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Hedging Variable Annuities: 
How Often Should the Hedging 
Portfolio be Rebalanced?
By Maciej Augustyniak and Mathieu Boudreault

In the last decade, many insurers have implemented dynamic hedging pro-
grams to defend against market risks embedded in their variable annuity (VA) 
blocks of business. At the core of these programs are the so-called Greeks 

which correspond to price sensitivities with respect to various market risks 
such as movements in equity indices, interest rates and volatility. These Greeks 
indicate to the insurer how much to invest in equities, bonds and financial 
derivatives to offset market exposures in its VA contracts. Due to changes in 
market factors, Greeks vary in time and the insurer is therefore required to 
rebalance its hedging portfolio (i.e., adjust its hedging positions) periodically to 
ensure that the hedging strategy is achieving its objective.

When managing a VA hedging program, the choice of the rebalancing frequency 
is an important practical issue because of the high monitoring and trading 
costs that ensue when hedging positions are revised. It is well-known that in a 
Black-Scholes world hedging more frequently reduces the hedging error. In fact, 
groundbreaking work in financial theory showed that this error can theoretically 
be eliminated in a Black-Scholes setting with a continuously rebalanced delta 
hedge. However, in the real world perfect hedging is generally not feasible due 
to sudden price jumps, to market frictions, to the impossibility of trading in con-
tinuous time and to the limited availability of traded assets. Therefore, hedging 
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in real market conditions entails a risk. It would be tempting 
to conclude based on Black-Scholes theory that this risk can 
be reduced with a more frequent rebalancing of the hedging 
portfolio. However, this is not necessarily the case because every 
hedging strategy carried out in the real world is exposed to 
model risk; that is, there is inevitably a discrepancy between the 
insurer’s hedging model used to compute Greeks and the true 
(unknown) financial model or data-generating process. Conse-
quently, adjusting hedging positions too often with the wrong 
model can lead to a larger accumulation of hedging errors than 
if less frequent revisions were made. This issue is especially 
important to investigate in the context of VAs because hedging 
is performed over long-term periods.

The objective of this article is to investigate how the choice of 
the rebalancing frequency in a VA hedging program impacts 
hedging effectiveness. More precisely, we examine the perfor-
mance of daily, weekly, monthly and move-based delta hedging 
strategies for managing the underlying equity risk of a simple 
guaranteed minimum accumulation benefit (GMAB) VA 
indexed to historical S&P 500 returns. This allows us to conduct 
a back-testing exercise and determine what choice of rebalancing 
strategy would have been preferable to use in the past. Overall, 
we find that a monthly rebalanced delta hedging strategy con-
sistently led to the smallest losses when dynamically hedging 
10-year GMAB contracts maturing in the period 1990–2017. 
It must be emphasized that this conclusion is valid with and 
without transaction costs. Therefore, recent empirical evidence 
strongly favors a less frequent rebalancing of the hedging port-
folio and we examine some explanations of this phenomenon.

GMAB CONTRACT AND ASSUMPTIONS
We assume that the insurer sells 10-year VA contracts with a 
GMAB rider. The value of the VA account in time is denoted 
by 
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can lead to a larger accumulation of hedging errors than if less frequent revisions were made. This issue is 
especially important to investigate in the context of VAs because hedging is performed over long-term periods. 

The objective of this article is to investigate how the choice of the rebalancing frequency in a VA hedging 
program impacts hedging effectiveness. More precisely, we examine the performance of daily, weekly, 
monthly and move-based delta hedging strategies for managing the underlying equity risk of a simple 
guaranteed minimum accumulation benefit (GMAB) VA indexed to historical S&P 500 returns. This allows us to 
conduct a backtesting exercise and determine what choice of rebalancing strategy would have been preferable 
to use in the past. Overall, we find that a monthly rebalanced delta hedging strategy consistently led to the 
smallest losses when dynamically hedging 10-year GMAB contracts maturing in the period 1990-2017. It must 
be emphasized that this conclusion is valid with and without transaction costs. Therefore, recent empirical 
evidence strongly favors a less frequent rebalancing of the hedging portfolio and we examine some 
explanations of this phenomenon. 

GMAB contract and assumptions 
We assume that the insurer sells 10-year VA contracts with a GMAB rider. The value of the VA account in time 
is denoted by {𝐴𝐴𝑡𝑡: 𝑡𝑡 = 0,1, … , 𝑇𝑇}, where 𝑡𝑡 is measured in trading days from inception of the contract. Since 
there are approximately 252 trading days in each calendar year, the term-to-maturity of the contract is set to 
𝑇𝑇 = 2520 days. The VA account is invested in an investment fund, denoted by {𝑆𝑆𝑡𝑡: 𝑡𝑡 = 0,1, … , 𝑇𝑇} (in our 
hedging experiment, this investment fund will mimic historical returns on the S&P 500 price index). We assume 
an initial investment of 𝐴𝐴0 = 𝑆𝑆0 = 100$. The GMAB rider ensures that the policyholder will be able to recover 
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will be able to recover the greater of the account value  the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

 and 
a guaranteed amount the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 

corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

 at maturity (the guaranteed 
amount corresponds to the initial investment accumulated at an 
effective annual roll-up rate of 1.5 percent). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-
term put option guarantee; the insurer’s liability at maturity is 

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

. This guarantee is financed via a fee withdrawn 
daily as a fraction of the account value at an annual nominal 
rate of 

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

, that is, at the beginning of each trading day 

the insurer withdraws 

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

 from the account value. As a 
result, fee cash flows are risky and should be hedged along with 
the guarantee. The relationship between the investment fund 

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

and the VA account 

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

 at time 

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

 (right before the withdrawal of 
fees) is therefore given by:

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

Finally, we suppose that the VA contract is held to maturity (i.e., 
surrender and death are not possible) and assume a continuously 
compounded annual risk-free rate of r 

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

HEDGED LOSS
If the insurer does not use a hedging strategy, its unhedged loss 
on the VA contract at maturity, denoted by 

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

, corresponds to 
the payoff on the GMAB rider less accumulated fees that were 
collected throughout the contract:

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

To manage the market risk embedded in the GMAB rider, we 
assume that the insurer establishes a dynamic delta hedging 
strategy under the Black-Scholes model. This strategy entails 

The objective of this article is 
to investigate how the choice 
of the rebalancing frequency in 
a VA hedging program impacts 
hedging eff ectiveness. 
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holding a position of 

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 
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the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
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𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
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The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

 at time 

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
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The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 
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the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
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To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
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The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

 is detailed in the following section). 
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𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
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𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 
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The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

 shares of the underlying fund and 
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The hedged loss on the VA contract at maturity, denoted by 
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Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
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To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 
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The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 
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𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
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To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 
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The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 
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To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 
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The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 
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To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
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The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
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The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 
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To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

The mark-to-market gain at time 

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 
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the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

 is:

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1

𝑡𝑡=0
. 

The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

The cumulative mark-to-market gains on the hedge, denoted 
by 

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
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𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
𝑇𝑇−1
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The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

, correspond to the accumulated values of these gains to 
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the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
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𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 

𝐻𝐻𝑇𝑇 = ∑Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟 252⁄ )𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡−1)/252
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The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 
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will allow the insurer to offset its loss on the VA contract. 
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To achieve its objective, the delta hedging strategy must protect 
the insurer against changes in the net value of the VA contract 
due to fluctuations in the underlying investment fund 

the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
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To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 
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The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 
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before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
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To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
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The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 
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the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 
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To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 
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The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 
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the greater of the account value 𝐴𝐴𝑇𝑇 and a guaranteed amount 𝐺𝐺 = 116 at maturity (the guaranteed amount 
corresponds to the initial investment accumulated at an effective annual roll-up rate of 1.5%). The GMAB rider 
therefore creates a liability for the insurer in the form of a long-term put option guarantee; the insurer’s 
liability at maturity is max⁡(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0). This guarantee is financed via a fee withdrawn daily as a fraction of the 
account value at an annual nominal rate of 𝛼𝛼 = 2%, that is, at the beginning of each trading day the insurer 
withdraws 𝐴𝐴𝑡𝑡(𝛼𝛼/252) from the account value. As a result, fee cash flows are risky and should be hedged along 
with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
contract: 

𝐿𝐿𝑇𝑇 = GMAB⁡payoff − accumulated⁡fees 

= max(𝐺𝐺 − 𝐴𝐴𝑇𝑇, 0) −∑𝐴𝐴𝑡𝑡(𝛼𝛼 252⁄ )
𝑇𝑇−1

𝑡𝑡=0
𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡) 252⁄ . 

To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
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The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
these gains to maturity: 
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The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 
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with the guarantee. The relationship between the investment fund 𝑆𝑆𝑡𝑡 and the VA account 𝐴𝐴𝑡𝑡 at time 𝑡𝑡 (right 
before the withdrawal of fees) is therefore given by: 

𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑡𝑡. 
Finally, we suppose that the VA contract is held to maturity (i.e. surrender and death are not possible) and 
assume a continuously compounded annual risk-free rate of 𝑟𝑟 = 3%. 

Hedged loss 
If the insurer does not use a hedging strategy, its unhedged loss on the VA contract at maturity, denoted by 𝐿𝐿𝑇𝑇, 
corresponds to the payoff on the GMAB rider less accumulated fees that were collected throughout the 
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To manage the market risk embedded in the GMAB rider, we assume that the insurer establishes a dynamic 
delta hedging strategy under the Black-Scholes model. This strategy entails holding a position of Δ𝑡𝑡 (the Greek 
delta) in the fund 𝑆𝑆𝑡𝑡 at time 𝑡𝑡 (the computation of Δ𝑡𝑡 is detailed in the following section). This can be 
accomplished using futures or, equivalently, by taking a long position in Δ𝑡𝑡 shares of the underlying fund and 
borrowing the costs or lending the proceeds. 

The hedged loss on the VA contract at maturity, denoted by 𝐻𝐻𝐻𝐻𝑇𝑇, corresponds to: 

𝐻𝐻𝐿𝐿𝑇𝑇 = ⁡unhedged⁡loss − cumulative⁡mark-to-market⁡gains⁡on⁡the⁡hedge 
= 𝐿𝐿𝑇𝑇 − 𝐻𝐻𝑇𝑇. 

The mark-to-market gain at time 𝑡𝑡 + 1 associated with the delta hedge established at time 𝑡𝑡 is: 

Δ𝑡𝑡(𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡𝑒𝑒𝑟𝑟/252). 
The cumulative mark-to-market gains on the hedge, denoted by 𝐻𝐻𝑇𝑇, correspond to the accumulated values of 
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The objective of the delta hedging strategy is to generate cumulative mark-to-market gains at maturity that will 
allow the insurer to offset its loss on the VA contract. 

Computation of delta 
To achieve its objective, the delta hedging strategy must protect the insurer against changes in the net value of 
the VA contract due to fluctuations in the underlying investment fund 𝑆𝑆𝑡𝑡. In a Black-Scholes setting, the net 
value of the VA contract is computed as an expected present value (PV) under the risk-neutral measure. The 
net value of the VA contract at time 𝑡𝑡 (in the eyes of the insurer), denoted by 𝑉𝑉𝑡𝑡, corresponds to: 

𝑉𝑉𝑡𝑡 = Black-Scholes⁡put⁡price − expected⁡PV⁡of⁡future⁡fees − past⁡fees⁡accumulated⁡to⁡time⁡t. 

Note that the first two terms on the right-hand side of this 
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last term is not. The position Δ𝑡𝑡 is then defined as the first-order sensitivity of 𝑉𝑉𝑡𝑡 with respect to a change in 𝑆𝑆𝑡𝑡: 

Δ𝑡𝑡 = 𝜕𝜕𝑉𝑉𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

= Δ𝑡𝑡
put − [(1 − 𝛼𝛼 252⁄ )𝑡𝑡 − (1 − 𝛼𝛼 252⁄ )𝑇𝑇], 

where  

Δ𝑡𝑡
put = −(1 − 𝛼𝛼 252⁄ )𝑇𝑇Φ(−𝑑𝑑1), 

𝑑𝑑1 =
log (𝐴𝐴𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑇𝑇−𝑡𝑡

𝐺𝐺 ) + (𝑟𝑟 + 𝜎𝜎𝑡𝑡2/2)(𝑇𝑇 − 𝑡𝑡)

𝜎𝜎𝑡𝑡√𝑇𝑇 − 𝑡𝑡
 

is the formula for the delta of a put option (a document detailing the derivation of Δ𝑡𝑡 is available on the 
author’s website). Note that delta hedging the net value of the contract entails hedging both the guarantee 
offered and future fee cash flows. 

We remark that the hedge ratio Δ𝑡𝑡 is computed from the above formula only when the hedging position is 
revised. Otherwise, when the portfolio is not rebalanced at time 𝑡𝑡, we simply set Δ𝑡𝑡 = Δt−1. 

Data and volatility calibration 
The variable of interest in our hedging experiment is the insurer’s hedged loss at maturity denoted by 𝐻𝐻𝐿𝐿𝑇𝑇. The 
goal of our backtest is to compute the realized values of 𝐻𝐻𝐿𝐿𝑇𝑇 assuming that the VA is exposed to 10-year 
rolling S&P 500 daily return data over the period 1960-2017. More precisely, the first VA contract is assumed to 
be issued on 1959-12-31 and matures 2520 trading days later on 1970-02-13. The second contract is issued on 
the following trading day, that is, on 1960-01-04 and matures on 1970-02-16. The process then continues until 
the final 10-year period which begins on 2007-08-29 and ends on 2017-08-31. In total, we obtain 11,998 10-
year return paths. It must be noted that since these paths are based on series of overlapping returns, the 
hedging losses computed on these paths are not all independent. Nevertheless, the backtesting experiment 
allows us to assess the effectiveness of delta hedging strategies over time and determine what choice of 
rebalancing strategy would have been preferable to use in the past. 

The computation of the Black-Scholes hedge ratio Δ𝑡𝑡 requires a volatility assumption 𝜎𝜎𝑡𝑡. Due to the long-term 
nature of the contract, we allow this parameter to be time-varying. In fact, it would be unrealistic to use a 
constant volatility assumption over a 10-year period. In our analysis, we assume that 𝜎𝜎𝑡𝑡 is calibrated at time 𝑡𝑡 
to the past annualized realized volatility computed from daily returns over a three-year period (756 trading 
days). We experimented alternative ways to set this parameter and found that our conclusions are robust to 
different calibration methods. 

Results 
Figure 1 illustrates the results of our backtesting exercise. We consider daily, weekly, monthly and move-based 
delta hedging strategies. The daily, weekly and monthly strategies are rebalanced every 1, 5 and 21 trading 
days, respectively. The move-based strategy is rebalanced only when the value of the hedge ratio Δ𝑡𝑡 changes 
by more than 0.05 in absolute value. 

The chart in the upper part of Figure 1 shows the insurer’s hedged loss at maturity (𝐻𝐻𝐿𝐿𝑇𝑇) for 10-year VA 
contracts maturing every trading day over the period 1970-2017 (the horizontal axis corresponds to the 
contract’s maturity date). Note that whenever 𝐻𝐻𝐿𝐿𝑇𝑇 < 0, the hedging strategy results in a terminal gain for the 
insurer. We have not incorporated transaction costs into the variable 𝐻𝐻𝐿𝐿𝑇𝑇 because we first want to evaluate 
the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 
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rolling S&P 500 daily return data over the period 1960-2017. More precisely, the first VA contract is assumed to 
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the following trading day, that is, on 1960-01-04 and matures on 1970-02-16. The process then continues until 
the final 10-year period which begins on 2007-08-29 and ends on 2017-08-31. In total, we obtain 11,998 10-
year return paths. It must be noted that since these paths are based on series of overlapping returns, the 
hedging losses computed on these paths are not all independent. Nevertheless, the backtesting experiment 
allows us to assess the effectiveness of delta hedging strategies over time and determine what choice of 
rebalancing strategy would have been preferable to use in the past. 

The computation of the Black-Scholes hedge ratio Δ𝑡𝑡 requires a volatility assumption 𝜎𝜎𝑡𝑡. Due to the long-term 
nature of the contract, we allow this parameter to be time-varying. In fact, it would be unrealistic to use a 
constant volatility assumption over a 10-year period. In our analysis, we assume that 𝜎𝜎𝑡𝑡 is calibrated at time 𝑡𝑡 
to the past annualized realized volatility computed from daily returns over a three-year period (756 trading 
days). We experimented alternative ways to set this parameter and found that our conclusions are robust to 
different calibration methods. 

Results 
Figure 1 illustrates the results of our backtesting exercise. We consider daily, weekly, monthly and move-based 
delta hedging strategies. The daily, weekly and monthly strategies are rebalanced every 1, 5 and 21 trading 
days, respectively. The move-based strategy is rebalanced only when the value of the hedge ratio Δ𝑡𝑡 changes 
by more than 0.05 in absolute value. 

The chart in the upper part of Figure 1 shows the insurer’s hedged loss at maturity (𝐻𝐻𝐿𝐿𝑇𝑇) for 10-year VA 
contracts maturing every trading day over the period 1970-2017 (the horizontal axis corresponds to the 
contract’s maturity date). Note that whenever 𝐻𝐻𝐿𝐿𝑇𝑇 < 0, the hedging strategy results in a terminal gain for the 
insurer. We have not incorporated transaction costs into the variable 𝐻𝐻𝐿𝐿𝑇𝑇 because we first want to evaluate 
the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 
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We remark that the hedge ratio Δ𝑡𝑡 is computed from the above formula only when the hedging position is 
revised. Otherwise, when the portfolio is not rebalanced at time 𝑡𝑡, we simply set Δ𝑡𝑡 = Δt−1. 
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goal of our backtest is to compute the realized values of 𝐻𝐻𝐿𝐿𝑇𝑇 assuming that the VA is exposed to 10-year 
rolling S&P 500 daily return data over the period 1960-2017. More precisely, the first VA contract is assumed to 
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the final 10-year period which begins on 2007-08-29 and ends on 2017-08-31. In total, we obtain 11,998 10-
year return paths. It must be noted that since these paths are based on series of overlapping returns, the 
hedging losses computed on these paths are not all independent. Nevertheless, the backtesting experiment 
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nature of the contract, we allow this parameter to be time-varying. In fact, it would be unrealistic to use a 
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days). We experimented alternative ways to set this parameter and found that our conclusions are robust to 
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days, respectively. The move-based strategy is rebalanced only when the value of the hedge ratio Δ𝑡𝑡 changes 
by more than 0.05 in absolute value. 
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contracts maturing every trading day over the period 1970-2017 (the horizontal axis corresponds to the 
contract’s maturity date). Note that whenever 𝐻𝐻𝐿𝐿𝑇𝑇 < 0, the hedging strategy results in a terminal gain for the 
insurer. We have not incorporated transaction costs into the variable 𝐻𝐻𝐿𝐿𝑇𝑇 because we first want to evaluate 
the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 
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words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 

. The goal of our 
back-test is to compute the realized values of 

Note that the first two terms on the right-hand side of this equation are a function of 𝑆𝑆𝑡𝑡 (or 𝐴𝐴𝑡𝑡), whereas the 
last term is not. The position Δ𝑡𝑡 is then defined as the first-order sensitivity of 𝑉𝑉𝑡𝑡 with respect to a change in 𝑆𝑆𝑡𝑡: 

Δ𝑡𝑡 = 𝜕𝜕𝑉𝑉𝑡𝑡
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where  
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is the formula for the delta of a put option (a document detailing the derivation of Δ𝑡𝑡 is available on the 
author’s website). Note that delta hedging the net value of the contract entails hedging both the guarantee 
offered and future fee cash flows. 

We remark that the hedge ratio Δ𝑡𝑡 is computed from the above formula only when the hedging position is 
revised. Otherwise, when the portfolio is not rebalanced at time 𝑡𝑡, we simply set Δ𝑡𝑡 = Δt−1. 

Data and volatility calibration 
The variable of interest in our hedging experiment is the insurer’s hedged loss at maturity denoted by 𝐻𝐻𝐿𝐿𝑇𝑇. The 
goal of our backtest is to compute the realized values of 𝐻𝐻𝐿𝐿𝑇𝑇 assuming that the VA is exposed to 10-year 
rolling S&P 500 daily return data over the period 1960-2017. More precisely, the first VA contract is assumed to 
be issued on 1959-12-31 and matures 2520 trading days later on 1970-02-13. The second contract is issued on 
the following trading day, that is, on 1960-01-04 and matures on 1970-02-16. The process then continues until 
the final 10-year period which begins on 2007-08-29 and ends on 2017-08-31. In total, we obtain 11,998 10-
year return paths. It must be noted that since these paths are based on series of overlapping returns, the 
hedging losses computed on these paths are not all independent. Nevertheless, the backtesting experiment 
allows us to assess the effectiveness of delta hedging strategies over time and determine what choice of 
rebalancing strategy would have been preferable to use in the past. 

The computation of the Black-Scholes hedge ratio Δ𝑡𝑡 requires a volatility assumption 𝜎𝜎𝑡𝑡. Due to the long-term 
nature of the contract, we allow this parameter to be time-varying. In fact, it would be unrealistic to use a 
constant volatility assumption over a 10-year period. In our analysis, we assume that 𝜎𝜎𝑡𝑡 is calibrated at time 𝑡𝑡 
to the past annualized realized volatility computed from daily returns over a three-year period (756 trading 
days). We experimented alternative ways to set this parameter and found that our conclusions are robust to 
different calibration methods. 

Results 
Figure 1 illustrates the results of our backtesting exercise. We consider daily, weekly, monthly and move-based 
delta hedging strategies. The daily, weekly and monthly strategies are rebalanced every 1, 5 and 21 trading 
days, respectively. The move-based strategy is rebalanced only when the value of the hedge ratio Δ𝑡𝑡 changes 
by more than 0.05 in absolute value. 

The chart in the upper part of Figure 1 shows the insurer’s hedged loss at maturity (𝐻𝐻𝐿𝐿𝑇𝑇) for 10-year VA 
contracts maturing every trading day over the period 1970-2017 (the horizontal axis corresponds to the 
contract’s maturity date). Note that whenever 𝐻𝐻𝐿𝐿𝑇𝑇 < 0, the hedging strategy results in a terminal gain for the 
insurer. We have not incorporated transaction costs into the variable 𝐻𝐻𝐿𝐿𝑇𝑇 because we first want to evaluate 
the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 
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is the formula for the delta of a put option (a document detailing the derivation of Δ𝑡𝑡 is available on the 
author’s website). Note that delta hedging the net value of the contract entails hedging both the guarantee 
offered and future fee cash flows. 

We remark that the hedge ratio Δ𝑡𝑡 is computed from the above formula only when the hedging position is 
revised. Otherwise, when the portfolio is not rebalanced at time 𝑡𝑡, we simply set Δ𝑡𝑡 = Δt−1. 

Data and volatility calibration 
The variable of interest in our hedging experiment is the insurer’s hedged loss at maturity denoted by 𝐻𝐻𝐿𝐿𝑇𝑇. The 
goal of our backtest is to compute the realized values of 𝐻𝐻𝐿𝐿𝑇𝑇 assuming that the VA is exposed to 10-year 
rolling S&P 500 daily return data over the period 1960-2017. More precisely, the first VA contract is assumed to 
be issued on 1959-12-31 and matures 2520 trading days later on 1970-02-13. The second contract is issued on 
the following trading day, that is, on 1960-01-04 and matures on 1970-02-16. The process then continues until 
the final 10-year period which begins on 2007-08-29 and ends on 2017-08-31. In total, we obtain 11,998 10-
year return paths. It must be noted that since these paths are based on series of overlapping returns, the 
hedging losses computed on these paths are not all independent. Nevertheless, the backtesting experiment 
allows us to assess the effectiveness of delta hedging strategies over time and determine what choice of 
rebalancing strategy would have been preferable to use in the past. 

The computation of the Black-Scholes hedge ratio Δ𝑡𝑡 requires a volatility assumption 𝜎𝜎𝑡𝑡. Due to the long-term 
nature of the contract, we allow this parameter to be time-varying. In fact, it would be unrealistic to use a 
constant volatility assumption over a 10-year period. In our analysis, we assume that 𝜎𝜎𝑡𝑡 is calibrated at time 𝑡𝑡 
to the past annualized realized volatility computed from daily returns over a three-year period (756 trading 
days). We experimented alternative ways to set this parameter and found that our conclusions are robust to 
different calibration methods. 

Results 
Figure 1 illustrates the results of our backtesting exercise. We consider daily, weekly, monthly and move-based 
delta hedging strategies. The daily, weekly and monthly strategies are rebalanced every 1, 5 and 21 trading 
days, respectively. The move-based strategy is rebalanced only when the value of the hedge ratio Δ𝑡𝑡 changes 
by more than 0.05 in absolute value. 

The chart in the upper part of Figure 1 shows the insurer’s hedged loss at maturity (𝐻𝐻𝐿𝐿𝑇𝑇) for 10-year VA 
contracts maturing every trading day over the period 1970-2017 (the horizontal axis corresponds to the 
contract’s maturity date). Note that whenever 𝐻𝐻𝐿𝐿𝑇𝑇 < 0, the hedging strategy results in a terminal gain for the 
insurer. We have not incorporated transaction costs into the variable 𝐻𝐻𝐿𝐿𝑇𝑇 because we first want to evaluate 
the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 
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is the formula for the delta of a put option (a document detailing the derivation of Δ𝑡𝑡 is available on the 
author’s website). Note that delta hedging the net value of the contract entails hedging both the guarantee 
offered and future fee cash flows. 

We remark that the hedge ratio Δ𝑡𝑡 is computed from the above formula only when the hedging position is 
revised. Otherwise, when the portfolio is not rebalanced at time 𝑡𝑡, we simply set Δ𝑡𝑡 = Δt−1. 

Data and volatility calibration 
The variable of interest in our hedging experiment is the insurer’s hedged loss at maturity denoted by 𝐻𝐻𝐿𝐿𝑇𝑇. The 
goal of our backtest is to compute the realized values of 𝐻𝐻𝐿𝐿𝑇𝑇 assuming that the VA is exposed to 10-year 
rolling S&P 500 daily return data over the period 1960-2017. More precisely, the first VA contract is assumed to 
be issued on 1959-12-31 and matures 2520 trading days later on 1970-02-13. The second contract is issued on 
the following trading day, that is, on 1960-01-04 and matures on 1970-02-16. The process then continues until 
the final 10-year period which begins on 2007-08-29 and ends on 2017-08-31. In total, we obtain 11,998 10-
year return paths. It must be noted that since these paths are based on series of overlapping returns, the 
hedging losses computed on these paths are not all independent. Nevertheless, the backtesting experiment 
allows us to assess the effectiveness of delta hedging strategies over time and determine what choice of 
rebalancing strategy would have been preferable to use in the past. 

The computation of the Black-Scholes hedge ratio Δ𝑡𝑡 requires a volatility assumption 𝜎𝜎𝑡𝑡. Due to the long-term 
nature of the contract, we allow this parameter to be time-varying. In fact, it would be unrealistic to use a 
constant volatility assumption over a 10-year period. In our analysis, we assume that 𝜎𝜎𝑡𝑡 is calibrated at time 𝑡𝑡 
to the past annualized realized volatility computed from daily returns over a three-year period (756 trading 
days). We experimented alternative ways to set this parameter and found that our conclusions are robust to 
different calibration methods. 

Results 
Figure 1 illustrates the results of our backtesting exercise. We consider daily, weekly, monthly and move-based 
delta hedging strategies. The daily, weekly and monthly strategies are rebalanced every 1, 5 and 21 trading 
days, respectively. The move-based strategy is rebalanced only when the value of the hedge ratio Δ𝑡𝑡 changes 
by more than 0.05 in absolute value. 

The chart in the upper part of Figure 1 shows the insurer’s hedged loss at maturity (𝐻𝐻𝐿𝐿𝑇𝑇) for 10-year VA 
contracts maturing every trading day over the period 1970-2017 (the horizontal axis corresponds to the 
contract’s maturity date). Note that whenever 𝐻𝐻𝐿𝐿𝑇𝑇 < 0, the hedging strategy results in a terminal gain for the 
insurer. We have not incorporated transaction costs into the variable 𝐻𝐻𝐿𝐿𝑇𝑇 because we first want to evaluate 
the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 
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is the formula for the delta of a put option (a document detailing the derivation of Δ𝑡𝑡 is available on the 
author’s website). Note that delta hedging the net value of the contract entails hedging both the guarantee 
offered and future fee cash flows. 

We remark that the hedge ratio Δ𝑡𝑡 is computed from the above formula only when the hedging position is 
revised. Otherwise, when the portfolio is not rebalanced at time 𝑡𝑡, we simply set Δ𝑡𝑡 = Δt−1. 

Data and volatility calibration 
The variable of interest in our hedging experiment is the insurer’s hedged loss at maturity denoted by 𝐻𝐻𝐿𝐿𝑇𝑇. The 
goal of our backtest is to compute the realized values of 𝐻𝐻𝐿𝐿𝑇𝑇 assuming that the VA is exposed to 10-year 
rolling S&P 500 daily return data over the period 1960-2017. More precisely, the first VA contract is assumed to 
be issued on 1959-12-31 and matures 2520 trading days later on 1970-02-13. The second contract is issued on 
the following trading day, that is, on 1960-01-04 and matures on 1970-02-16. The process then continues until 
the final 10-year period which begins on 2007-08-29 and ends on 2017-08-31. In total, we obtain 11,998 10-
year return paths. It must be noted that since these paths are based on series of overlapping returns, the 
hedging losses computed on these paths are not all independent. Nevertheless, the backtesting experiment 
allows us to assess the effectiveness of delta hedging strategies over time and determine what choice of 
rebalancing strategy would have been preferable to use in the past. 

The computation of the Black-Scholes hedge ratio Δ𝑡𝑡 requires a volatility assumption 𝜎𝜎𝑡𝑡. Due to the long-term 
nature of the contract, we allow this parameter to be time-varying. In fact, it would be unrealistic to use a 
constant volatility assumption over a 10-year period. In our analysis, we assume that 𝜎𝜎𝑡𝑡 is calibrated at time 𝑡𝑡 
to the past annualized realized volatility computed from daily returns over a three-year period (756 trading 
days). We experimented alternative ways to set this parameter and found that our conclusions are robust to 
different calibration methods. 

Results 
Figure 1 illustrates the results of our backtesting exercise. We consider daily, weekly, monthly and move-based 
delta hedging strategies. The daily, weekly and monthly strategies are rebalanced every 1, 5 and 21 trading 
days, respectively. The move-based strategy is rebalanced only when the value of the hedge ratio Δ𝑡𝑡 changes 
by more than 0.05 in absolute value. 

The chart in the upper part of Figure 1 shows the insurer’s hedged loss at maturity (𝐻𝐻𝐿𝐿𝑇𝑇) for 10-year VA 
contracts maturing every trading day over the period 1970-2017 (the horizontal axis corresponds to the 
contract’s maturity date). Note that whenever 𝐻𝐻𝐿𝐿𝑇𝑇 < 0, the hedging strategy results in a terminal gain for the 
insurer. We have not incorporated transaction costs into the variable 𝐻𝐻𝐿𝐿𝑇𝑇 because we first want to evaluate 
the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 
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is the formula for the delta of a put option (a document detailing the derivation of Δ𝑡𝑡 is available on the 
author’s website). Note that delta hedging the net value of the contract entails hedging both the guarantee 
offered and future fee cash flows. 

We remark that the hedge ratio Δ𝑡𝑡 is computed from the above formula only when the hedging position is 
revised. Otherwise, when the portfolio is not rebalanced at time 𝑡𝑡, we simply set Δ𝑡𝑡 = Δt−1. 

Data and volatility calibration 
The variable of interest in our hedging experiment is the insurer’s hedged loss at maturity denoted by 𝐻𝐻𝐿𝐿𝑇𝑇. The 
goal of our backtest is to compute the realized values of 𝐻𝐻𝐿𝐿𝑇𝑇 assuming that the VA is exposed to 10-year 
rolling S&P 500 daily return data over the period 1960-2017. More precisely, the first VA contract is assumed to 
be issued on 1959-12-31 and matures 2520 trading days later on 1970-02-13. The second contract is issued on 
the following trading day, that is, on 1960-01-04 and matures on 1970-02-16. The process then continues until 
the final 10-year period which begins on 2007-08-29 and ends on 2017-08-31. In total, we obtain 11,998 10-
year return paths. It must be noted that since these paths are based on series of overlapping returns, the 
hedging losses computed on these paths are not all independent. Nevertheless, the backtesting experiment 
allows us to assess the effectiveness of delta hedging strategies over time and determine what choice of 
rebalancing strategy would have been preferable to use in the past. 

The computation of the Black-Scholes hedge ratio Δ𝑡𝑡 requires a volatility assumption 𝜎𝜎𝑡𝑡. Due to the long-term 
nature of the contract, we allow this parameter to be time-varying. In fact, it would be unrealistic to use a 
constant volatility assumption over a 10-year period. In our analysis, we assume that 𝜎𝜎𝑡𝑡 is calibrated at time 𝑡𝑡 
to the past annualized realized volatility computed from daily returns over a three-year period (756 trading 
days). We experimented alternative ways to set this parameter and found that our conclusions are robust to 
different calibration methods. 

Results 
Figure 1 illustrates the results of our backtesting exercise. We consider daily, weekly, monthly and move-based 
delta hedging strategies. The daily, weekly and monthly strategies are rebalanced every 1, 5 and 21 trading 
days, respectively. The move-based strategy is rebalanced only when the value of the hedge ratio Δ𝑡𝑡 changes 
by more than 0.05 in absolute value. 

The chart in the upper part of Figure 1 shows the insurer’s hedged loss at maturity (𝐻𝐻𝐿𝐿𝑇𝑇) for 10-year VA 
contracts maturing every trading day over the period 1970-2017 (the horizontal axis corresponds to the 
contract’s maturity date). Note that whenever 𝐻𝐻𝐿𝐿𝑇𝑇 < 0, the hedging strategy results in a terminal gain for the 
insurer. We have not incorporated transaction costs into the variable 𝐻𝐻𝐿𝐿𝑇𝑇 because we first want to evaluate 
the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 
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is the formula for the delta of a put option (a document detailing the derivation of Δ𝑡𝑡 is available on the 
author’s website). Note that delta hedging the net value of the contract entails hedging both the guarantee 
offered and future fee cash flows. 

We remark that the hedge ratio Δ𝑡𝑡 is computed from the above formula only when the hedging position is 
revised. Otherwise, when the portfolio is not rebalanced at time 𝑡𝑡, we simply set Δ𝑡𝑡 = Δt−1. 

Data and volatility calibration 
The variable of interest in our hedging experiment is the insurer’s hedged loss at maturity denoted by 𝐻𝐻𝐿𝐿𝑇𝑇. The 
goal of our backtest is to compute the realized values of 𝐻𝐻𝐿𝐿𝑇𝑇 assuming that the VA is exposed to 10-year 
rolling S&P 500 daily return data over the period 1960-2017. More precisely, the first VA contract is assumed to 
be issued on 1959-12-31 and matures 2520 trading days later on 1970-02-13. The second contract is issued on 
the following trading day, that is, on 1960-01-04 and matures on 1970-02-16. The process then continues until 
the final 10-year period which begins on 2007-08-29 and ends on 2017-08-31. In total, we obtain 11,998 10-
year return paths. It must be noted that since these paths are based on series of overlapping returns, the 
hedging losses computed on these paths are not all independent. Nevertheless, the backtesting experiment 
allows us to assess the effectiveness of delta hedging strategies over time and determine what choice of 
rebalancing strategy would have been preferable to use in the past. 

The computation of the Black-Scholes hedge ratio Δ𝑡𝑡 requires a volatility assumption 𝜎𝜎𝑡𝑡. Due to the long-term 
nature of the contract, we allow this parameter to be time-varying. In fact, it would be unrealistic to use a 
constant volatility assumption over a 10-year period. In our analysis, we assume that 𝜎𝜎𝑡𝑡 is calibrated at time 𝑡𝑡 
to the past annualized realized volatility computed from daily returns over a three-year period (756 trading 
days). We experimented alternative ways to set this parameter and found that our conclusions are robust to 
different calibration methods. 

Results 
Figure 1 illustrates the results of our backtesting exercise. We consider daily, weekly, monthly and move-based 
delta hedging strategies. The daily, weekly and monthly strategies are rebalanced every 1, 5 and 21 trading 
days, respectively. The move-based strategy is rebalanced only when the value of the hedge ratio Δ𝑡𝑡 changes 
by more than 0.05 in absolute value. 

The chart in the upper part of Figure 1 shows the insurer’s hedged loss at maturity (𝐻𝐻𝐿𝐿𝑇𝑇) for 10-year VA 
contracts maturing every trading day over the period 1970-2017 (the horizontal axis corresponds to the 
contract’s maturity date). Note that whenever 𝐻𝐻𝐿𝐿𝑇𝑇 < 0, the hedging strategy results in a terminal gain for the 
insurer. We have not incorporated transaction costs into the variable 𝐻𝐻𝐿𝐿𝑇𝑇 because we first want to evaluate 
the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 

 for 10-year VA contracts matur-
ing every trading day over the period 1970–2017 (the horizontal 
axis corresponds to the contract’s maturity date). Note that 
whenever 

Note that the first two terms on the right-hand side of this equation are a function of 𝑆𝑆𝑡𝑡 (or 𝐴𝐴𝑡𝑡), whereas the 
last term is not. The position Δ𝑡𝑡 is then defined as the first-order sensitivity of 𝑉𝑉𝑡𝑡 with respect to a change in 𝑆𝑆𝑡𝑡: 

Δ𝑡𝑡 = 𝜕𝜕𝑉𝑉𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

= Δ𝑡𝑡
put − [(1 − 𝛼𝛼 252⁄ )𝑡𝑡 − (1 − 𝛼𝛼 252⁄ )𝑇𝑇], 

where  

Δ𝑡𝑡
put = −(1 − 𝛼𝛼 252⁄ )𝑇𝑇Φ(−𝑑𝑑1), 

𝑑𝑑1 =
log (𝐴𝐴𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑇𝑇−𝑡𝑡

𝐺𝐺 ) + (𝑟𝑟 + 𝜎𝜎𝑡𝑡2/2)(𝑇𝑇 − 𝑡𝑡)

𝜎𝜎𝑡𝑡√𝑇𝑇 − 𝑡𝑡
 

is the formula for the delta of a put option (a document detailing the derivation of Δ𝑡𝑡 is available on the 
author’s website). Note that delta hedging the net value of the contract entails hedging both the guarantee 
offered and future fee cash flows. 

We remark that the hedge ratio Δ𝑡𝑡 is computed from the above formula only when the hedging position is 
revised. Otherwise, when the portfolio is not rebalanced at time 𝑡𝑡, we simply set Δ𝑡𝑡 = Δt−1. 

Data and volatility calibration 
The variable of interest in our hedging experiment is the insurer’s hedged loss at maturity denoted by 𝐻𝐻𝐿𝐿𝑇𝑇. The 
goal of our backtest is to compute the realized values of 𝐻𝐻𝐿𝐿𝑇𝑇 assuming that the VA is exposed to 10-year 
rolling S&P 500 daily return data over the period 1960-2017. More precisely, the first VA contract is assumed to 
be issued on 1959-12-31 and matures 2520 trading days later on 1970-02-13. The second contract is issued on 
the following trading day, that is, on 1960-01-04 and matures on 1970-02-16. The process then continues until 
the final 10-year period which begins on 2007-08-29 and ends on 2017-08-31. In total, we obtain 11,998 10-
year return paths. It must be noted that since these paths are based on series of overlapping returns, the 
hedging losses computed on these paths are not all independent. Nevertheless, the backtesting experiment 
allows us to assess the effectiveness of delta hedging strategies over time and determine what choice of 
rebalancing strategy would have been preferable to use in the past. 

The computation of the Black-Scholes hedge ratio Δ𝑡𝑡 requires a volatility assumption 𝜎𝜎𝑡𝑡. Due to the long-term 
nature of the contract, we allow this parameter to be time-varying. In fact, it would be unrealistic to use a 
constant volatility assumption over a 10-year period. In our analysis, we assume that 𝜎𝜎𝑡𝑡 is calibrated at time 𝑡𝑡 
to the past annualized realized volatility computed from daily returns over a three-year period (756 trading 
days). We experimented alternative ways to set this parameter and found that our conclusions are robust to 
different calibration methods. 

Results 
Figure 1 illustrates the results of our backtesting exercise. We consider daily, weekly, monthly and move-based 
delta hedging strategies. The daily, weekly and monthly strategies are rebalanced every 1, 5 and 21 trading 
days, respectively. The move-based strategy is rebalanced only when the value of the hedge ratio Δ𝑡𝑡 changes 
by more than 0.05 in absolute value. 

The chart in the upper part of Figure 1 shows the insurer’s hedged loss at maturity (𝐻𝐻𝐿𝐿𝑇𝑇) for 10-year VA 
contracts maturing every trading day over the period 1970-2017 (the horizontal axis corresponds to the 
contract’s maturity date). Note that whenever 𝐻𝐻𝐿𝐿𝑇𝑇 < 0, the hedging strategy results in a terminal gain for the 
insurer. We have not incorporated transaction costs into the variable 𝐻𝐻𝐿𝐿𝑇𝑇 because we first want to evaluate 
the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 

, the hedging strategy results in a terminal 

Note that the first two terms on the right-hand side of this equation are a function of 𝑆𝑆𝑡𝑡 (or 𝐴𝐴𝑡𝑡), whereas the 
last term is not. The position Δ𝑡𝑡 is then defined as the first-order sensitivity of 𝑉𝑉𝑡𝑡 with respect to a change in 𝑆𝑆𝑡𝑡: 

Δ𝑡𝑡 = 𝜕𝜕𝑉𝑉𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

= Δ𝑡𝑡
put − [(1 − 𝛼𝛼 252⁄ )𝑡𝑡 − (1 − 𝛼𝛼 252⁄ )𝑇𝑇], 

where  

Δ𝑡𝑡
put = −(1 − 𝛼𝛼 252⁄ )𝑇𝑇Φ(−𝑑𝑑1), 

𝑑𝑑1 =
log (𝐴𝐴𝑡𝑡(1 − 𝛼𝛼 252⁄ )𝑇𝑇−𝑡𝑡

𝐺𝐺 ) + (𝑟𝑟 + 𝜎𝜎𝑡𝑡2/2)(𝑇𝑇 − 𝑡𝑡)

𝜎𝜎𝑡𝑡√𝑇𝑇 − 𝑡𝑡
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author’s website). Note that delta hedging the net value of the contract entails hedging both the guarantee 
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We remark that the hedge ratio Δ𝑡𝑡 is computed from the above formula only when the hedging position is 
revised. Otherwise, when the portfolio is not rebalanced at time 𝑡𝑡, we simply set Δ𝑡𝑡 = Δt−1. 
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year return paths. It must be noted that since these paths are based on series of overlapping returns, the 
hedging losses computed on these paths are not all independent. Nevertheless, the backtesting experiment 
allows us to assess the effectiveness of delta hedging strategies over time and determine what choice of 
rebalancing strategy would have been preferable to use in the past. 

The computation of the Black-Scholes hedge ratio Δ𝑡𝑡 requires a volatility assumption 𝜎𝜎𝑡𝑡. Due to the long-term 
nature of the contract, we allow this parameter to be time-varying. In fact, it would be unrealistic to use a 
constant volatility assumption over a 10-year period. In our analysis, we assume that 𝜎𝜎𝑡𝑡 is calibrated at time 𝑡𝑡 
to the past annualized realized volatility computed from daily returns over a three-year period (756 trading 
days). We experimented alternative ways to set this parameter and found that our conclusions are robust to 
different calibration methods. 

Results 
Figure 1 illustrates the results of our backtesting exercise. We consider daily, weekly, monthly and move-based 
delta hedging strategies. The daily, weekly and monthly strategies are rebalanced every 1, 5 and 21 trading 
days, respectively. The move-based strategy is rebalanced only when the value of the hedge ratio Δ𝑡𝑡 changes 
by more than 0.05 in absolute value. 

The chart in the upper part of Figure 1 shows the insurer’s hedged loss at maturity (𝐻𝐻𝐿𝐿𝑇𝑇) for 10-year VA 
contracts maturing every trading day over the period 1970-2017 (the horizontal axis corresponds to the 
contract’s maturity date). Note that whenever 𝐻𝐻𝐿𝐿𝑇𝑇 < 0, the hedging strategy results in a terminal gain for the 
insurer. We have not incorporated transaction costs into the variable 𝐻𝐻𝐿𝐿𝑇𝑇 because we first want to evaluate 
the performance of the rebalancing strategies without imposing a penalty for more frequent trading. In other 
words, the deck is somewhat stacked in favor of the daily strategy. The impact of transaction costs is discussed 
separately in a subsequent section. 
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to the past annualized realized volatility computed from daily returns over a three-year period (756 trading 
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delta hedging strategies. The daily, weekly and monthly strategies are rebalanced every 1, 5 and 21 trading 
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shaded areas in the charts indicate maturities where the VA contract terminated in-the-money (i.e. 𝐴𝐴𝑇𝑇 < 𝐺𝐺). 

For contracts maturing in the period 1970-1990, the daily rebalanced delta hedge led to the smallest hedging 
losses among the strategies considered. However, for contracts maturing after 1990, the tide turned and the 
monthly rebalancing scheme generally resulted in the best performance. The outperformance of this strategy is 
particularly evident for contracts maturing in the last decade. The move-based strategy never surpassed all of 
its competitors and performed particularly poorly during 1990-2000. We experimented with alternative 
threshold levels, but the overall performance of these move-based strategies remained inferior.   

Explanation of results 
The fact that a monthly rebalanced delta hedge displays the best performance over an extended period may at 
first sight seem surprising. After all, in a Black-Scholes setting a more frequent rebalancing leads to a more 
effective hedge. However, this well-known result derived from financial theory assumes that the hedger uses 
the true data-generating model to construct his positions, that is, the hedging strategy is not exposed to model 
risk. 

In the past 50 years, the financial econometrics literature has vastly documented a set of statistical properties 
which are common to a large number of financial series: these are known as stylized facts. They include fat 
tails of the return’s distribution and volatility clustering, among others (see Cont, 2001), and strongly contradict 
the assumption underlying the Black-Scholes model that financial assets follow geometric Brownian motions 
(i.e. returns are independent and identically distributed according to a normal distribution). Therefore, a Black-
Scholes delta hedge in the real world is exposed to a large amount of model risk and there is no guarantee that 
conclusions derived in the idealized Black-Scholes setting will continue to hold in reality.  

Aggregational Gaussianity (see Cont, 2001) is a stylized fact of financial data that stipulates that as one 
increases the time scale over which returns are calculated, their distribution looks more and more like a normal 
distribution. In particular, monthly returns tend to conform better to the Gaussian hypothesis than daily 
returns. One way to illustrate this statistically is to compare the kurtosis of daily and monthly returns (see also 
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delta hedge in the real world is exposed to a large amount of 
model risk and there is no guarantee that conclusions derived 
in the idealized Black-Scholes setting will continue to hold in 
reality.

Aggregational Gaussianity (see Cont., 2001) is a stylized fact 
of financial data that stipulates that as one increases the time 
scale over which returns are calculated, their distribution looks 
more and more like a normal distribution. In particular, monthly 
returns tend to conform better to the Gaussian hypothesis than 
daily returns. One way to illustrate this statistically is to com-
pare the kurtosis of daily and monthly returns (see also Table 
1 of Boudreault, 2013). The kurtosis is a statistical measure of 
whether the data are heavy-tailed or light-tailed; data sets with 
high kurtosis tend to have heavy tails (data conforming to a 
Gaussian assumption have a kurtosis of three). Over the period 
1995–2005, the kurtosis of S&P 500 daily returns is 6.1 versus 
3.4 for monthly returns, whereas over the period 2007–2017, 
these numbers are 13.5 and 5.7, respectively. Consequently, a 
monthly Black-Scholes delta hedge is generally exposed to less 
model risk than a daily hedge.

A further reason that is perhaps more vital in explaining the 
better performance of the monthly hedge for contracts matur-
ing after 1990 relates to the fact that S&P 500 daily returns 
exhibited from that time downward trending negative autocor-
relations at short lags. For instance, during the 10-year period 
2007–2017, the autocorrelations of S&P 500 daily returns at 
lags 1 and 2 were -10 percent and -6 percent, respectively. Such 
negative autocorrelations, although small, contribute to reduc-
ing the noise and volatility of aggregated returns.

Figure 2 illustrates the annualized realized volatilities of daily, 
weekly and monthly returns computed over rolling periods of 
10 years (the horizontal axis indicates the date when the 10-year 
period ends). Note that daily volatilities are based on 2520 daily 
returns, whereas monthly volatilities are based on 120 returns 
constructed by aggregating daily returns over periods of 21 
trading days. A monthly return therefore does not necessarily 
refer to the return in a calendar month.

We observe that for 10-year periods ending after 1990, the 
annualized volatility of monthly returns is below that of daily 
and weekly returns. This is a direct consequence of negative 
autocorrelations observed in daily returns. In fact, it can be 
shown (see Campbell et al., 1997, chapter 2) that the ratio of the 
annualized variance of h-period aggregated returns to one-pe-
riod returns is theoretically equal to:

where

Table 1 of Boudreault, 2013). The kurtosis is a statistical measure of whether the data are heavy-tailed or light-
tailed; data sets with high kurtosis tend to have heavy tails (data conforming to a Gaussian assumption have a 
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On average, the turnover for the 
daily rebalancing strategy was 
four times greater than the one 
for the monthly strategy. ... 

strategy was exposed to returns exhibiting less noise and vola-
tility. Moreover, the distribution of these returns was closer to 
the normal due to aggregational Gaussianity which implies a 
smaller degree of model risk in the hedging strategy. This also 
explains the underperformance of move-based strategies as they 
require more frequent rebalancing in periods of higher volatil-
ity/kurtosis (i.e., when returns further deviate from normality).

IMPACT OF TRANSACTION COSTS
The accumulated value of transaction costs to maturity can be 
taken as approximately proportional to the total turnover in the 
hedging position defined as:

Impact of transaction costs 
The accumulated value of transaction costs to maturity can be taken as approximately proportional to the total 
turnover in the hedging position defined as: 

total⁡turnover⁡in⁡the⁡hedging⁡position = ∑𝑆𝑆𝑡𝑡|Δ𝑡𝑡 − Δ𝑡𝑡−1|𝑒𝑒𝑟𝑟(𝑇𝑇−𝑡𝑡)
𝑇𝑇−1

𝑡𝑡=1
. 

On average, the turnover for the daily rebalancing strategy was four times greater than the one for the 
monthly strategy, which implies that transactions costs would be expected to be four times greater as well. 
Assuming that these costs are 0.25% times the turnover in the hedging position, the margin by which the daily 
strategy performed better than the monthly one for contracts maturing before 1990 is almost completely 
erased by trading frictions. Therefore, after accounting for transactions costs, there are essentially no 10-year 
periods in our hedging experiment where a daily rebalancing strategy performed significantly better than the 
others. 

Finally, we note that the ratio of the turnover between the move-based and monthly strategies fluctuated 
between 0.5 and 1.5, which entails that the move-based method sometimes required less frequent trading 
than the monthly rebalancing scheme. However, whenever it involved less transaction costs, its performance 
still remained inferior to the monthly strategy. 

Conclusion 
Based on S&P 500 return data over the period 1960-2017, we have provided empirical evidence suggesting that 
hedging effectiveness may be improved by rebalancing the hedging portfolio less frequently than on a daily 
time scale. This conclusion emerges from three observations: (1) returns on larger time scales such as monthly 
are closer to being normally distributed than daily returns; this stylized fact known as aggregational Gaussianity 
implies that a Black-Scholes hedging strategy is exposed to less model risk at larger time scales, (2) negative 
autocorrelations in daily returns at short lags were observed in our data set; they imply some level of short-
term mean reversion which contributes to reducing noise and volatility in aggregated returns, and (3) a more 
frequent rebalancing of the hedging portfolio entails larger transaction costs. 
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On average, the turnover for the daily rebalancing strategy was 
four times greater than the one for the monthly strategy, which 
implies that transactions costs would be expected to be four 
times greater as well. Assuming that these costs are 0.25 percent 
times the turnover in the hedging position, the margin by which 
the daily strategy performed better than the monthly one for 
contracts maturing before 1990 is almost completely erased by 
trading frictions. Therefore, after accounting for transactions 
costs, there are essentially no 10-year periods in our hedging 
experiment where a daily rebalancing strategy performed sig-
nificantly better than the others.

Finally, we note that the ratio of the turnover between the 
move-based and monthly strategies fluctuated between 0.5 
and 1.5, which entails that the move-based method sometimes 
required less frequent trading than the monthly rebalancing 
scheme. However, whenever it involved less transaction costs, 
its performance still remained inferior to the monthly strategy.

CONCLUSION
Based on S&P 500 return data over the period 1960–2017, 
we have provided empirical evidence suggesting that hedging 
effectiveness may be improved by rebalancing the hedging port-
folio less frequently than on a daily time scale. This conclusion 
emerges from three observations: (1) returns on larger time 
scales such as monthly are closer to being normally distributed 
than daily returns; this stylized fact known as aggregational 
Gaussianity implies that a Black-Scholes hedging strategy is 
exposed to less model risk at larger time scales, (2) negative 
autocorrelations in daily returns at short lags were observed in 
our data set; they imply some level of short-term mean reversion 
which contributes to reducing noise and volatility in aggregated 
returns, and (3) a more frequent rebalancing of the hedging 
portfolio entails larger transaction costs.  
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