partial derivatives; other times, we shock one 
of the parameters a small amount to numerically estimate 
the derivative.
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actuaries would use only a single order, and most likely we 
would step through the two interest rate components con-
secutively. Under those circumstances, the value attributed 
to t would come out equal under both formulations. For 
example, if we use the order y, t in the first example and c, 
r, t in the second, then in both cases we attribute $40,540 
to t. However, any particular order comes from an arbitrary 
choice on our part. Nothing intrinsic in the order itself 
would lead us to conclude that we should choose one order 
over another. The equally natural order t, y (or t, c, r) would 
lead us to attribute $32,692 to t.

In the end, when using a step-through, we must either 
accept that we have chosen an arbitrary order, or we must 
accept that the results could vary if we re-formulate the 
problem in an equivalent way. Either way, step-throughs 
produce non-unique results.

Example 3: Binary Call
Suppose we own a binary call on a particular security, with 
a strike K at 100. For illustrative purposes we will hold 
the interest rate r constant at 2 percent and the volatility σ 
constant at 25 percent, and we will assume the underlying 
security pays no dividends. For the current asset spot price 
S and time to option maturity t, the value of our call equals:
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At	the	boundary	where	t	=	0,	its	value	equals	
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 S t f(S, t) 

u 90 1 0.314 

v 110 0 1.000 

Difference 0.686 

 

The three methods disagree significantly about the nature and magnitude of the time 
component’s contribution: 

 S t Total Attributed Unexplained

At the boundary where t = 0, its value equals

in the first example and c, r, t in the second, then in both cases we attribute $40,540 to t. 
However, any particular order comes from an arbitrary choice on our part. Nothing 
intrinsic in the order itself would lead us to conclude that we should choose one order 
over another. The equally natural order t, y (or t, c, r) would lead us to attribute $32,692 
to t. 
 
In the end, when using a step-through, we must either accept that we have chosen an 
arbitrary order, or we must accept that the results could vary if we re-formulate the 
problem in an equivalent way. Either way, step-throughs produce non-unique results. 
 
Example 3: Binary Call 
Suppose we own a binary call on a particular security, with a strike K at 100. For 
illustrative purposes we will hold the interest rate r constant at 2 percent and the volatility 
σ constant at 25 percent, and we will assume the underlying security pays no dividends. 
For the current asset spot price S and time to option maturity t, the value of our call 
equals: 

f (S, t)  ert(d2) 	
where		

(x) 
1
2

e 1
2 u2

du


x

 	
	

and	
	

d2 
ln S

K  (r   2

2 )t
 t

	
	
At	the	boundary	where	t	=	0,	its	value	equals	
	

f (S,0) 
1 if S K
0 if S K




	
	
Given the parameters: 

 S t f(S, t) 

u 90 1 0.314 

v 110 0 1.000 

Difference 0.686 

 

The three methods disagree significantly about the nature and magnitude of the time 
component’s contribution: 

 S t Total Attributed Unexplained

As expected, both the step-through and the Aumann-
Shapley approach fully attribute the change. They also 
produce comparable results. The partial derivative results, 
though easily calculable,6 do not accurately capture the total 
change in value.

Example 2: Zero-Coupon Bond, Revisited
Many times, we can formulate a problem in multiple ways. 
Suppose that instead of expressing the yield for the zero-
coupon bond in terms of a single variable, as in the previous 
example, we express it in terms of two components: a pre-
vailing interest rate r, and a credit spread c. As a formula:

Aumann-Shapley -147,619 37,284 -110,336 0 
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Step-through -49,162 -98,027 36,853 -110,336 0 

Partial derivative -57,387 -114,773 31,881 -140,278 29,942 

Note in particular the step-through values. By formulating the problem in a slightly 
different way, the value attributed to the time variable t has changed! In contrast, the 
amounts attributed to t by both the Aumann-Shapley approach and the partial derivative 
have not changed from before. 
 
Now, some readers may object that this change in the attributed value for t comes from 
the fact that we stepped through every possible order of variables. In practice, most 
actuaries would use only a single order, and most likely we would step through the two 
interest rate components consecutively. Under those circumstances, the value attributed 
to t would come out equal under both formulations. For example, if we use the order y, t 

																																																								
6The attribution for t, for example, equals 5 percent of the initial value. 

The initial and final values have not changed from the 
previous example—we have merely separated the yields to 
maturity into two components. Now that we have shifted 
perspective, what happens to the attributions?

Aumann-Shapley -147,619 37,284 -110,336 0 

Step-through -146,952 36,616 -110,336 0 

Partial derivative -172,160 31,881 -140,278 29,942 

 

As expected, both the step-through and the Aumann-Shapley approach fully attribute the 
change. They also produce comparable results. The partial derivative results, though 
easily calculable,6 do not accurately capture the total change in value. 

 

Example 2: Zero-Coupon Bond, Revisited 
Many times, we can formulate a problem in multiple ways. Suppose that instead of 
expressing the yield for the zero-coupon bond in terms of a single variable, as in the 
previous example, we express it in terms of two components: a prevailing interest rate r, 
and a credit spread c. As a formula: 

f (r,c,t)  e(rc )(10t ) 106 	
Given the modified parameter sets: 

 r c t f(r, c, t) 

u 4.00% 1.00% 1 637,628 

v 5.00% 3.00% 2 527,292 

Difference -110,336

The initial and final values have not changed from the previous example—we have 
merely separated the yields to maturity into two components. Now that we have shifted 
perspective, what happens to the attributions? 

 r c t Total Attributed Unexplained 

Aumann-Shapley -49,206 -98,413 37,284 -110,336 0 

Step-through -49,162 -98,027 36,853 -110,336 0 

Partial derivative -57,387 -114,773 31,881 -140,278 29,942 

Note in particular the step-through values. By formulating the problem in a slightly 
different way, the value attributed to the time variable t has changed! In contrast, the 
amounts attributed to t by both the Aumann-Shapley approach and the partial derivative 
have not changed from before. 
 
Now, some readers may object that this change in the attributed value for t comes from 
the fact that we stepped through every possible order of variables. In practice, most 
actuaries would use only a single order, and most likely we would step through the two 
interest rate components consecutively. Under those circumstances, the value attributed 
to t would come out equal under both formulations. For example, if we use the order y, t 

																																																								
6The attribution for t, for example, equals 5 percent of the initial value. 

Note in particular the step-through values. By formulating 
the problem in a slightly different way, the value attributed 
to the time variable t has changed! In contrast, the amounts 
attributed to t by both the Aumann-Shapley approach and 
the partial derivative have not changed from before.

Now, some readers may object that this change in the 
attributed value for t comes from the fact that we stepped 
through every possible order of variables. In practice, most 

where
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We have defined f as a multivariate function of the xi 
variables. However, over the attribution region we can 
also view f as a function of z alone, denoted f(z) for clarity. 
The linear interpolation between u and v connects the two:  
f(z)(z) = f((1-z)u+zv). Thus f(z)(0), for example, would mean 
to calculate the values of each xi for z=0, then evaluate f at 
those values—in other words, f(z)(0) equals our initial value 
f(u). We can now write out an equation for the difference 
we seek to attribute:

Aumann-Shapley 0.435 0.251 0.686 0 

Step-through 0.653 0.033 0.686 0 

Partial derivative 0.312 -0.060 0.252 0.434 

 

The price crosses the strike during the attribution period, but the call does not reach full 
value immediately at that time. Its value still includes a discount for the probability of a 
subsequent decrease. The passage of time eventually drives that probability to zero, 
bringing the option to its full value. At the beginning of the attribution period, though, the 
opposite pattern holds: the possibility that volatility will cause the asset price to exceed 
the strike recedes as we approach maturity, meaning that the passage of time reduces the 
option’s value. The partial derivative results reflect the latter effect. 
 
Thus, f’s sensitivity to time varies considerably over the attribution region. By only 
considering the edges of the region, the step-through does not accurately capture the full 
sensitivity and ends up attributing little of the change to the time component. 
 
An Intuitive Argument for Why Aumann-Shapley Produces a Complete Attribution 
Although the examples have shown that the Aumann-Shapley approach produces a 
complete attribution in those cases, they do not explain why it works in general. A quick 
(though non-rigorous) argument will help illustrate the logic underpinning the technique. 
 
We have defined f as a multivariate function of the xi variables. However, over the 
attribution region we can also view f as a function of z alone, denoted f(z) for clarity. The 
linear interpolation between u and v connects the two: f(z)(z) = f((1-z)u+zv). Thus f(z)(0), 
for example, would mean to calculate the values of each xi for z=0, then evaluate f at 
those values—in other words, f(z)(0) equals our initial value f(u). We can now write out 
an equation for the difference we seek to attribute: 

f (v) f (u)  f (z)(1)f (z)(0) 

Assuming that we have a sufficiently smooth function, we can express the difference as 
an integral: 


df (z )

dz0

1

 (z)dz  

We still need to relate this back to the original xi variables, and we do this by applying 
the chain rule. Note that we have switched back to the original multivariate function f: 


f
xi


dxi

dzi
 ((1 z)u zv)










0

1

 dz  

Since z represents our linear interpolation variable, the derivative of xi equals the 
difference between the final and initial values. With that substitution, and separating out 
the individual terms inside the integral, we finally obtain: 

Assuming that we have a sufficiently smooth function, we 
can express the difference as an integral:

Aumann-Shapley 0.435 0.251 0.686 0 

Step-through 0.653 0.033 0.686 0 

Partial derivative 0.312 -0.060 0.252 0.434 

 

The price crosses the strike during the attribution period, but the call does not reach full 
value immediately at that time. Its value still includes a discount for the probability of a 
subsequent decrease. The passage of time eventually drives that probability to zero, 
bringing the option to its full value. At the beginning of the attribution period, though, the 
opposite pattern holds: the possibility that volatility will cause the asset price to exceed 
the strike recedes as we approach maturity, meaning that the passage of time reduces the 
option’s value. The partial derivative results reflect the latter effect. 
 
Thus, f’s sensitivity to time varies considerably over the attribution region. By only 
considering the edges of the region, the step-through does not accurately capture the full 
sensitivity and ends up attributing little of the change to the time component. 
 
An Intuitive Argument for Why Aumann-Shapley Produces a Complete Attribution 
Although the examples have shown that the Aumann-Shapley approach produces a 
complete attribution in those cases, they do not explain why it works in general. A quick 
(though non-rigorous) argument will help illustrate the logic underpinning the technique. 
 
We have defined f as a multivariate function of the xi variables. However, over the 
attribution region we can also view f as a function of z alone, denoted f(z) for clarity. The 
linear interpolation between u and v connects the two: f(z)(z) = f((1-z)u+zv). Thus f(z)(0), 
for example, would mean to calculate the values of each xi for z=0, then evaluate f at 
those values—in other words, f(z)(0) equals our initial value f(u). We can now write out 
an equation for the difference we seek to attribute: 

f (v) f (u)  f (z)(1)f (z)(0) 

Assuming that we have a sufficiently smooth function, we can express the difference as 
an integral: 


df (z )

dz0

1

 (z)dz  

We still need to relate this back to the original xi variables, and we do this by applying 
the chain rule. Note that we have switched back to the original multivariate function f: 


f
xi


dxi

dzi
 ((1 z)u zv)










0

1

 dz  

Since z represents our linear interpolation variable, the derivative of xi equals the 
difference between the final and initial values. With that substitution, and separating out 
the individual terms inside the integral, we finally obtain: 

We still need to relate this back to the original xi variables, 
and we do this by applying the chain rule. Note that we have 
switched back to the original multivariate function f:

Aumann-Shapley 0.435 0.251 0.686 0 

Step-through 0.653 0.033 0.686 0 

Partial derivative 0.312 -0.060 0.252 0.434 

 

The price crosses the strike during the attribution period, but the call does not reach full 
value immediately at that time. Its value still includes a discount for the probability of a 
subsequent decrease. The passage of time eventually drives that probability to zero, 
bringing the option to its full value. At the beginning of the attribution period, though, the 
opposite pattern holds: the possibility that volatility will cause the asset price to exceed 
the strike recedes as we approach maturity, meaning that the passage of time reduces the 
option’s value. The partial derivative results reflect the latter effect. 
 
Thus, f’s sensitivity to time varies considerably over the attribution region. By only 
considering the edges of the region, the step-through does not accurately capture the full 
sensitivity and ends up attributing little of the change to the time component. 
 
An Intuitive Argument for Why Aumann-Shapley Produces a Complete Attribution 
Although the examples have shown that the Aumann-Shapley approach produces a 
complete attribution in those cases, they do not explain why it works in general. A quick 
(though non-rigorous) argument will help illustrate the logic underpinning the technique. 
 
We have defined f as a multivariate function of the xi variables. However, over the 
attribution region we can also view f as a function of z alone, denoted f(z) for clarity. The 
linear interpolation between u and v connects the two: f(z)(z) = f((1-z)u+zv). Thus f(z)(0), 
for example, would mean to calculate the values of each xi for z=0, then evaluate f at 
those values—in other words, f(z)(0) equals our initial value f(u). We can now write out 
an equation for the difference we seek to attribute: 

f (v) f (u)  f (z)(1)f (z)(0) 

Assuming that we have a sufficiently smooth function, we can express the difference as 
an integral: 


df (z )

dz0

1

 (z)dz  

We still need to relate this back to the original xi variables, and we do this by applying 
the chain rule. Note that we have switched back to the original multivariate function f: 


f
xi


dxi

dzi
 ((1 z)u zv)










0

1

 dz  

Since z represents our linear interpolation variable, the derivative of xi equals the 
difference between the final and initial values. With that substitution, and separating out 
the individual terms inside the integral, we finally obtain: 

Since z represents our linear interpolation variable, the 
derivative of xi  equals the difference between the final and 
initial values. With that substitution, and separating out the 
individual terms inside the integral, we finally obtain:

f (v)  f (u)  (vi  ui)
i
 f

xi

((1 z)u  zv)
0

1

 dz  

where the term on the right hand side corresponding to each xi gives that variable’s 
attribution. 
 
From this argument, we can also see why jump discontinuities cause this approach to fail, 
since they cause changes in the value of f that do not get captured by the derivative. 
However, as long as we have a sufficiently smooth function (and a sufficiently accurate 
calculator for the integral) we will always get a complete attribution from the Aumann-
Shapley approach. 
 
Accuracy of Numeric Integration 
Since the Aumann-Shapley results come from a numeric integration, a natural question 
arises: how much confidence should we have in their accuracy? In practice we can obtain 
very rapid convergence using Simpson’s rule.7 Example 1’s results earlier used 1,000 
points to ensure a highly accurate result, but even if we evaluate the integrals at just three 
points and use Simpson’s rule we get almost identical results: 

      Contributions to integrals

z y t f f
y

 (10  t) f
f
t

 yf f
y  

f
t  

0.00 5.00% 1.00 637,628 -5,738,653 31,881 -956,442 5,314 

0.50 6.50% 1.50 575,509 -4,891,829 37,408 -3,261,219 24,939 

1.00 8.00% 2.00 527,292 -4,218,339 42,183 -703,057 7,031 

    Total -4,920,718 37,283 

    (vi-ui) 3.00% 1.00 

    (vi-ui) Total -147,622 37,283 

Previous Results for Comparison -147,619 37,284 

 

Thus, even a quick calculation can produce reasonable results. Furthermore, by using a 
spreadsheet or programming language we can easily evaluate more points to improve the 
accuracy. 
 
Additional Considerations 
In this article we have looked at some artificially simple examples. In real life, though, 
we may face more complex attribution problems. For example, we may wish to reflect 
the fact that interest rates vary based on the time to maturity. Even if the yield curve does 
not shift, the yield on an asset could change simply due to the passage of time. In that 
																																																								
7 f (z)dz  2

f (x  ) 4 f (x) f (x  )
6x

x

  

where the term on the right hand side corresponding to each 
xi gives that variable’s attribution.

From this argument, we can also see why jump discontinui-
ties cause this approach to fail, since they cause changes in 
the value of f that do not get captured by the derivative. 
However, as long as we have a sufficiently smooth function 
(and a sufficiently accurate calculator for the integral) we 
will always get a complete attribution from the Aumann-
Shapley approach.

Given the parameters:

in the first example and c, r, t in the second, then in both cases we attribute $40,540 to t. 
However, any particular order comes from an arbitrary choice on our part. Nothing 
intrinsic in the order itself would lead us to conclude that we should choose one order 
over another. The equally natural order t, y (or t, c, r) would lead us to attribute $32,692 
to t. 
 
In the end, when using a step-through, we must either accept that we have chosen an 
arbitrary order, or we must accept that the results could vary if we re-formulate the 
problem in an equivalent way. Either way, step-throughs produce non-unique results. 
 
Example 3: Binary Call 
Suppose we own a binary call on a particular security, with a strike K at 100. For 
illustrative purposes we will hold the interest rate r constant at 2 percent and the volatility 
σ constant at 25 percent, and we will assume the underlying security pays no dividends. 
For the current asset spot price S and time to option maturity t, the value of our call 
equals: 

f (S, t)  ert(d2) 	
where		

(x) 
1
2

e 1
2 u2

du


x

 	
	

and	
	

d2 
ln S

K  (r   2

2 )t
 t

	
	
At	the	boundary	where	t	=	0,	its	value	equals	
	

f (S,0) 
1 if S K
0 if S K




	
	
Given the parameters: 

 S t f(S, t) 

u 90 1 0.314 

v 110 0 1.000 

Difference 0.686 

 

The three methods disagree significantly about the nature and magnitude of the time 
component’s contribution: 

 S t Total Attributed Unexplained

The three methods disagree significantly about the nature 
and magnitude of the time component’s contribution:

in the first example and c, r, t in the second, then in both cases we attribute $40,540 to t. 
However, any particular order comes from an arbitrary choice on our part. Nothing 
intrinsic in the order itself would lead us to conclude that we should choose one order 
over another. The equally natural order t, y (or t, c, r) would lead us to attribute $32,692 
to t. 
 
In the end, when using a step-through, we must either accept that we have chosen an 
arbitrary order, or we must accept that the results could vary if we re-formulate the 
problem in an equivalent way. Either way, step-throughs produce non-unique results. 
 
Example 3: Binary Call 
Suppose we own a binary call on a particular security, with a strike K at 100. For 
illustrative purposes we will hold the interest rate r constant at 2 percent and the volatility 
σ constant at 25 percent, and we will assume the underlying security pays no dividends. 
For the current asset spot price S and time to option maturity t, the value of our call 
equals: 

f (S, t)  ert(d2) 	
where		
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Given the parameters: 

 S t f(S, t) 

u 90 1 0.314 

v 110 0 1.000 

Difference 0.686 

 

The three methods disagree significantly about the nature and magnitude of the time 
component’s contribution: 

 S t Total Attributed Unexplained

Aumann-Shapley 0.435 0.251 0.686 0 

Step-through 0.653 0.033 0.686 0 

Partial derivative 0.312 -0.060 0.252 0.434 

 

The price crosses the strike during the attribution period, but the call does not reach full 
value immediately at that time. Its value still includes a discount for the probability of a 
subsequent decrease. The passage of time eventually drives that probability to zero, 
bringing the option to its full value. At the beginning of the attribution period, though, the 
opposite pattern holds: the possibility that volatility will cause the asset price to exceed 
the strike recedes as we approach maturity, meaning that the passage of time reduces the 
option’s value. The partial derivative results reflect the latter effect. 
 
Thus, f’s sensitivity to time varies considerably over the attribution region. By only 
considering the edges of the region, the step-through does not accurately capture the full 
sensitivity and ends up attributing little of the change to the time component. 
 
An Intuitive Argument for Why Aumann-Shapley Produces a Complete Attribution 
Although the examples have shown that the Aumann-Shapley approach produces a 
complete attribution in those cases, they do not explain why it works in general. A quick 
(though non-rigorous) argument will help illustrate the logic underpinning the technique. 
 
We have defined f as a multivariate function of the xi variables. However, over the 
attribution region we can also view f as a function of z alone, denoted f(z) for clarity. The 
linear interpolation between u and v connects the two: f(z)(z) = f((1-z)u+zv). Thus f(z)(0), 
for example, would mean to calculate the values of each xi for z=0, then evaluate f at 
those values—in other words, f(z)(0) equals our initial value f(u). We can now write out 
an equation for the difference we seek to attribute: 

f (v) f (u)  f (z)(1)f (z)(0) 

Assuming that we have a sufficiently smooth function, we can express the difference as 
an integral: 


df (z )

dz0

1

 (z)dz  

We still need to relate this back to the original xi variables, and we do this by applying 
the chain rule. Note that we have switched back to the original multivariate function f: 


f
xi


dxi

dzi
 ((1 z)u zv)










0

1

 dz  

Since z represents our linear interpolation variable, the derivative of xi equals the 
difference between the final and initial values. With that substitution, and separating out 
the individual terms inside the integral, we finally obtain: 

The price crosses the strike during the attribution period, 
but the call does not reach full value immediately at that 
time. Its value still includes a discount for the probability 
of a subsequent decrease. The passage of time eventually 
drives that probability to zero, bringing the option to its full 
value. At the beginning of the attribution period, though, 
the opposite pattern holds: the possibility that volatility 
will cause the asset price to exceed the strike recedes as 
we approach maturity, meaning that the passage of time 
reduces the option’s value. The partial derivative results 
reflect the latter effect.

Thus, f’s sensitivity to time varies considerably over the 
attribution region. By only considering the edges of the 
region, the step-through does not accurately capture the full 
sensitivity and ends up attributing little of the change to the 
time component.

An intuitive Argument For Why 
AumAnn-shAPley Produces A 
comPlete Attribution
Although the examples have shown that the Aumann-
Shapley approach produces a complete attribution in those 
cases, they do not explain why it works in general. A quick 
(though non-rigorous) argument will help illustrate the logic 
underpinning the technique.
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The Aumann-Shapley approach applies in those more com-
plex cases as well. We do need a way to interpolate smooth-
ly between the observed points. However, to perform any 
attribution we generally need some form of interpolation 
anyway since our valuation points will rarely correspond 
exactly to the market-observable points. Some common 
methods include linear interpolation and cubic splines, both 
of which provide differentiable interpolations.

Although this article has focused on asset valuation exam-
ples, we can use the Aumann-Shapley approach for other 
applications. However, we do need to verify that our 
function f meets the requirements. Liabilities in particular, 
though, often contain features that can potentially create 
discontinuities, including:

1.  Charges, guaranteed rates of return, or other features 
based on market values rounded to the nearest percent, 
nearest 25 basis points, or some other multiple.

2.  Any feature involving rebalancing something back to 
a target, but only if outside some tolerance band. For 
example, due to an investment strategy we have adopted 
or due to a contractual agreement we have entered into, 
we might rebalance a particular asset allocation back 
to 80 percent equity at end of each quarter if the cur-
rent asset allocation deviates from that by more than 5 
percent.

3. Franchise deductibles.

4. Digital payoffs.

5.  Features activated or deactivated at certain thresholds, 
including knock-in and knock-out features.

Keep in mind, though features such as these do not automat-
ically imply a problem. In example 3 our function contained 
a discontinuity at the point (S, t) = (100, 0), but the path 
between u and v did not pass through that point. In gen-
eral, the specific circumstances of the problem will dictate 
whether we can use the Aumann-Shapley approach or not.

AccurAcy oF numeric integrAtion
Since the Aumann-Shapley results come from a numeric 
integration, a natural question arises: how much confidence 
should we have in their accuracy? In practice we can obtain 
very rapid convergence using Simpson’s rule.7 Example 
1’s results earlier used 1,000 points to ensure a highly 
accurate result, but even if we evaluate the integrals at  
just three points and use Simpson’s rule we get almost 
identical results:

f (v)  f (u)  (vi  ui)
i
 f

xi

((1 z)u  zv)
0

1

 dz  

where the term on the right hand side corresponding to each xi gives that variable’s 
attribution. 
 
From this argument, we can also see why jump discontinuities cause this approach to fail, 
since they cause changes in the value of f that do not get captured by the derivative. 
However, as long as we have a sufficiently smooth function (and a sufficiently accurate 
calculator for the integral) we will always get a complete attribution from the Aumann-
Shapley approach. 
 
Accuracy of Numeric Integration 
Since the Aumann-Shapley results come from a numeric integration, a natural question 
arises: how much confidence should we have in their accuracy? In practice we can obtain 
very rapid convergence using Simpson’s rule.7 Example 1’s results earlier used 1,000 
points to ensure a highly accurate result, but even if we evaluate the integrals at just three 
points and use Simpson’s rule we get almost identical results: 

      Contributions to integrals

z y t f f
y

 (10  t) f
f
t

 yf f
y  

f
t  

0.00 5.00% 1.00 637,628 -5,738,653 31,881 -956,442 5,314 

0.50 6.50% 1.50 575,509 -4,891,829 37,408 -3,261,219 24,939 

1.00 8.00% 2.00 527,292 -4,218,339 42,183 -703,057 7,031 

    Total -4,920,718 37,283 

    (vi-ui) 3.00% 1.00 

    (vi-ui) Total -147,622 37,283 

Previous Results for Comparison -147,619 37,284 

 

Thus, even a quick calculation can produce reasonable results. Furthermore, by using a 
spreadsheet or programming language we can easily evaluate more points to improve the 
accuracy. 
 
Additional Considerations 
In this article we have looked at some artificially simple examples. In real life, though, 
we may face more complex attribution problems. For example, we may wish to reflect 
the fact that interest rates vary based on the time to maturity. Even if the yield curve does 
not shift, the yield on an asset could change simply due to the passage of time. In that 
																																																								
7 f (z)dz  2

f (x  ) 4 f (x) f (x  )
6x

x

  

Thus, even a quick calculation can produce reasonable 
results. Furthermore, by using a spreadsheet or program-
ming language we can easily evaluate more points to 
improve the accuracy.

AdditionAl considerAtions
In this article we have looked at some artificially simple 
examples. In real life, though, we may face more complex 
attribution problems. For example, we may wish to reflect 
the fact that interest rates vary based on the time to matu-
rity. Even if the yield curve does not shift, the yield on an 
asset could change simply due to the passage of time. In 
that case, it may make more sense to assign the change in 
value solely to time, not due to a nonexistent movement in 
the yield curve.

To further complicate matters, when valuing options we 
could view volatility as depending on both the time to 
expiration and the moneyness of the option, leading to a 
two-dimensional volatility surface.



Despite its requirements, the Aumann-Shapley approach 
offers a powerful way to solve attribution problems. By 
adding it to their toolkit, actuaries can produce more reli-
able and more complete attributions, and thus move that 
much closer to truly understanding the causes of things. 
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enD notes

1    Virgil. Wikiquote. retrieved Jan. 27, 2013, from http://en.wikiquote.org/wiki/Virgil
2   The existence of partial derivatives also implies the continuity of f. The partial derivatives can contain non-removable discontinuities, but f itself 

cannot contain any along the path.
3   except to the extent that whatever tool we use to calculate the results has finite precision, though this issue applies to any attribution technique.
4   This corresponds to the Shapley value from game theory.
5   evaluating it at the end point instead or at both points does not eliminate its drawbacks. for the examples in this article we will use the partial 

derivative at the beginning point. 
6   The attribution for t, for example, equals 5 percent of the initial value.

f (v)  f (u)  (vi  ui)
i
 f

xi

((1 z)u  zv)
0

1

 dz

where the term on the right hand side corresponding to each xi gives that variable’s 
attribution. 

From this argument, we can also see why jump discontinuities cause this approach to fail, 
since they cause changes in the value of f that do not get captured by the derivative. 
However, as long as we have a sufficiently smooth function (and a sufficiently accurate 
calculator for the integral) we will always get a complete attribution from the Aumann-
Shapley approach.

Accuracy of Numeric Integration
Since the Aumann-Shapley results come from a numeric integration, a natural question 
arises: how much confidence should we have in their accuracy? In practice we can obtain 
very rapid convergence using Simpson’s rule.7 Example 1’s results earlier used 1,000 
points to ensure a highly accurate result, but even if we evaluate the integrals at just three
points and use Simpson’s rule we get almost identical results: 

Contributions to integrals

z y t f f
y

 (10  t) f
f
t

 yf f
y f

t

0.00 5.00% 1.00 637,628 -5,738,653 31,881 -956,442 5,314 

0.50 6.50% 1.50 575,509 -4,891,829 37,408 -3,261,219 24,939 

1.00 8.00% 2.00 527,292 -4,218,339 42,183 -703,057 7,031 

Total -4,920,718 37,283 

(vi-ui) 3.00% 1.00 

(vi-ui) Total -147,622 37,283 

Previous Results for Comparison -147,619 37,284 

Thus, even a quick calculation can produce reasonable results. Furthermore, by using a 
spreadsheet or programming language we can easily evaluate more points to improve the 
accuracy.

Additional Considerations 
In this article we have looked at some artificially simple examples. In real life, though, 
we may face more complex attribution problems. For example, we may wish to reflect 
the fact that interest rates vary based on the time to maturity. Even if the yield curve does 
not shift, the yield on an asset could change simply due to the passage of time. In that 
																																																								
7 f (z)dz  2

f (x  ) 4 f (x) f (x  )
6x

x


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