
Introduction 
Hans Biihlmann 

During the late 1980s and early 1990s we have seen 
insurance and financial markets interact more closely 
than ever before. New tools for managing insurance 
risk emerge frequently, usually with roots in financial 
markets. A strong motivating factor has been the record 
number of natural catastrophes and their impact on in- 
sured losses. The potential for earthquake and storm 
losses in the U.S. exceeds insurance market capacity. 
Reinsurers, banks, security exchanges, and others are 
developing products, sometimes involving creation of 
new organizations or joint ventures, to profitably meet 
this demand. The 1995 Bowles Symposium provided a 
forum to explore some of these products and to discuss 
new possibilities. 

The Chicago Board of Trade (CBOT) futures on cat- 
astrophic loss indices provided an early example of 
these products, perhaps the first exchange traded insur- 
ance derivative securities. Over-the-counter products 
such as bonds with coupon or principal payments tied 
to an insurance portfolio loss ratio are examples of pri- 
vately placed insurance securities. There is more infor- 
mation available on the publicly traded examples, and, 
naturally, the majority of  the symposium papers treat 
these products. This introduction was written after the 
symposium to serve as a guide to readers of the papers 
that were presented in Atlanta. The symposium was 
organized in three sessions, as follows: 

Session 1. Interplay between Capital Markets and 
Insurance 

Leader: Hans Biihlmann 
Presenters: Stephen P. Lowe, Aaron Stern 
Audience discussion led by Frank Pierson, 

Jon Roberts 

Session 2. Insurance Futures 
Leader: Paul Embrechts 
Presenters: Prakash Shimpi, Morton Lane, 

Patrick L. Brockett 
Audience discussion led by Paul Embrechts 

Session 3. Actuarial Bridge between Insurance and 
Finance 

Leader: James C. Hickman 
Presenters: Elias Shiu, Hans Gerber, Graham Lord, 
Frank Sabatini 
Audience discussion led by Jim Hickman 

The symposium began with a welcome from John 
Hogan, Dean of the College of Business Administra- 
tion at Georgia State University. The first Thomas P. 
Bowles, Jr. Chairholder, Professor Hans Bfihlmann, 
was introduced by Professor Samuel H. Cox of GSU. 
In the opening presentation, Biihlmann showed that, in 
general terms, all securitization can be viewed as cross- 
hedging. He illustrated this fundamental notion with 
catastrophe insurance and reinsurance, but the principle 
was applied generally. This created the environment for 
the other contributors. 

Continuing in the first session, Stephen P. Lowe dis- 
cussed U.S. property/casualty risk-based capital and 
some of the implications of capital structure, product 
pricing, and insurance portfolio strategy. He showed 
that actuarial theory and financial theory of asset port- 
folios converge in practice. In the third presentation in 
the first session, Aaron B. Stem described the interplay 
between catastrophe exposures and capital markets. 
Stern argued that establishing catastrophe insurance as 
an asset class will provide capital to cover potential 
earthquake or hurricane losses of $50-100 billion. The 
presentations in the first session were practice-oriented. 
They did not refer to the difficult mathematical prob- 
lems encountered in developing pricing and reserving 
methods for insurance derivative securities. 

The second session, led by Professor Paul Em- 
brechts, provided several advances in the modeling of 
insurance derivatives, although the first presentation 
was nonmathematical. The audience participated fully 
in a vigorous discussion, which ended as we adjoumed 
for lunch. Professor Harry Panjer gave a luncheon 
speech on the research activities of the Society of Ac- 
tuaries Foundation. 

In the beginning of the second session, Prakash 
Shimpi discussed the concept of tradable risk in general 
terms while using the CBOT futures as an illustration. 
This led to a vigorous and completely nonmathematical 
discussion of why insurance risk is traded. Dr. Morton 
Lane followed this with a more technical discussion, 
showing how insurance market prices reveal informa- 
tion about the underlying loss distribution. This inter- 
esting notion was conveyed clearly without heavy 
mathematical machinery. In the third presentation, 
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Professor Embrechts laid out the sophisticated mathe- 
matical modeling required for a rigorous valuation of 
insurance derivative securities. As it is applied in the 
usual financial setting, arbitrage pricing requires (or is 
roughly equivalent to) complete markets. The financial 
market may not be complete--financial prices may not 
contain adequate information about insurance risk. Pro- 
fessor Embrechts showed how this difficulty can be 
approached through the use of utility theory or general 
equilibrium techniques. Professor Brockett referred to 
a related problem as information asymmetry. In his pre- 
sentation he showed how to determine optimal bounds 
on insurance derivative prices based on the available 
information. If the information is complete, the meth- 
ods coincide with arbitrage-pricing methods. The sec- 
ond session ended after a very active discussion with 
various members of the audience. A beer and wine so- 
cial hour on the patio concluded the symposium activ- 
ities for the day. 

Professor James C. Hickman opened the third ses- 
sion Friday morning. The "actuarial bridge" is not one 
bridge, Dr. Hickman explained. This session illustrated 
three such "bridges," which allow for interaction of 
actuarial and financial theory and practice. Arbitrage 
pricing was conveniently stated in terms of a Martin- 
gale measure. In the final session, Hans Gerber and 
Elias Shiu revealed a surprising use of an old actuarial 
technique--the Esscher transformation of a loss distri- 
bution can be applied to the distribution of returns of 
a security to easily obtain an explicit representation of 

an equivalent Martingale measure. Their presentation 
was based on work that won the Annual Prize of the 
Society of Actuaries and the Halmstead Prize of the 
Actuarial Education and Research Fund. 

In applying arbitrage pricing to insurance products, 
or more generally, in simulating blocks of insurance 
business, getting a reasonable model of the term struc- 
ture of interest rates is often the most important step. 
In the second presentation, Graham gave an overview 
of several of the principal approaches to term structure 
modeling. Several of the methods are currently used in 
financial and actuarial pricing and reserving. Dr. Lord 
demonstrated some of the difficulties encountered in 
applying these methods to practical problems. Asset 
liability management is a key application of term struc- 
ture modeling. Frank Sabatini surveyed the key ele- 
ments of asset liability management, emphasizing life 
insurance business. The typical life company is faced 
with what he described as a short straddle challenge. 

The symposium ended with a final audience discus- 
sion on the interaction of finance and insurance that is 
fostered by actuarial science. 

The symposium was above all intended to promote 
an understanding of the basic ideas of securitization 
and to discuss the fundamentals of new emerging prod- 
ucts. The interaction between innovations in the finan- 
cial markets and the needs of the insurance sector has 
been an excellent topic for bringing financial specialists 
and actuaries closer together so that they can learn from 
each other. 
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Bounds on the Price 
of Catastrophe Insurance Options 

on Futures Contracts 
by Patrick L. Brockett, Samuel H. Cox, and James Smith 

Abstract 
Insurers can hedge the risk of assets and interest sen- 

sitive liabilities with readily available financial instru- 
ments. Similarly, certain types of loss exposures which 
are strongly correlated with the valuation of special 
commodities (for example, default risk in mortgage in- 
surance in Houston, Texas is negatively related to the 
price of oil, etc.) can also be hedged by utilizing the 
commodity futures market. Until recently, however, the 
management of other underwriting risks has primarily 
been limited to reinsurance contracts. In 1992 the Chi- 
cago Board of Trade (CBOT) introduced insurance fu- 
tures contracts based on the loss ratio of a portfolio of 
actual insurance policies over a given period of time. 
This is conceptually similar to more commonly traded 
stock index futures, with the exception that there is no 
intrinsic underlying tradable asset upon which to base 
no arbitrage pricing, and there is only partial infor- 
mation available about the dynamics of  the underlying 
loss ratio series. This paper describes methods for de- 
termining bounds on the price of  derivative instru- 
ments, such as options on insurance futures, given only 
market information. 

Introduction 
The first recorded use of derivative contracts to in- 

surable risk was an option contract covering grain 
bound for Venice in the seventh century (Ferrick, 
Faber, and Dumas Limited [1994]). The CBOT began 
trading in grain futures in 1840, and more recently 

(since 1972), the Chicago Mercantile Exchange and 
many other exchanges throughout the world trade in 
currency futures and other financial derivatives. The 
rapid growth of the use of financial futures and options 
(and other financial derivative products such as interest 
swaps, look back options, compound options, etc.) has 
shown a development from the arena of product risk 
management (for example, bonds, swaps, currency fu- 
tures and options, etc.) to an arena of exposure risk 
management (for example, interest rate, stock market, 
foreign exchange rate options and futures, etc.). The 
latest step in this process was the CBOT's introduction 
in December 1992 of insurance futures to manage ex- 
posure in the general area of the insurance line upon 
which the contract is based. Cox and Schwebach 
(1992) discuss the mechanics of these insurance fu- 
tures, their purpose and use, and how they fit into the 
financial market in general. Insurance futures are based 
on the loss ratio for a portfolio of actual insurance pol- 
icies over a given period. The loss ratio is analogous 
to the stock market index underlying a stock index fu- 
tures. An important difference is that the insurance 
portfolio loss ratio is not readily available, and there is 
no purchasable set of  insurance contracts by which to 
price the futures contract (in contrast to the stock mar- 
ket). The insurance futures contract is also the basis for 
put and call options, and option spreads. 

The above-listed insurance futures contracts and op- 
tions have payoffs which are similar to traditional re- 
insurance in the sense that if one is long in the futures 
contract, and the loss index goes up indicating 
increased losses in the insurance market, then these 
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losses are partially offset by financial gains in the fi- 
nancial market. Thus, the CBOT complex offers an 
alternative to reinsurance that is easily reversible and 
low cost. The call spread is the most popular contract. 
It was designed to compete with reinsurance stop-loss 
contracts. Insurance futures contracts also provide an 
investor or speculator easy access to the insurance mar- 
ket since there is no licensing, only margin require- 
ments. The idea behind the introduction of insurance 
futures is to allow more efficient use of capital. The 
beneficiaries ultimately are insurance consumers and 
insurance company owners. In fact, it has been spec- 
ulated that more capital in the reinsurance market 
would possibly have helped to alleviate the insurance 
crisis of the late 1980s. [The market for reinsurance is 
relatively difficult to enter when compared to financial 
markets, a fact that some such as Berger, Cummins, 
and Tennyson (1992) assert may have contributed to 
the general insurance crisis of 1984-86.] Insurance fu- 
tures provide an alternative way for capital to be used 
like reinsurance. The result should be more stable con- 
sumer prices. 

Although the CBOT has, from time to time, pro- 
posed futures on other insurance lines such as health, 
as of May 1995 there was but a single insurance futures 
market in operation, and it involved what is known as 
catastrophe insurance, loss ratios being based upon 
specified lines of insurance susceptible to catastrophic 
losses from natural events such as hurricanes, earth- 
quakes, floods, wind damage, etc." The Insurance Ser- 
vices Office uses actual loss and premium data from 
participating insurance companies to aggregate these 
lines of insurance (homeowners property loss, auto- 
mobile physical damage, etc.), and the CBOT creates 
a market based upon this loss ratio index. Cox and 
Schwebach (1992) suggest that prices of insurance fu- 
tures and options can be priced using the Black-Scholes 
framework as a crude approximation. D'Arcy and 
France (1992) give a convincing argument for the vi- 
ability of catastrophe futures. Boose and Graham 
(1993) assess the viability of an insurance futures mar- 
ket using an empirical model. A successful catastrophic 
insurance futures and option market could reduce the 
threat of insolvency due to lack of capacity to with- 
stand catastrophic loss as occurred in Florida after Hur- 
ricane Andrew. Boose and Graham (1993), however, 
conclude that the positive factors effecting success of 
the insurance futures market (large size of the insurance 

"A new crop of insurance futures and options markets has 
been opened subsequently. 

market, low transactions cost, high liquidity) are offset 
by the infrequent release of loss information. The 
Standard & Poor's 500 stock index is distributed to the 
market every 15 seconds. In contrast, the loss ratio and 
related aggregate loss data underlying the insurance fu- 
tures contract is released to the market only twice: once 
at the end of the loss period and once at the settlement 
date, although monthly reports of industry catastrophe 
losses are available to the public. This lack of infor- 
mation should be taken into account in models used to 
price insurance and futures options. 

Helyette Geman has presented informally joint work 
with David Cummins (1994) on valuation of insurance 
futures. Their approach is based on Asian options. This 
Asian option is based on an average of prices before 
the exercise date. Since the CBOT contract is based on 
a loss ratio, of which the numerator is the sum of prior 
losses, the Asian option feature fits the actual contract 
very well. However, their approach is based on the as- 
sumption that all traders can observe the loss ratio con- 
tinuously. There is no published model which allows 
for this important feature; in the actual insurance fu- 
tures market traders may have different sets of infor- 
mation regarding the underlying index. 

The purpose of the current research is to establish a 
relation between information (or lack of information) 
about the loss ratio and insurance futures prices based 
solely on observable market prices. The potential for 
insurance futures to play an important role in hedging 
underwriting risk is enormous. However, the absence 
of models which take into account the lack of infor- 
mation presents a barrier to their success. The results 
should allow traders to better understand this unusual 
aspect of the catastrophe insurance futures market. 
With better understanding, speculators and hedgers 
may be more willing to enter the market. 

Methodology 
In this section we present one way to allow for lack 

of information. Let S(t) denote the aggregate losses 
paid during the interval [0,t]. The loss ratio on the set- 
tlement date T is S(T)/Q where Q is an estimate of the 
premiums written during the interval [0,t]. The value 
of S(t) is known at only a few points in time (four 
points for a three-month contract, for example), but 
trading in the futures contract with a price denoted by 
F(t) takes place continuously. In a financial market 
which is "frictiontess" (in that traders can buy or sell 
as many securities as desired at posted market prices 
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without incurring transactions costs) and allows no ar- 
bitrage, the fundamental theorem of asset pricing 
implies the existence of a "risk-neutral probability 
distribution" (or "equivalent martingale measure") 
such that the current price of any asset is equal to its 
expected future value discounted at a risk-free rate r. 
[See Harrison and Kreps (1979) for a detailed discus- 
sion of  this theory.] For example, since a futures con- 
tract requires no cash outlay at time 0, the futures price 
must be equal to the expected value of the settlement 
value with the expectation calculated using the risk- 
neutral distribution: 

As another example, a call option written on a futures 
contract gives the owner the right, but not the obliga- 
tion, to buy the futures contract for some predetermined 
"strike price" K at expiration T. Assuming the owner 
of the option follows the optimal exercise policy (ex- 
ercise at expiration if and only if the futures price ex- 
ceeds the strike price), the value of the option at 
expiration is then given by (F(T)-K)+=max[0, 
F(T)-Kt] ,  and its value at any earlier time t ( t<T) is 
given by 

I-(1 + r) r 

where E denotes expectations taken with respect to the 
risk-neutral distribution. 

The values of more exotic options can be similarly 
represented as the expected value of some payoff 
function under the risk-neutral distribution. For exam- 
ple, a call option spread is a CBOT contract which 
provides the owner an exercise value of 100,000" 
{Max(F(T) -K , ,  O ) -  Max( F( T ) -  K2, 0)} where the 
strike prices K~ and K2 and exercise date T are specified 
in the contract. This is equivalent to buying a call op- 
tion with an exercise price based on a loss ratio of Kt 
and selling based on Kz. Let u(s) denote the payoff 
function: 

u(s) = max(s - K,, 0) - max(s - 1(2, O) 

0 if s < KI 
= s - K j  if K I <_ s < K z 

K z - K~ if s > K z. 

Suppressing the contract face amount of 100,000, we 
can write the value at expiration as u(F(T)) and at any 
earlier time t, the price would be given by: 

(1 

where, again, E denotes expectations taken with respect 
to the risk-neutral distribution. 

In general these risk-neutral distributions will be 
unique if and only if the market is "complete" in that 
the underlying risk can be perfectly hedged by trading 
existing securities [see Harrison and Kreps (1979)]. 
This completeness assumption underlies the standard 
Black-Scholes valuation methods and may be appro- 
priate when valuing put and call options on a stock or 
stock market index where the underlying asset (the 
stock or stocks making up the index) are continuously 
traded and prices are continually updated. But, in the 
case of insurance futures contracts and options on these 
futures contracts, the underlying asset (the loss ratio S) 
is not traded and its value is infrequently updated so 
that, consequently, the assumption of completeness 
seems inappropriate. In the incomplete markets case, 
we cannot identify a unique risk-neutral distribution, 
but we can use available information to restrict the set 
of possible equivalent risk-neutral distributions and 
compute upper and lower bounds on the price of  any 
security. 

The bounds on securities prices thus depend on what 
information we assume to be available about the un- 
derlying uncertainty. For example, rather than assum- 
ing that traders have precise information about the 
distribution for S(T), we might assume, as in Brockett 
and Cox (1985) and Cox (1991), that only a range of 
values is known: 

IX, _< E[X(T)] < ~t2 and (r 2 < Var[X(T)] < ~r~. 

Alternatively, as in Smith (1995), we might assume 
that we know prices for certain securities and want to 
determine bounds on the prices for others that are con- 
sistent with the known prices. For example, we might 
be given prices for a futures contract and several call 
option contracts and seek bounds on some other call 
option contract. We will examine this second example 
in detail shortly. 

The general framework of our analysis is concomi- 
tant with the mathematics of the general moment prob- 
lem from statistics [cf., Kemperman (1987)]. 
Specifically, we assume that we are given n+ l  real 
valued functions f (x ) ,  i=0, 1 . . . . .  n, whose expecta- 
tions are assumed known and finite, that is, we know 

11, = Ep[f] = f f  (x)dP(x), for i = 0, 1 ..... n. 
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Though we know these moment values, the specific 
underlying distribution P is unknown. For convenience 
we take Jo(X) = 1 and ~to = 1 so that the first moment 
constraints specify that we are dealing with a proba- 
bility measure. We let J.t=(~t 0' la~ . . . . .  ~tn) and f=(f0, 
f, . . . . .  f,) and assume the moment functions are 
linearly independent. Now, given a real valued objec- 
tivefimction ~, our goal is to compute 

inf Ep[+] and sup Ep[+] (1) 

where the infimum and supremum are taken over the 
set of  all distributions P such that Ep[f] = Ix. In our con- 
text, we allow P to vary over the set of  all risk-neutral 
distributions consistent with the given information. 

There are two different methods for solving these 
optimization problems, both of  which lead to the same 
answer. In the "primal" approach, one seeks a distri- 
bution P that attains or approaches the bounds in (1): 
the theory of  the moment problem [cf., Brockett and 
Cox (1985), Kemperman (1987), Smith (1995)] shows 
that the infimum and supremum are obtained by distri- 
butions which are discrete at most n+  1 mass points; 
therefore, we can restrict our search to this subset of 
distributions. Alternatively, in the "dual"  approach, we 
seek linear combinations of the given moment func- 
tions which lie above (for the upper bound) and below 
(for the lower bound) the function whose expectation 
is to be bounded and seek the polynomials with the 
least and greatest expectations. Under certain specific 
conditions regarding the moment functions f and ob- 
jective function + (for example, if they form a Che- 
bycheff system of functions for example), we may find 
explicit formulas for the solutions to these optimization 
problems [cf., Brockett and Cox (1985)]. In the more 
general setting, while explicit formulae are not known, 
the problem can readily be solved using numerical 
methods. For example, Smith (1995) describes a pro- 
cedure where one first solves a discretized version of  
(1) using standard linear programming methods and 
then obtains an exact solution by "polishing" this ap- 
proximate solution by solving a low-dimensional, 
non-linear programming problem. 

An Example 
To illustrate this methodology, we consider a spe- 

cific example where we are given the current (time 0) 
value of  an asset (Xo) and the prices for a series of  call 
options on this asset that expire at time T. To make the 
example concrete, suppose the curren~ asset price is 

$40 and call options that expire in four months with 
strike prices $35, $40, and $45 have current prices 
$6.26, $3.08, and $1.26, respectively. We will then 
compute bounds on the underlying (cumulative) risk- 
neutral distribution as well as bounds on a call option 
with a $30 strike price. These prices are consistent with 
the Black-Scholes model with a risk-free discount rate 
of 5% per year and an annual volatility (or) of 30%: in 
the Black-Scholes model, the risk-neutral distribution 
is log normal (ln(X/Xo) and is normally distributed with 
mean (r-cr2/2)t and variance ~z t) so that the call op- 
tion with a $30 strike price would have a price of  
$10.59. 

To place this example in our general framework, we 
let X= [0, ~] represent the possible asset prices at time 
T. The moments correspond to the current prices for 
the traded securities, and the moment functions repre- 
sent the discounted time T payoffs as a function of  the 
underlying asset price at time T. For the asset itself, we 
takef~(x)=x/(1 +r) r and have a corresponding moment 
value 1a~=$40. For the call options, the moment func- 
tion is given byf(x)=(x-K)+/(1  +r) r where K, denotes 
the strike price and the moments la, correspond to the 
given prices for the call options. We can compute 
bounds on the underlying (cumulative) risk-neutral dis- 
tribution at some point d by taking the objective func- 
tion ~(x) to be a step function with a step at d (since 
P(X < d)=E[qb]); by varying the point d we can trace 
out the entire distribution function. We can compute 
bounds on the call option with $30 strike price by tak- 
ing the objective function +(x) to be (x-30)÷/(1 +r)  r. 

The results for this example are summarized in Fig- 
ure 1. In all cases, the bounds are achieved by distri- 
butions with no more than three points of  support; a 
few of  these distributions are shown in the figure. Here 
we find that the bounds on the underlying risk-neutral 
distribution are quite loose. From the "dual" perspec- 
tive described above, this is a reflection of the fact that 
step functions used in computing these bounds are 
poorly approximated by the given moment functions: 
a "step" security that pays $1 if  and only if the stock 
price is less than, say, $35 cannot be approximated very 
well by a portfolio consisting of the stock and given 
call options. The bounds on the value of  a call option 
with a strike price of  $30, however, are somewhat 
tighter as we can better approximate its payoffs using 
the given securities. 

4 Securitization oflnsurance Risk: The 1995 Bowles Symposium 



FIGURE 1 
B O U N D S  ON THE R I S K - N E U T R A L  DISTRIBUTION IN THE OPTION PRICING E X A M P L E  
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Some Extensions 
This general framework can be extended to incor- 

porate additional information about the underlying dis- 
tribution by including this information into the 
constraint set in the optimization outlined previously. 
For example, another useful constraint is to allow the 
external measure to be "not too unusual" in the sense 
that its deviation from some prespecified potential risk- 
neutral distribution is not too great. For example, the 
Black-Scholes model assumes the risk-neutral 
distribution to be the lognormai distribution, and we 
may want to allow limited deviations from this distri- 
bution. A measure of  deviation which can be used in 
this context is the entropic or information theoretic dis- 
tance measure 

I(P,,P2) = f p(x)lnp(x)dP2(x) 
where p(x)  is the Radon-Nikodym derivative of  P~ with 
respect to P2. If  P~=P2, then I(P,,  P2)=0, and 
I(P,,  P2)>0 if P~-4:P z. The minimum information dis- 
tance estimate of Pz subject to the constraint set is 
called the MDI estimate, and is discussed in detail in 
Brockett (1991 ). 

In the above option pricing example, we are given 
prices for an asset and three call options on the asset, 

and we seek bounds on the underlying risk-neutral dis- 
tribution and the price of  call option with a $30 strike 
price. The results for this example are summarized in 
Figure 2. Here we have taken the prior P2 to be a 
log-normal distribution (as assumed in the standard 
Black-Scholes model) with parameters consistent with 
the given asset and call prices. In this case, the mini- 
mum possible information distance is 0, and we take 
our entropy or information cutoff to be 0.02 (so that 
the unknown risk-neutral distribution is somewhat 
"close" to lognormal. Here, we see that the bounds on 
the risk-neutral distribution are much tighter than they 
were in the unrestricted case (compare Figures 1 and 
2), and the bounds on the price of a call option with a 
$30 strike price are tighter as well: [10.53, 10.66] ver- 
sus [10.50, 11.08]. (See Smith [1995] for a discussion 
of  how to compute these values.) 

Conclusions and Implications 
for Future Research 

This paper has shown how to use the information 
available from market prices to determine bounds on 
the value of derivative instruments like options on in- 
surance futures without completely specifying all 
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FIGURE 2 
RESULTS FOR THE OPTION PRICING EXAMPLE WITH ENTROPY CONSTRAINTS 
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information about the distributions involved. That is, 
unlike the Black-Scholes option pricing formulae 
which require a lognormal probability distribution to 
obtain exact values for all options, this method assumes 
no knowledge of the probability distribution other than 
the values of observed market prices which are then 
viewed as "moments" relative to this unknown prob- 
ability distribution. For a specific option under inves- 
tigation, bounds on the value of the option are 
constructed using solutions to the moment problem. 
For catastrophic insurance futures, the assumption of 
Iognormality is questionable, and the extent to which 
the Black-Scholes formulas give reasonable answers is 
a subject for further research. Also to be investigated 
are other insurance futures and options markets such as 
the crop insurance futures and options markets that 
have recently been created. 
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Crosshedging of Insurance 
Portfolios 

by Hans B/ihlmann 

Motivation 
New tools for managing insurance risk are being cre- 

ated everywhere. With a special emphasis on catastro- 
phe insurance and reinsurance, we want to better 
understand what these tools are basically trying to 
achieve. 

It is important to note that the concept of  crosshedg- 
ing gives us the key to the actuarial understanding of  
most new tools arising in the area of  alternative risk 
transfer mechanisms. Securitization of  insurance, 
which is the theme of  this symposium can, as I see it, 
almost always be seen as an exercise in crosshedging. 

The practical motivation for my presentation theme 
comes from catastrophe insurance and reinsurance. I 
am therefore first going to model this important branch 
of  insurance. The model will then serve as a guide 
throughout the whole lecture. 

The Catastrophe Risk Model 
Assume that your insurance company has written a 

portfolio of  homeowners policies in a clearly defined 
geographic area. The total claims originating from this 
portfolio for one specific time interval (year, quarter) 
is called S. 

As standard in nonlife actuarial techniques, assume 

1. S -- Z u = 1 Ys - doubly stochastic sum (1.1) 
number of  claims : N - Poisson distributed 

amount of  claim j:  ~ - iden t i ca l ly  distributed with 
cumulative distribution factor F(x). 

Also assume N, Y1, Y2 . . . . .  ~ . . . .  independent, 
which leads to the standard compound Poisson 
model. 

The specific character o f  an insurance portfolio 
exposed to catastrophe risk is modeled in the 
parameter of  the Poisson distribution-parameter 
of frequency of claims. 

Think of  this parameter as follows 

2. ~t + X (1.2) 
where la is fixed and )~ is a random variable of  
shocks (due to catastrophes). 

It is instructive to look at the following nu- 
merical example: 

3. E[Y] = 1 -- our unit is the average claim size 
E[Y 2] = 3 - which is a rather high value for 

property claims (1.3) 
~t = 100 
k = 0 with probability 9/10 and 
k = 100 with probability 1 / 10. 

We have just constructed a model for a portfolio in 
which, on average, once in ten years the expected num- 
ber of  claims is doubled. Whenever this happens, com- 
mon language will say that a catastrophe (windstorm, 
flood, earthquake) has happened. 

Let us compute 

E[S] = (~t + E[•]) * E[Y] 

= (100 + 10) * 1 (1.4) 

= 110 

Var[S] = (~t + E[k]) • E[F] + 

A 

Var [h.] * (E[ Y])~" 

B 

= (100 + 10)* 3 + 900.  1 = 1230. 

We observe two things: 

(1.5) 
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1. The variance is big compared to the mean. 
2. The variance component B gives us particular trou- 

ble. 
What can we do to reduce B, which is the variation 

due to h (in practical language: the variation due to the 
catastrophic risk)? 

The Idea of Crosshedging 
Assume that there is a second portfolio T covering 

risks in the same area (T could also be the aggregate 
portfolio written by all insurance companies other than 
yours in the same area). You are invited to participate 
in a quotashare of  the insurance benefits of  T. 

Let us summarize: 
You are given the opportunity to change the random 
variable 

S i n t o S -  or* T (2.1) 

at the price of  

* 11. (2.2) 

Clearly this leads to the following questions: 
1. What is the optimal value of  e?  Call it a*. 
2. Which price H is acceptable to you? 

General Formulas for 
Crosshedging 

The exercise: 

Find e* such that Var[S - e* * T] = min! 

leads to 

and with 

(3.1) 

a* - Cov(S,T) (3.2) 
Var[T] 

we find 

S* = S -  a * *  T (3.3) 

(Coy(S, T))~ 
Var[S*] = Var[S] - ( 3 . 4 )  

Var[T] 

Remark: These formulas are derived in any introduc- 
tory text on linear forecasting. It is actually the most 
elementary case which can be easily generalized to a 
higher dimension (using matrix notation). 

As simple as these formulas are, the finance litera- 
ture still fails to draw a lot of  conclusions from them. 
This is due to the fact that, for example, in connection 
with catastrophe derivatives, nobody seems to have ap- 
plied the crosshedging technique to the actuarial struc- 
ture of  the random variables S and T (assumed 
compound Poisson in this paper). 

A Successful Area 
of Crosshedging in Insurance: 
Credibility Theory 

Credibility can indeed be understood as crosshedg- 
ing the individual risk against its own past. 

Consider: 
S-c la ims  generated by the individual risk in the 

year o f  study 
T - s u m  of the claims of  the same risk in the past: 
The credibility premium P = M + e * T  charged to the 

insured leads then to the net payment S - e * T - M  of 
the insurance company. 

As 

Var[S - e * T -  M] = Var[S - OL * T] (4) 

(you may omit the constant M), 

we have reduced the credibility approach to our basic 
exercise in crosshedging! 

The Fundamental Difference 
between the Basic Models 
in Credibility Theory and in 
Catastrophe Risk Crosshedging 

The Credibility Model 
The total claims of  the individual risk in one time 

period are described by the random variable 

N 

S = ]~ ~ - Compound eoisson 
j=l  

with N - Poisson(h). (5.1) 

The essential feature now relates to the fact that the 
past variables S~, i= 1, 2 . . . . .  n, of the same risk are 
assumed compound Poisson with the same h. 
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Hence, we can use the variable T=~7=, S, to 

1. learn about the value of  h-credibi l i ty language and 
2. reduce the variance component due to the variability 

of  k-crosshedging language. 

The Catastrophe Risk Model 
S is defined as in (1.1)-(1.5): 

1. S = E ~ ,  Yj 
2. N-Poisson(h  +B) 

where 

l.t is fixed and 
h is a random variable of  shocks. 

Contrary to the credibility case, there is no use in 
looking at the past variables S,, i= 1, 2 . . . .  , n. Their h 
parameter value has no relation whatsoever to the h 
value of  the recent random variable S! Typically these 
values are drawn independently in each period. 

But as catastrophes occur in whole areas, competing 
companies in the same area will also suffer from them. 
Hence, the increased value of  h should also be effective 
in their portfolios! This is the basic idea of  crosshedg- 
ing for catastrophe risks. 

We, therefore, take T as total claims from a big com- 
peting company which is active in the same area (you 
can also think of T as representing the aggregate port- 
folio of all companies other than yours). 

Let 

27 T = =~ ~ -- Compound Poisson (5.2) 

M - Poisson(~tr + h 0. (5.3) 

Assume again Br is constant. 
The essential assumption is, however, that 

hr = Ar * h (5.4) 

That is, we postulate that the expected frequency due 
to catastrophe events h r is a multiple of the corre- 
sponding h in the distribution of  S. In the following 
we explore two cases: 
1. A r is a deterministic factor, and 
2. Ar is a random factor. 
For simplicity we follow case 1 here, but will return 
to case 2 later. 

Alternative Notation 
From an intuitive point, one might prefer to write 

(5.4) as (5.4a): 

1 1 
X = A r * h r  and then try to modelAr. (5.4a) 

Of course for the case of  deterministic At, this is just 
a change of  notation, for the stochastic case one might 
however easily have 1/At=0 with positive probability. 

Remarks 
1. We should think of  T as substantially big relative 

to S; hence Ar is a big factor, and I.tr is big relative 
to l it. 

2. For reasons of  simplicity, we have assumed that S 
and T stem from different portfolios, which is con- 
trary to some practical applications where T stands 
for the sum over all portfolios of  all insurance com- 
panies in a given area. In such a case write 

S -  ot * T = S -  ot * S -  e~ * ( T -  S). 

S and I" = T - S stem now from disjoint portfolios. 

Hence, 

S - a ' T = ( 1  - e0*  S -  oL* 1" 

shows that crosshedging now implies a combination of  
crosshedging between distinct portfolios with a classi- 
cal quotashare reinsurance. 

Numerical Example 
In order to do explicit calculations, let us also give 

numerical values for the parameters of  the distribution 
of  T. 

E[W] = 1.5 

E[W z] = 6 (5.5a) 

Br = 10000 

Ar = 80 (5.5b) 

h distributed as in (1.2) and (1.3). (5.5c) 
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Finally let us express the assumption that S and T 
stem from disjoint portfolios by the property: 

S and T are conditionally independent given h (5.6) 

Applying General Formulas 
for Crosshedging to the 
Microstructure of Variables 
S and T 

For the covariance, we have 

Cov(S,T) = E[Cov(S, T)IN] + Cov[E[SIh], E[TIh]] 

= Cov[X • E[Y], Ar * X * E[W]] 

= AT * E[W] * E[Y] * Var(X). 

Similarly for the variances, 

Var[S] = E[X + p] * E[Y 2] + Var(X) * (E[Y]) 2 

(6.1) 

(6.2) 

(see 1.5) and 

Var(T) =,E[A r * k + I.tr],* E[W z] 

+ Var[Ar * h] * (E[W]) 2 

= (~tr + Ar * E[h]) * E [ W  2] 

+ A~ * Var(h) * (E[W]) 2. (6.3) 

From (3.2) we then get 

Ct * 
Ar * E[W] * E[Y] * Var[X] 

A~- * (E[W])-" * Var[X] + (!aT + AT * E[X]) * E[W z] 

,~* = E[Y] 
E[wl e[W2l • ~tT + A, • E[al 

Ar + 
(E[W]): A r * Vat[hi (6.4) 

Using the numerical values of  1 and 5, we obtain 

1 1 1 1 

1.5 6 10000 + 80 * 10 1.5 84 
8 0 + - - *  

2.25 80 * 90 

For later purposes, we are introducing here the reduc- 

tion f a c t o r  "q 

q = 

A t -  ~- - -  

Ar  

E[W 2] ~tr + Ar E[h]" 

(E[W])~ A, • Var[X] (6.5) 

We must comment on formula (6.4). 
1. There are two critical values: I.tr and At.  

2. Crosshedging is the more useful (i.e. ct* becomes 
bigger) tfl.t r becomes  smaller.  

The conclusion is that the portfolio T used for cross- 
hedging should (as much as possible) contain no other 
claims than those originating from catastrophes. Ideally 
we should have ~tr=0. We call such a portfolio a pure  
catastrophe portfol io.  

3. More critical is At, which we have assumed to be 
constant. If A r is stochastic (and independent of  h), 
then the first A r in the denominator of  (6.4) has to be 
replaced by 

E[AZr] * Var[X] + (E[h]) 2 * Var[Ar] 

E[Ar] * Var[X] 

all others by E[A r]- 
The changes in formula (6.5) follow from those in 

(6.4), 
For illustrative purposes, assume 

A r = 40 with probability 1/2 

= 120 with probability 1/2 

which leads to 

E[Ar] = 80 as in the deterministic case 

E[A 2] = 8000 

Var[Ar] = 1600. 

The figure 80 in our numerical example then jumps up 
to 102. The reduction factor ~q reduces from 0.95 to 0.75. 

4. Nevertheless we see from the numerical exercise 
that the formula (6.4) derived from the deterministic 
case for A r gives the right order of  magnitude for ct*. 
Observe however that the pragmatic argument for 

a , = E [ Y ]  1 

E[W] Ar 

which is advocated in practice typically leads to values 
o f  cx* which are too high! 

Safety and Cost 
So far we have not addressed the question of  whether 

our crosshedging exercise increases the safety of  the 
insurance carrier. This question is obviously also re- 
lated to the cost of  the envisaged operation. Hence, we 
should ask at which cost  level  crosshedging can actu- 
ally be used such that it contributes toward improving 
the safety of  the insurance carrier. These are the ques- 
tions that we are going to address now. 
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Assume the insurance carrier is collecting the pre- 
mium P as its total of income for covering its obliga- 
tions S. We propose to measure the safety of  the 
insurance carrier by the adjustment coefficient K. 

Var[S*] = E[h + It] * E[Y 2] 

+ (E[Y]) z * Var[h] * {1 - "q} 

with the reduction factor ~ as defined in (6.5). 

( 8 )  ' 

Definition 
K>0 is called adjustment coefficient of a portfolio 

at premium income P if  

E[e- K(e-s~] = 1. (7.1 a) 

If P>E[S], such a K>0 exists (under suitable math- 
ematical assumptions, i.e., if the moment generating 
function of S is finite). 

Remarks 
1. Any text on risk theory will explain how to relate 

the adjustment coefficient K to the probability of ruin 
criterion. 

2. Our interpretation is going to be: 
The higher K, the higher the safety of S at premium 

You can rewrite (7.1 a) in the form 

1 
P = - * In E[eKS], (7.1b) 

K 

and by Taylor expansion of  the right side we obtain 
the approximation 

K 
P = E[S] + ~ * Var[S]. (7.2) 

Hence, measuring safety means studying 

P - E[S] Loading 

P. 

K = 2 .  - 2 "  ( 7 . 3 )  
Vat[S] Variance 

The factor 2 is, of course, irrelevant if  we want just 
to compare different levels of safety. 

Applying the Safety Concept 
to the Microstructure of S and S* 

We first need for S*=S-et**T 

Var[S*] = Var[S] 
(Coy(S, T)) 2 

Var[T] 

Using the formulas (6.1), (6.2), and (6.3) we obtain 

Remarks" 
1. We have indeed achieved our goal, namely a re- 

duction of  the variance component B as introduced in 
the section titled Catastrophe Risk Model. 

2. Observe that in our numerical example, we im- 
prove from 

Var[S] = 1230 Variance component B: 900 to 

Var[S*] = 373 Variance component B: 43. 

3. The reduction in the variance component B is ex- 
cellent. But recall our discussion of  formula (6.4). If 
AT is no longer assumed to be deterministic (the as- 
sumption indeed is not realistic), then the reduction fac- 
tor ~q is reduced. In our explicit calculations it dropped 
from 0.95 to 0.75 which would lead to Var[S*]=555, 
variance component B: 225. 

We conclude from this exercise that also under more 
realistic assumptions the crosshedging exercise gives 
us a considerable reduction of  our variance. Again, the 
deterministic AT reflects the general case but it over- 
states the effect. 

Can We Afford the Crosshedging 
Operation? 

All operations of  securitization need to be seen in 
relation to their cost. As in all forms of  reinsurance 
(securitization is one of them) cost is identical to the 
amount of  loading which is transferred. 

We define 
L=P-E[S] -Amoun t  of  loading in the original port- 
folio at premium P; Lr= I I -  E[ T ] -  Amount of loading 
in the portfolio used for crosshedging, H being the pre- 
mium (e.g. futures price) charged for receiving the ben- 
efits of T. 

Now compare the situation before and after cross- 
hedging: 

Before crosshedging 

K P - E [ S ]  L 

2 - Var[S] - Var[S]" (9.1) 
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Aider crosshedging 

K* P - E[S] - ¢x*[II - E[T]] 

Var[S*] 

L - a* * L r 

Var[S*] 
(9.2) 

The crosshedging operation improves our safety ex- 
actly i f  K*>K. 

For the case K*=K, we obtain the upper limit for all 
the premiums H that we can afford. Call this limit II* 
(the corresponding loading L*). From (9.1) and (9.2), 
we conclude 

L 

Var[S] 

L - or* * L* 
- ~ ol* * L *  

Var[S*] 

V a r [ S ] -  Vat[S*] 
= L *  

Var[S] 

From (6.2) and (8) we have 

Var[S] - Var[S*] = (E[r]) ' * Vat[×] * 
Var[S] (E[h] + p) * E[Y 2] + (E[Y]) 2 * Var[h]" 

Hence, 

a * * L * =  L *  * ' q .  
E[Yq * E[X + g] 

1 +  
(E[Y]) 2 * Var[h] (9.3) 

With our numerical values as used before, the middle 
factor turns out to be 0.7317; hence we conclude that 
in order to increase the safety o f  the portfolio S by 
crosshedging, we must have: Transferred loading < 
Collected loading *0.7317*'q (in money units). 

The critical quantity is again the reduction factor "q. 

Epilogue 
The approach chosen for this presentation is truly an 

actuarial one: 
1. the construction o f  a sufficiently structured model, 
2. the insistence that data must be available to estimate 

the relevant parameters in the model, and 
3. the comparison of  results in a practical situation 

with expected results from the model. 
Of  course, we have only been able to give some ideas 
for the first point. The ideas for points two and three 
are obvious and follow. 

The main point, however, is that we have taken a 
truly scientific route and hope that this scientific atti- 
tude also will be accepted ultimately by the financial 
community. Let me take this opportunity to remind you 
that the methods used by the life actuary were in ex- 
istence for more than a century before they were rec- 
ognized as the fundamental basis for the life insurance 
industry. The nonlife actuary is still struggling for this 
recognition. It is certainly high time to take up the 
struggle for the Actuary of  the Third Kind as well. 
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Pricing Insurance Derivatives: 
The Case of CAT Futures 

by Paul Embrechts and Steffen Meister 

Abstract 
Since their appearance on the market, catastrophe 

insurance futures have triggered a considerable interest 
from both practitioners as well as academics. As one 
example of a securitized (re)insurance risk, its pricing 
and hedging contains many of the key problems to be 
addressed in the analysis of more general insurance de- 
rivatives. In the present paper we review the main 
methodological questions underlying the theoretical 
pricing of such products. We discuss utility maximi- 
zation pricing more in detail. A key methodological 
feature is the theory of  incomplete markets. Our paper 
follows closely the exposition given in Meister (1995). 

Catastrophe Insurance Futures 

Introduction 

In recent years the magnitude of catastrophic losses 
has been staggering. Catastrophic events put significant 
financial demands on society. In response to market 
conditions, the Chicago Board of Trade (CBOT) intro- 
duced catastrophe insurance futures and options in 
1992. The catastrophe insurance (CAT) futures are 
based upon a loss index consisting of specified losses 
reported by insurance companies. If an insurance com- 
pany's insurance portfolio is highly correlated to the 
loss index, then the company may achieve a reinsur- 
ance by the purchase of catastrophe insurance futures 
or options. Therefore, the catastrophe insurance futures 
and options can be considered as standardized reinsur- 
ance instruments. Similar products are also under con- 
sideration in Europe. 

The exact specifications of the catastrophe insurance 
futures contracts are the subject of many recent papers. 
A complete description is given by the CBOT in its 
Catastrophe Insurance Reference Guide (1995) and 
The Management of  Catastrophe Losses using CBOT 
Insurance Options (1994). Data information is to be 
found in the CBOT's Catastrophe Insurance Back- 
ground Report (1995). A very good introduction on the 
use of CAT futures is due to Albrecht, K6nig, and 
Schradin (1994), which also contains a useful list of 
references. In this introduction, we only recall some of 
the basics underlying CAT futures. 

Four different catastrophe insurance futures are 
traded at the CBOT: eastem, midwestem, western, and 
national catastrophe insurance futures (from now on: 
insurance futures). Several options of the American 
type on each contract are also traded. At the moment, 
the trading volume of the insurance futures options is 
larger than the one of the insurance futures proper. A 
reason is certainly that the options tend to hedge non- 
proportional reinsurance contracts rather than propor- 
tional ones, and proportional reinsurance contracts are 
not very common in the context of catastrophe insur- 
ance. In the following, we will discuss the actual in- 
surance futures, rather than the corresponding options. 
Since the exact specifications of  the four insurance fu- 
tures are the same with exception of the states con- 
cerned, we will not distinguish between them. An 
excellent overall introduction to futures in general is 
Duffle (1989). 

Insurance futures trade in quarterly cycles with con- 
tract months March, June, September, and December. 
For example, the June contract covers losses from 
events occurring during the first quarter of the same 
year as reported by the end of June. Since the settle- 
ment value is based on losses incurred (paid plus 
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estimated unpaid), a third quarter allows for loss settle- 
ment. Trading ends on the fifth day of the fourth month 
following the contract month. Therefore, the June con- 
tract settlement takes place on October 5. The settlement 
value of the contract is determined by a loss index. 

The Loss Index 
The loss index is the underlying instrument of the 

future's final value. It consists of  losses reported to the 
Insurance Service Office (ISO). Losses are reported to 
the 1SO by approximately 100 companies, but the ISO 
selects only some of the data on the basis of size, di- 
versity of business and quality. As the selected losses 
should be representative for the different lines of in- 
surance and states, they are replaced by weighted 
losses. The weights correspond to the percentages of 
(estimated) premiums received by the selected com- 
panies and total (estimated) premiums earned per line 
and state. Both the list of reporting companies included 
in the pool (selected companies) and the estimated pre- 
mium volume are announced by the CBOT prior to the 
beginning of the trading period for that contract. 

The different lines of insurance include homeowners, 
commercial multiple peril, earthquake, automobile 
physical damage, fire, allied lines, farmowners, and 
commercial inland marine. Reported losses can arise 
from the perils of windstorm, hail, earthquake, riot, and 
flood. 

Now let Lr denote the sum of selected weighted 
losses incurred during the quarter corresponding to the 
contract and reported at the end of the following quar- 
ter. Let I-I denote the announced premiums earned dur- 
ing the three months exposure period. Then, the 
insurance future's settlement value F r is given by 

F r =  $25,000X Min(--~ ,2) .  (1) 

A convenient way of rewriting (1) is as follows 

F r = $ 2 5 , 0 0 0 X  ( ~ - - - r - M a x ( - ~ - 2 , 0 ) ) ,  

so that in finance terminology, a catastrophe future (or 
more precisely its settlement value) is equivalent with 
a long position in the loss ratio and a short position in 
a European call option with maturity T, strike price 2, 
with an underlying loss ratio. Depending on the as- 
sumptions on the process (L,), results from general 
mathematical finance may be used. 

The Loss Process (Lt) 
The goal of this section is to develop a plausible 

stochastic model for the process (L,)o~_r of losses re- 
ported to the selected insurance companies until time t 
(T being the end of the reporting period). Basically, for 
0<~T, 

7 4 

L, = ]~ 0~, + ~ Cf, t ~ L~" + L~ 2' 
k--1 £=1 

where losses are subdivided in seven classes of ordi- 
nary losses (Ok.,) (k=l  . . . .  , 7), arising from allied 
lines, automobile physical damage, commercial multi- 
ple peril, farmowners, fire, homeowners, and inland ma- 
fine. There are four classes of catastrophic losses (Ce.,) 
( e = l , . . . ,  4) arising from earthquakes, wind/hail/ 
flood, hurricanes, and riot. The latter classes of losses 
are defined as losses exceeding a certain high threshold. 
For example, in their interesting analysis Huygues- 
Beaufond and Partrat (1992) classified losses due to 
hurricanes exceeding $30 million and those due to 
wind/hail/flood above $7.5 million as catastrophic. 
Both statistical analysis (as in Huygues-Beaufond and 
Partrat [1992]) and theoretical considerations (super- 
position and thinning of point processes as in Daley 
and Vere-Jones [1988], Propositions 9.2 V! and 9.3.I.) 
lead to Poisson-type of assumptions on both L ~ and 
L ~2). Under the assumption that the processes L <1) and 
L ~2> are only weakly correlated or indeed uncorrelated, 
again from a theoretical point of view one may safely 
assume that (L,) obeys one of the following nested as- 
sumptions. 

Basic Assumptions 
1. (L,) follows a compound Poisson process. 
2. (L,) follows a mixed compound Poisson process. 
3. (L,) follows a doubly stochastic (or Cox) compound 

Poisson process. 
For a definition of these processes, see the section im- 
mediately following. 

Any insurance derivative involving claim payments 
will fall within one of the above categories, or at least 
be an important modeling component. See, for in- 
stance, the already mentioned work of Huygues-Beau- 
fond and Partrat (1992), Panjer and Willmont (1992), 
Grandell (1991), and the references therein. As noted 
by Sondermann (1991), over the decades, actuaries 
have collected bulks of statistical information which 
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enable them to specify such processes one and two with 
considerable accuracy, so that one can safely say that 
a lot more is known about risk processes than about 
security price processes. For a model combining one 
of  the above jump models together with a diffusion 
component, see Cummins and Geman (1994, 1995). 

We assume the loss process (L,)osmr to be defined on 
a basic probability space (~,  F, ('k',)0<_~_. P), where P 
is the so-called physical probability measure and 
(F,)o<_~r is an increasing family of  sub-t~-algebras of F 
so that for all t, L, is F,-measurable (i.e., (L,) and is 
(F,)-adapted). We interpret F, as containing all basic 
information up to and including time t, often (though 
not always) one assumes that (F,) is the natural filtra- 
tion belonging to (L,), F,=ty (L~, O<s<t). This essen- 
tially exposes a weakness in the trading of  CAT 
futures: though L, is the main information needed to 
determine the future's price F, at time t, (L,) is only 
known on two days. An interim report publishes the 
value of L, at the fourth day after the reporting period; 
the final index value is known at maturity. A further 
uncertainty is due to the actual quality or type of re- 
porting. In this way, a CAT future is fundamentally 
different from a common (finance) future which is 
based on a regularly (in many cases very frequently or 
even tick-by-tick) reported spot price. This incomplete 
reporting adds an extra component to the overall vol- 
atility of insurance futures. 

Some Basic Notations and Definitions 
Consider a probability space (lq, F, P) and a second 

probability measure Q on (1~, F). Let X and Y be ran- 
dom variables on (fl, F, (P, Q)). Px(s): =P[X<_s] de- 
notes the distribution of the random variable X under 
the measure P; Ep[X] Y] denotes the conditional expec- 
tation of X given the or-algebra ~(Y) with respect to the 
measure P. I fA~ ~' and s~ Y([I), then Pv=s[A] is a sec- 
ond notation for Ee [1AIY=s]. We call a function f :  R 
--> R measurable if  it is measurable with respect to the 
Borei ~r-algebra ~(R). ~'(A) always denotes the Borel 
sets of  A (where A itself is a Borel set). A cadlag func- 
tion on R is a right continuous function such that the 
limits from the left always exist. QI~-PI~ is the nota- 
tion for the equivalence of the measures P and Q on 
the or-algebra F. QI~ ~- PI~ means that P and Q are 
mutually singular on F; Qx~Px means that QI~<m~PI~m 
and Qx _L Px means that Qt~<x) _L Pl~xv 

A doubly stochastic compound Poisson or compound 
Cox process (S,),_>o can be written as follows: 

N, 

st:Ex  
k= I 

where (X~,)(2, )(3, • • .) are strictly positive, i.i.d, random 
variables on (f/, F, P), and (N,) is an increasing point 
process, independent of (Xk), starting at zero, with 

Ns+, - N, - Poisson (A(s + t) - A(t)) (s > 0) 

where (A(t)) itself is a strictly increasing stochastic pro- 
cess on R ÷, also defined on the probability space (~,  
F, P). For a precise definition, see Grandell (1991). 

A mixed compound Poisson process is a doubly sto- 
chastic compound Poisson process with 

A(t) -= A × t 

and A being a strictly positive random variable on ([1, 
F, P). If  the random variable A is constant, almost 
surely we call the resulting process a compound Pois- 
son process. In this case, (N,) is an homogeneous Pois- 
son process with constant intensity h>0 .  In this paper 
we always assume that P[X~>0]= i, X~L2(II, F, P), 
P[A>0] = 1, A~ L2(f~, F, P), and Vt~ R: A(t)s L2(1"1, F, 
P). 

Recall that two measures P and Q on (l), P) are 
equivalent if they have the same nullsets. Finally, the 
integrable, adapted process (X,) is an (F,)-Martingale 
with respect to Q if  

V0 < s  < t <  T:  EQ(X, - X~ [ F s) = 0, 
Q-almost surely. 

Pricing by "No-Arbitrage" 

Introduction 
In order to highlight the fundamental differences be- 

tween CAT futures (or indeed more general insurance 
derivatives) and traditional finance derivatives, let us 
look at the pricing problem for the latter in the context 
of no arbitrage. This introduction is based on the 
excellent paper by Ffllmer (1990). Further basic ref- 
erences are Harrison and Kreps (1979), Harrison and 
Pliska (1981), and the more recent Delbaen and 
Schachermayer (1995). An excellent textbook treat- 
ment (in French) is Lamberton and Lapeyre (1991). For 
an English language edition, see Lamberton and 
Lapeyre (1996). 
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Consider a price process (X,)o~r on (fl, g,  P) and a 
random cash flow H before or at time T. H, as an g :  
measurable random variable on (fl, g ,  P), is called a 
contingent claim. Typical examples are: 
1. A European call option written on (X,) with maturity 

T and strike price K, 

H = (Xr - K) + , 

where x+=max(x, 0); 

2. If  (X,) describes a loss process and H is the final 
cash flow arising from a nonproportional reinsur- 
ance contract covering losses in a layer (K,, K2) at 
time T, 

H = min (X~ K2) - min (X~ K,); 

3. The settlement of  a CAT future, 

H = $25,000 × min (~___r, 2) ,  and 

4. An Asian option with strike price K and maturity T, 

. _ -  

Recall that an arbitrage opportunity is the possibility 
of  making a riskless sure profit. In a no-arbitrage mar- 
ket, such opportunities do not exist. The (fair) pricing 
of  contingent claims in such a market standardly starts 
with the following assumption (construction): "Let Q 
be an equivalent Martingale measure to P, i.e. Q - P 
and (X,) is an (g,)-Q-Martingale." It is precisely this 
assumption which crucially depends on the stochastic 
properties of  the underlying process Of,). In standard 
finance markets like the Cox-Ross-Rubinstein binomial 
tree model, the Bachelier Brownian motion model or 
the Markovitz-Black-Scholes geometric Brownian mo- 
tion model, one can show that not only such a Q exists 
but is moreover unique (as we shall discuss later, the 
latter is related to the notion of  market completeness 
and is crucially different in insurance markets). How- 
ever, let us for the moment assume that we have such 
a unique Q. Recall that H is gr (=tr  (X, : 0<s<T), say)- 
measurable; then in the above standard finance cases 
one can write H as an [t6 representation: 

H = Ho + 6, dX, (2) 

for some Ho and predictable (think left continuous) pro- 
cess (6,)- The representation (2) leads to a portfolio 
strategy replicating (riskless) the claim H if the pre- 

mium Ho is suitably chosen (and here Q will enter!). 
Indeed at time t we hold the amount 6, in the risky 
asset X,, and the amount 

in the riskless asset ("money in the bank") given by 
the constant 1 (think of  discounted amounts). The value 
V, of  this portfolio at time t is V,=~eY,+-q,, and hence 
by construction Vr=H (we neglect transaction costs!). 
This will all work if we can calculate the initial in- 
vestment Ho (=  Vo) and the process (~,). Unfortunately, 
Itr 's  representation (2) is mostly only a nonconstruc- 
tive existence theorem. Using the notion of  self-financ- 
ing strategies and It6's lemma, one can derive a 
constructive solution (involving PDEs). Here is the fi- 
nal trick to calculate Ho: 
1. (X,) is a Q-Martingale (not necessarily a P-Martin- 

gale); 
2. (~s) is predictable and "nice," whence 

= ' Q-Martingale; (l,-forsdXs)o~ r is a 
3. EQ(I,)=EQ(Io)=O; therefore EQ(H)=Ho; since we 

know H and Q we have found the fair premium Ho. 
Though admittedly we have left out various details, the 
above discussion clearly gives us a way in which to 
price and hedge insurance derivatives based on a risk 
process (X,): 
Step 1 Investigate the relationship between no-arbi- 

trage conditions and the existence of  equivalent 
Martingale measures Q. 

Step 2 What about uniqueness of  Q (related to com- 
pleteness)? 

Step 3 Find the It6 representation of  (X,) and investi- 
gate the explicit construction of  hedging port- 
folios. 

Step 4 What if any of  the above fail? 
In the following sections, we show that for risk pro- 

cesses in general many equivalent Martingale measures 
(and consequently fair premiums) exist so that a key 
discussion will be devoted to Step 4. By way of  an 
important example, we restrict our discussion to mixed 
compound Poisson processes. 

Mixed Compound Poisson Processes 
and Change of  Measure 

For a given process (X,) on (fl, g,  P), in order to 
investigate the existence of  equivalent Martingale 
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measures, one has to be able to characterize Radon- 
Nikodym derivatives dQ/dP. The following result is 
proven in Meister (1995). We use the notation discussed 
previously in Some Basic Notations and Definitions. 

THEOREM 1 Suppose (S,),~o is a mixed compound 
Poisson process on (fl, ~ under P and Q. The follow- 
ing statements are equivalent: 
1. Vs_>O: QI,,~PI~; 
2. Px,~Qx,, and 
3. 3"7 : R ~ R measurable with 

E~,(exp('v(X,)))= 1, Ep,,(~ exp(~/(X0))<% and 

dQ] ( . ~ )  E?, (A': exp ( - As)) 
~-ff ~, = exp y (X,) Ee~ (A N: exp ( As))" 

Theorem 1 allows us to explicitly calculate Radon-Ni- 
kodym derivatives for the most important insurance 
risk processes. 

Example 1 (Compound Poisson case) 
Let P and Q be probability measures such that (S,)~o 

is a P- and Q-compound Poisson process, and let 
Px,~Qx,, PA=~Ix,, QA=Bx~, h~, 2%>0. Then Theorem 1 
immediately yields 

N~ 
dQ (X~)) (h-22~ "~ e -(x=-~'')* 
d-PI : exp (,--~l "Y 

for some measurable function y. 

Example 2 (Gamma mixed compound 
Poisson case) 

Let P and Q be probability measures such that (S,),~0 
is a P- and Q-gamma mixed compound Poisson process 
and Px, ~Qx,. Consider %, %, c~, c2>0 to be the param- 
eters describing the distribution of A, i.e. 

PA ~ r ( y l ,  Cl), QA ~ r('Y2, c2), 

where F(%, Cg) denotes the gamma distribution with 
parameters ~/,, c,. 

Then again using Theorem 1, for some measurable 
function % 

dQ 
3' r (N~ + %) \(c'~+--~] 0 dP ~ , = e x p  ~=1 (X~) 

where 0 is given by 

C7 2 (C, + S) ~' F (Yl) 
0 -  

c]" (c2 + s) "2 F (Y2)' 

The above model is also called the compound negative 
binomial process. 

Example 3 (General inverse Gaussian 
mixed compound Poisson case) 

Let P and Q be probability measures such that (S,),~0 
is a P- and Q-general inverse Gaussian mixed com- 
pound Poisson process and Px,-Qx,.  Consider I.tl, 112, 
[3t, [32>0 and hi, h2eR to be the parameters determin- 
ing the distribution of A under the two measures (h~, 
~ are constants here and not realizations of the random 
variable A), i.e., 

PA ~ GIG(g,, ~l, h~), QA ~ GIG(g2, [32, h2). 

For further details on the processes, see Panjer and 
Willmot (1992). In this case, we obtain 

dP ,, ,=l 

k~+N, (U=t3i-' (1 + 21a~s) ''a) 
ka,+y, (la,[3i-' (1 + 213,s) 'n) 

with 

(1 + 2131s) x'/2 kx, (p.,[37') 
0 -  

(1 + 2132s) x~j2 kx2 (lad3f~) ' 

The above model is also called the compound Sichel 
process. 

As explained in Meister (1995, Proposition 2.9), the 
above results can immediately be used to show that 
after a change of measure, the process (S,),~o remains a 
mixed compound Poisson process if the Radon-Niko- 
dym derivatives 

ao I 
dP ~ 

have the right structure. 

Mixed Compound Poisson Processes 
and Martingales 

Consider a mixed compound Poisson process (S,),~0 
under P, and a premium density p>O. The following 
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result shows how equivalent Martingale measures for 
the process (S,-pt),>_o can be obtained. A proof of the 
result can be found in Meister (1995, Proposition 2.11). 
For more details on premium densities and actuarial 
premium calculation principles, see Delbaen and 
Schachermayer (1995). 

THEOREM 2 Suppose (S,),>o as above. (S,-pt),_~ is 
an (~,)-Martingale under Q and for all s>O, QI~-PI,~ 
i[and only (f 
I. 3h>0, f3 : R + ~ R measurable with Ep (e~X'))=h 

and Ep (X?e~'X'9< zc such that 

dQ '~'~ 
--~l = e x p ( = ~ [ 3 ( ~ ) - h s ) ( E e ( A N ' e - ' ~ ) ) ' ,  

and 
2. p=Ee(X~e~'~"). 

An immediate consequence from the above result is 
that if the jumpsizes of (S,),_>0 are not constant under 
the measure P (i.e., nonconstant claimsizes), then an 
equivalent Martingale measure for (S,-pt),_~ cannot be 
unique! In the less interesting case of constant claims, 
we have uniqueness. 

A Word about Completeness 
Completeness essentially means that the underlying 

process (X,),>o is so that every contingent claim can be 
replicated by a (self-financing) strategy. Not surpris- 
ingly is this notion linked to It6 representations. 

DEFINITION 1 The market ((~, ~, (~,)o<_~_r, Q), 
(X,)o<,<r) is complete if  eve~ contingent claim HsL  2 
(~, Fr, Q) admits an lt6 representation (2) with respect 
to the process (X,). 

We basically know that the no-arbitrage condition is 
"equivalent" with the existence of an equivalent Mar- 
tingale measure. For a mathematically precise state- 
ment see Delbaen and Schachermayer (1995) or 
Stricker (1990). Sondermann ( 1991 ) showed that a sim- 
ilar result holds in reinsurance markets. Besides prov- 
ing the existence of replicating strategies in various 
no-arbitrage models, completeness implies (or is indeed 
equivalent with) uniqueness of equivalent Martingales. 
The following models are known to be complete: 
1. One-dimensional Brownian motion (Itr, 1951), 
2. Multidimensional Brownian motion and some spe- 

cial types of diffusions (Jacod, 1979), 

3. (N,-Xt),_>o with (N,) a homogeneous Poisson process 
(Kunita and Watanabe, 1967), and 

4. Square integrable point process Martingales 
(N,-  foh fls),>_ o (Brrmaud, 1981). 

As soon as we move to compound processes based on 
homogeneous, mixed, or doubly stochastic Poisson 
processes, even when completeness is present, we may 
lose the uniqueness of  the equivalent Martingale prop- 
erty and therefore the unique pricing property. For fur- 
ther details see Meister (1995, Section 3.3). We 
introduced the notion of completeness via the existence 
of hedge portfolios (It6 representation). In various mar- 
kets completeness turns out to imply the uniqueness of 
an equivalent Martingale measure. These cases are fi- 
nite probability spaces or continuous price processes 
(Jacod, 1979), of a price process for which the natural 
filtration (F,=cr (X~ : s<t)) is strictly left-continuous 
(Pratelli, 1994). Unfortunately in an insurance market 
framework in general, none of these cases apply. 
Clearly further research on this topic is called for. 

Before embarking on the pricing problem for catas- 
trophe insurance futures, we quote some words of warn- 
ing concerning incompleteness and insurance pricing. 
!. There is no "right" price of insurance; there is sim- 

ply the transacted market price which is high 
enough to bring forth sellers, and low enough to 
induce buyers (Lane, 1995). 

2. In incomplete markets, exact replication is impos- 
sible and holding an option is a genuinely risky 
business, meaning that no preference independent 
pricing formula is possible. If, however, option pric- 
ing is imbedded in a utility maximization frame- 
work, i.e., the potential option purchaser's attitude 
to risk is specified, then a unique measure emerges 
in a very natural way (Davis and Robeau, 1994). 

3. Arbitrage-based pricing theories are theories about 
relative prices and do not attempt to explain why 
the prices of a particular stock reached their ob- 
served level. Only the interrelationship between 
prices is explained (Jensen and Nielsen, 1994). 

Back to CA T Futures  

The key questions concerning catastrophe insurance 
futures markets are: 
1. Do strategies of taking long and short positions in 

insurance futures contracts exist which yield a sure 
profit? 
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2. What are necessary and sufficient conditions to ex- 
clude the opportunities of  a sure profit? 

Recall that we denote the process of total losses flow- 
ing into the insurance futures index by (L,). Also we 
assume (L,) to follow either a compound Poisson pro- 
cess, a mixed compound Poisson process or a doubly 
stochastic compound Poisson process, defined on some 
probability space (lq, F, P). We denote the insurance 
future's price process by (F~)o~_ r. A short position at 
time t means the commitment to pay the random 
amount F r - F  , at time T. A holder of a long position 
will receive F r - F ,  at time T. There are no cashflows 
before T. This is a theoretical assumption as the CBOT 
clearing system requires certain payments from agents 
before T. Furthermore, the insurance future contract has 
the starting value zero, and settlement takes place at 
time T. Consider the market to be liquid and the con- 
tracts to be divisible in the sense that any agent can 
buy or sell any fraction of a contract at any time. We 
consider deterministic interest rates, though our results 
also hold for stochastic interest rate models. For ex- 
pository purposes, we assume interest rates to be zero; 
because there are no cashflows between 0 and T, we 
can think of all cashflows to be discounted to their 
value at time zero. We, furthermore, recall that Fr  is 
determined by $25,000 min 

hence the process (F,) is bounded. Both (L,) and (F,) 
will be adapted with respect to the filtration (F,), de- 
noting the increasing information tr-algebras available 
through time. We have to give a new definition for the 
meaning of a strategy: a strategy is used by an agent 
who agrees at certain random times to several long or 
short positions in an insurance future contract, where 
the number of the positions only depends on the infor- 
mation which is available at those (random) times. To 
be more precise, 

DEFINITION 2 The set (~)= {n, r, . . . . .  r,, ~ . . . . .  
~,}, where n~N, 'r, : f /  ---) [0, T], i=1 . . .  n are 
(~t,)-stopping times; ~i : f~ ---) R are F~,-measurable, 
and square integrable is called a strategy. The final 
ga#~ o f  trade Gr(~) o f  a strategy (~) is given by 

Gr(~) = ~ ~k (Fr - F¢,) (~ L 2 (~,  ~r, P)). 
k=l 

It may not seem to be obvious that we do not allow 

for continuous strategies. Note that usually a continu- 
ous strategy describes the amount held in some risky 
asset. The price fluctuation then determines the final 
gain of trade. The above context is slightly different: 
we do not hold a certain amount of  an underlying asset, 
but at any time we can agree to an insurance future 
contract, which is settled at time T. As it stands, defi- 
nition 2 allows for quite realistic strategies. 

A strategy (~) allowing for a sure profit is called an 
arbitrage strategy, i.e., a strategy (~) satisfying: 

Gr(~) > 0 P - almost surely, and 

Ep [Gr(~) ] > O. 

Under the natural assumption that (F,) is a right-con- 
tinuous process, the following theorem gives a neces- 
sary and sufficient condition for the absence of 
arbitrage strategies. The formulation turns out to be ex- 
actly the same as, in the context of  standard financial 
markets. 

TUEOREM 3 Consider the insurance futures market 
(fl, F, ( F , ) o ~  P), with right-continuous price process 
(F,)o_~r. The following are then equivalent: 
1. (F,)o~,~T does not allow arbitrage strategies, and 
2. there exists an equivalent measure Q (i.e. P - Q )  

such that (F,) is an (F,)-Martingale under Q. 
For a proof, see Meister (1995, Proposition 3.6, The- 
orem 3.7). 

Example 4 
A common premium principle in insurance mathe- 

matics is the Esscher principle, see for instance Gerber 
and Shiu (1995). Applied to the pricing of  insurance 
futures, the Esscher principle leads to 

F, =- E o (F r I Fr), 0<~T, 

where for some tx>0 

d Q  e ctFr 

dP Ep (e°~)" 

Obviously Q ~ P  and (F,) is a Q-Martingale. If  (L,) fol- 
lows a doubly stochastic compound Poisson process, 
then (F,) is certainly right-continuous; hence, the 
Esscher model is arbitrage free. For a further discussion 
on the relevance of  the Esscher principle in general 
finance, see Bfihlmann, Embrechts, and Shiryaev 
(1996). 
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Pricing and Replication in the 
Insurance Futures Market 

Introduction 
An insurance market is often not complete, and even 

complete insurance markets do in general allow for 
many equivalent Martingale measures. Hence, there ex- 
ists several possibilities to price contingent claims ex- 
cluding arbitrage opportunities. In this context the 
common approach to pricing is a preference dependent 
model. Preferences are usually described by von Neu- 
mann-Morgenstern utility functions. We shall distin- 
guish between prices calculated by individual agents 
and equilibrium prices over a whole market. 

An individual agent's objective is to maximize ex- 
pected utility of  wealth at a certain fixed time. The 
agent, therefore, only agrees to a position in an insur- 
ance future contract if it is an attractive investment 
compared with other possible investments. Hence, the 
insurance future's price should only depend on the 
agent's preferences and investment opportunities. A 
market equilibrium is the situation where by exchang- 
ing risks all agents can maximize their expected utility 
at the same time. Equilibrium prices are derived by 
changing the measure and taking the corresponding ex- 
pectations under the new measure. In this case the in- 
surance future's price should only depend on all the 
agents' utilities and investment opportunities. 

In some situations, an agent wants to replicate a con- 
tingent claim by an engagement in the corresponding 
market. In an incomplete market, there exists claims 
which cannot be replicated in the sense that they do 
not admit an It6 representation. Thus, there remains 
some uncertainty about the replication cost. 

Pricing of Insurance Futures in a 
Utility Maximization Framework 

A recent study on the subject of  option pricing in a 
utility maximization framework is due to Davis and 
Robeau (1994). Although one cannot apply the results 
to an insurance market context in a straightforward 
manner, we find it important to discuss these basic 
ideas. An interesting paper giving an easy introduction 
to utility functions in an insurance context is Gerber 
(1987). 

An investor with utility u and a certain initial en- 
dowment x forms a dynamic portfolio. To determine 
the portfolio, he or she can make the choice of  a strategy 
7r out of  the set S of  possible strategies. The cash value 
of  the portfolio at time t is X~(t). The objective is to 
maximize expected utility of  wealth X~(T) at a fixed 
final time T. The investor asks the question whether the 
maximum utility can be increased by the purchase or 
short-selling of  a European option whose cash value at 
time T is some nonnegative random variable, the 
purchase price at time t=0 being p. Thus, from the in- 
vestor's point of  view, p is a fair price for the option if 
diverting a little of  the funds into it at time t=0  has a 
neutral effect on the investor's achievable utility. 

This "marginal rate of  substitution" argument leads 
then (under additional assumptions) to a general option 
pricing formula basically dependent on the set o f  strat- 
egies S ,  the initial endowment x, and the utility func- 
tion u. 

Let the investor now be an insurance company. The 
company holds a portfolio of  insurance policies for 
which it receives premiums, but also has to pay for 
occurred losses. Let (P,)o~,~r denote the total value of  
premiums received up to time t, and (Y,)o~r be the total 
value of  claims occurring up to time t, both processes 
defined on some probability space (lq, F, (F,)o~_r, P) 
where F,=cr(P,., Ys, s<t). We assume the existence of  a 
liquid reinsurance market, i.e. at any time ~ T  the in- 
surance company can decide to sell any fraction of  the 
remaining risk (Y~)~r~ based on the information avail- 
able at time t. To be more precise, 

DEFINITION 3 I f  t~ [0, T], a reinsurance strategy 
(~s),~r is a predictable stochastic process on (~ ,  F, 
(Fs), P) with 

O <_ ~s <_ l for  all s e [t, T]. 

H,  denotes the set o f  all reinsurance strategies which 
"start"  at time t. 

Again, for expository purposes, we assume interest 
rates to be deterministic, described by the function 
(r(t))os~_ ~ where r(t) denotes the value at time T of  a 
cashflow arising from an investment of  1 at time t. We 
introduce, furthermore, the process (X,)o~r given by 

X, = r(t) (P, - Y,), O < t < T, 

denoting the inflated net earnings from the insurance 
business up to time t. 

If the insurance company at time t chooses some 
reinsurance strategy (~s)~ H,, then the company's final 
gain at time T (positive or negative) is given by 
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Gr(~) = fJ r ~,dX,, 

where we assume the reinsurance companies to receive 
primary insurer premiums for their engagement. 

Assume the insurance company to have a utility 
function u, denoting the company's preferences. We 
assume u to be a C2-function on R with u'>0, and u"<0. 
The insurer's objective is to maximize expected utility 
of the final gain at time T by using the information F,. 
Let 

V = sup E~ [u(Gr(~))lF,] 

be the maximum expected utility of  the (inflated) final 
gain, and A, be some subset of  H,. The insurance com- 
pany now asks the question whether its maximum util- 
ity V could be increased by the agreement to a long or 
a short position in an insurance future contract. The 
"marginal rate of substitution" argument is used as fol- 
lows: F, is a fair price for the insurance future at time 
t if "agreeing a little" into a contract has a neutral 
effect on the company's achievable utility. For the pur- 
pose of giving a mathematical formulation, we define 
for any 8 and F,: 

W(8, F,) = sup Ee [u(Gr(O + ~(Fr - F,))IF,] 

and give the following: 

DEHNrrlon 4 Suppose that for  each F, the function 

a ---) W(a, F,) 

is differentiable at ~=0, and there is a unique solution 
F, o f  the equation 

OW 
Og (0, F,) = O. 

Then ['~ is the fair price (in the above sense)for the 
insurance future at time t. 

In the following theorem, we can give a pricing for- 
mula for insurance futures: 

TrlEOI~M 4 Suppose that there exists ~ A ,  such that 

V = E,,. [u(a,.(~)) I F,] 

and the function 

---) W (8, F,) 

is differentiable at 8=O for each F,. Then the fair in- 
surance future price at time t is given by 

= Ep [u' (Gr Fr I F,] 
E,, [u' [ 

The proof of this result is given in Meister (1995, The- 
orem 4.3). This result should also be compared with 
formula (17) in Gerber (1987). 

E x a m p l e  5 

Consider the insurance company to have an expo- 
nential utility u(x) = (1 - e ~) with risk averseness cx > 0 
when it decides not to reinsure its claims, i.e., 
A, = {(1),<~_r}. Then we have 

F, = Ep [e -~'xr-x') Fr [ ~,l 
Ep [e -~`xT-x'' I F,] ' 

Assume, furthermore, the premium process (P,) to be 
deterministic. Then, using that Y, is F:measurable and 
r(T)= 1, it follows that 

~, = Et, [e ~'~rm-'"~r'~ Fr [ F,] 

Ee [e ~'r~r)rT-rmr') I ~,] 

E? [e ~v~ F r I F,] 
Ep [e~T I F,] 

Now replace the insurance company by the insurance 
market holding those policies which lead to losses 
flowing into the insurance future's index, i.e., for all 
0<~T, Y,=L,. The fair insurance future price (from the 
insurance market's point of  view), therefore, is 
(c=$25,000/H): 

F, = Ee [e "L~ c (Lr A 21I) I F,] (3) 

Showing that in this case the utility maximization ap- 
proach essentially leads to the Esscher principle. 

In order to work out formula (3), one needs to im- 
pose specific conditions on (L,)o~r, like the three basic 
assumptions in the loss process (L,) section. For in- 
stance, under assumption one (compound Poisson case) 
one obtains 

= ceX( t - r )Ep(e~r~)  t...a "qk 
k=o k! 

where 

"~k ~ f0  (2H-L0+ e~(s + L,) dF*k(s) 

+ 217(1 - F *~ (217 - L,)+). 
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Here F(x)=P(X~_x) is the jump (or claim) distribution, 
and F *k denotes the kth convolution of F. 

In the uncapped case, 

Lr 
Fr= $25,000--~cLr 

and gamma distributed claim amounts X~ ~F(n, I.t), the 
above formula reduces to the very easy 

{ 1, 
k ,  = c L,  + x ( r  - t)  (I t  _ 

which explicitly shows that j0 increases with L,, k, and 
a; F, decreases as time to maturity T becomes shorter. 
For generalizations and further analysis see Aase 
(1994) and Meister (1995). 

Remarks 

1. As we have remarked in the section titled, Pricing 
By No-Arbitrage, insurance markets are often not 
complete; hence, there exist contingent claims 
which cannot be perfectly hedged in the sense that 
they do not admit an It6 representation. However, 
one can show that under rather weak assumptions, 
there exist "best" risk minimizing reinsurance strat- 
egies in the sense of  F611mer and Sondermann 
(1986), F611mer and Schweizer (1989), and 
Schweizer (1990, 1994). Details on this approach 
concerning CAT futures are to be found in Meister 
(1995, Section 4.4). An excellent paper using equi- 
librium pricing is Aase (1994). 

2. Whenever pricing formulas concerning a financial 
instrument are to be worked out in an incomplete 
market (allowing for various equivalent Martingale 
measures), it is useful to estimate the distribution of 
the contingent claim under the physical measure P 
and apply standard loading techniques as is often 
done in an insurance context. The latter is mostly 
better than a blindfold application of some (nonu- 
nique) Martingale pricing formula. Such an analysis 
has been given by Kliippelberg and Mikosch (1995). 
In the latter paper it is assumed that (N,),~o is either 
a renewal process or a family of Poisson rv's with 
intensities (h(t)),~ o, such that E(N,)--h(t) ---) % t 
~. The claim process equals S,=Z~-~ X,, where 
(X,),~N is a sequence of i.i.d, rv's having distribution 
function F and mean It. In the presence of large 
(catastrophic) claims, a natural condition on F is of 

the type F (x )= l -F (x ) -x - "L(x )  for x ---) 0% where 
a > l  and L is slowly varying, i.e., for all t>0, 

L(xt) l 
!i~m~ - ~ =  . 

We denote this condition by Pc ~ ( - a ) .  See Bingham, 
Goldie, and Teugels (1987) for a detailed discussion on 
the latter conditions. For a discussion on the modelling 
of catastrophic claims, see Embrechts, Klfippelberg, 
and Mikosch (1997). Motivated by CAT futures, Kliip- 
pelberg and Mikosch (1997) estimate for large t, the 
distributional behavior of 

( S, 
V(t) -- $25,000 × min , 2)  

\ch(t)it 

for some safety loading c>0. 

THEOREM 5 Under the above assumptions, the fol- 
lowing asymptotic estimates hold. 
1. I f  or>l, then as t --~ % 

Ee(V(t)) = $25,000 -1 (1 + (1 + o(1)) 
C 

(2c - 1)X(t) ff-((2c - 1)itX(t)) "l.] 
o r -  1 

2. Ifet>2,  then as t ---) % 

1 ( E  (ALE) + (1 + O(1)) 
Vare(V(t)) = ($25,000) 2 ~ ,, g2Mt) 

2 ( 2 e -  1)2X(t) "l 
~ a - -  2") F - ( ( 2 c -  1)ith(t))]. 

The key problem in obtaining results of the above 
type can be seen as follows: 

( s, + ' L Ee k c ~ )  - K] ~ - - cg(t---)) " P(S, - g(t) > x) dx, (4) 

where we assume that "~--Kc-1 >0. Letting t ~ 
in (4), we need estimates on P(S , -g ( t )>x)  for 
x=x(t) --* oo. This leads to the well-known area of 
large deviation results, however, under the nonstan- 
dard (heavy-tail) condition P~K~(-a).  This is ex- 
actly the theory worked out in Kliippelberg and 
Mikosch (1995). 

3. Throughout this paper, we have concentrated mostly 
on the pricing of  the CAT futures themselves; 
clearly the same theory may be used to price deriv- 
atives on the CAT futures like options and 
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call-option spreads. See, for instance, Aase (1994) 
and Meister (1995). 

4. The final word on the pricing of insurance deriva- 
tives has not yet been said. The present paper pro- 
vides some insight into the underlying mathematical 
methodology. More and more, insurance products 
are coming onto the market containing a financial 
component of some sort. Both finance experts as 
well as actuaries will have to get to know the other 
expert's field better. We hope that our paper con- 
tributes toward closing the existing gap so that with 
the right methodology at hand, we can seriously 
start tackling risk securitization. 
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The Perfume of the Premium.. .  
or Pricing Insurance Derivatives 

by John Finn and Morton Lane 

Q. "What is the right price for underwriting an insur- 
ance risk?" 

A. "It is where the perfume of the premium overcomes 
the pong of the peril." 

This old saw sums up what savvy traders and un- 
derwriters know instinctively about markets: that there 
is no "right" price for a piece of insurance. There is 
simply the transacted market price, which is high 
enough to bring forth sellers and low enough to induce 
buyers. Supply and demand determine price in all mar- 
kets, including sophisticated risk-transfer markets such 
as futures, options, and insurance. 

That said, any set of transacted insurance prices (pre- 
miums) contain within them an implicit assessment of 
the underlying risks (perils). Our objective in this paper 
is to make those implicit risk assessments explicit. We 
do this by examining the prices paid for catastrophic 
futures and options (CATs)* at the Chicago Board of 
Trade (CBOT) and by deriving their corresponding 
"Implied Loss Distributions." 

This original approach allows us to (1) generate the- 
oretical prices for different CAT covers, (2) establish 
cheapness and dearness among the alternatives, and (3) 
compare the prices paid for "CAT layers" with certain 
types of insurance "event" covers. To illustrate our 
approach, we have extracted and compared third quar- 
ter eastern implied loss distributions (ILDs) for 1993, 
1994, and 1995 and examined the behavior of the 1994 
ILD as that hurricane season progressed. 

*The analysis contained in "The Perfume of the Premium" 
is based upon the CBOT's ISO contracts which have been 
replaced with contracts based on indices provided by Prop- 
erty Claims Services (PCS). Accordingly, Sedgwick Lane Fi- 
nancial has updated and extended this analysis in a paper 
titled "The Perfume of the Premium II." 

As of yet, there is no uniform or generally accepted 
method of analyzing CATs. CBOT traders approach 
CATs as conventional financial options. Underwriters 
approach CATs as a particular form of catastrophic in- 
surance. The two approaches need to be reconciled. We 
begin, then, with a brief discussion of insurance versus 
options. 

Insurance versus Options 
A buyer of  insurance purchases the right to be re- 

imbursed by the insurance writer for specified losses 
over and above the deductible or retention. For this 
right, he pays a premium. 

A buyer of call options purchases the right to buy 
the underlying instrument from the seller (writer) to 
capture its increased value above the strike price. For 
this right, he pays a premium. 

Clearly the two instruments are very similar. Indeed, 
some have referred to insurance contracts as options 
with fuzzy strikes and fuzzy pay-offs. Some of the 
fuzziness comes from a very important principle of in- 
surance: indemnity. Insurance pays off only if the in- 
sured has an insurable interest and suffers a loss. 
Options holders, by contrast, do not need to have an 
"optionable" interest to buy the option and are paid off 
based on the value of the underlying instrument inde- 
pendently of losses or gains suffered elsewhere. 

For a contract to qualify as insurance, the purchaser 
cannot experience a net gain. This is not true of CATs. 
CATs are not insurance: they are an insurance surro- 
gate. Buyers of  CAT options will experience a recovery 
that depends on the size of industry catastrophic losses 
(as determined by the Insurance Service Office [ISO]) 
whether they experience a loss themselves. Thus, while 
recoveries from insurance are insured specific, 
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recoveries from CATs are industry specific. A conven- 
tional financial option, then, is like insurance without 
the principle of  indemnity, and conversely, an insur- 
ance cover without the principle of indemnity is like a 
conventional financial option. 

Pricing Insurance 
Textbooks on insurance refer to pricing insurance, 

and more particularly reinsurance, by one of four basic 
methods: experience rating (rate-on-line, payback), 
comparable cover, Pareto, or benchmark theory. None 
is very precise, and nearly all are based on a rearview 
mirror approach which involves looking at an insured's 
past loss experience and assuming that it will continue 
into the future. A gross-up factor is included in the 
pricing structure, and it is assumed that this will pro- 
duce profitable underwriting over time. 

Catastrophic reinsurance is more difficult to price be- 
cause of the low frequency and high severity of  cata- 
strophic losses. The history of these occurrences is 
sparse. Nevertheless, the above approaches are applied 
to loss records stretching back many years to gain a 
better sense of the insurer's risk and the appropriate 
pricing. For example, events which have occurred, or 
are likely to occur, every five years must be priced in 
excess of  a 20% rate-on-line to be profitable. 

Catastrophic losses are often assumed to conform to 
a particular statistical distribution, such as the Pareto, 
compound-Poisson, or gamma distribution. The shape 
of the distribution is then fitted to the historical record 
of catastrophic losses and remains relatively fixed into 
the future for pricing purposes. While this approach 
results in consistent pricing of  premiums, it does not 
take into account changes in factors affecting the mag- 
nitude of catastrophic losses, changes in market per- 
ceptions about catastrophe frequencies, or changes in 
the supply and demand of risk capital. 

Our approach reverses this process. It takes traded 
premiums and works backwards to derive the statistical 
distribution which best explains these prices. This 
process is familiar to options traders. 

Pricing Options 
In 1968, Fischer Black and Myron Scholes designed 

a closed-form model for pricing financial options. Their 
model figuratively rocked the financial world. Ex- 
changes exclusively dedicated to trading options were 
set up in the U.S., so that now options are traded on a 

wide variety of underlying securities in the over-the- 
counter market and on nearly every futures and secu- 
rities exchange throughout the world. These days, 
cheap, fast computing has made the closed-form model 
less important, but it still lies at the core of most op- 
tions pricing analyses. 

Volatility is the key ingredient for the Black-Scholes 
model; it measures how variable the option's underly- 
ing instrument will be over a specific period of time. 
In the early days of  options trading, traders used past 
prices of the underlying instrument to calculate an 
"historical volatility" which they plugged into the 
Black-Scholes model to derive the option's theoretical 
price. 

Naturally, not everybody views history the same 
way. The option price traded in the market often was 
and is different from the price derived from a particular 
historical analysis of prices. 

As options markets evolved, participants developed 
a shorthand way of pricing options that relied on the 
"invertibility" of the Black-Scholes formula. Portfolio 
managers and traders could enter the market price of a 
particular option into the model which would then cal- 
culate the volatility "implied" by the market. This im- 
plied volatility could then be compared directly with 
historical volatility to gain a sense of  the cheapness or 
dearness of the option. 

Note that neither historical nor implied volatility is 
the correct volatility. The only correct volatility is that 
which actually transpires, namely "realized volatility." 

A diagram illustrating this relationship is as follows: 

Historical Implied Realized 
Volatility Volatility Volatility 

Based on the past Based on current To be determined 
market prices in the future (will 

determine if option 
is profitable) 

So it is with our analysis of insurance pricing. 

Implied Loss Realized Value of 
Experience Rating Distribution Insurance 

Based on past Based on current To be determined 
losses market prices by future loss 

The missing ingredients for inferring the market's 
underlying assumption of catastrophic losses are price 
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transparency and standardization. CAT contracts pro- 
vide these ingredients, allowing us to derive the im- 
plied loss distribution (ILD) and thereby making 
implicit loss assumptions explicit. 

Implied Loss Distributions 
Conventional option pricing models assume that per- 

centage changes in the price of the underlying instru- 
ment are normally distributed around the mean, which 
is the same as saying that the prices themselves are 
log-normally distributed around the current price. 
Based on this distribution assumption, the price of a 
call option is simply the discounted expected value of 
all outcomes above the strike price. For discrete price 
changes, the generalized formula is: 

options price = PV of the sum of the [valuei 
× probability,.] 

for all i above the strike price where the value, is the 
ith price minus the strike price, and the probability e is 
the appropriate log-normally distributed probability of 
that outcome. 

For catastrophic losses, which are characterized by 
a low frequency and high severity, neither the normal 
nor the log-normal distribution is appropriate. Neither 
has a sufficiently long tail measure to take account of 
the small but significant probability of huge losses, 
such as those caused by Hurricane Andrew. Its insured 
losses were eleven times the annual Florida pre- 
mium-hardly an outcome which can be ignored. 
Gamma distributions do have sufficiently long tails, 
provided their parameters are appropriately set. We 
make the assumption that aggregate CAT losses are 
distributed according to a gamma distribution. 

Once we have fitted a gamma distribution to current 
market prices, we can examine the traded price of CAT 
options and combinations, such as spreads, butterflies, 
and condors and compare them with their theoretical 
values. As with conventional options, the theoretical 
price of CATs is the discounted expected value of the 
option assuming the various levels of loss are gamma 
distributed. The difference between the market price 
and theoretical price is a measure of cheapness or dear- 
ness. 

If the market is efficient and if the assumption of a 
gamma distribution is reasonable, the sum of these 
cheapness and dearness measures will be minimal. 

Lane Financial uses a proprietary algorithm to search 
the family of gamma distributions and select the one 
which best explains all transacted prices and all bids 
and offers currently outstanding. That distribution is 
referred to as the ILD. 

Like implied volatility for conventional options, 
ILDs are not based on history or extrapolated expec- 
tations. An ILD is simply the distribution which best 
explains current market prices. It does not look at all 
possible distributions or nonstandard distributions (al- 
though it could). It confines itself to gamma distribu- 
tions in the same way that Biack-Scholes implied 
volatility confines itself to log-normal distributions 
with a mean of zero. 

ILDs for 1993, 1994, and 1995 
Given the methodology described above, Lane Fi- 

nancial has derived ILDs for third quarter eastern CATs 
(where most of the trading has taken place) using 
midseason 1993 prices, early season 1994 prices, and 
the current preseason 1995 prices. These distributions 
are shown in Figure 1. There are significant differences 
between the years, which can best be seen by compar- 
ing the implied probability of loss at a high level of 
attachment with the implied probability of ross at a 
lower attachment. 

1993 was the first and "thinnest" year of CAT trad- 
ing. Spread trading (simultaneously buying and selling 
options) did not begin until August 1993, midway 
through the hurricane season. The prices that did trade, 
however, implied that the perceived probability of high 
aggregate ISO losses occurring was low relative to the 
perceived probability of lower levels of aggregate 
losses. In 1994, in contrast, the market perceived and/ 
or feared that large events were more probable (or what 
is the same thing, demanded and paid very high prices 
for covers with high attachment points) relative to 
lower down events. Preseason 1995 prices (trading as 
of February 1995) have struck a balance between the 
preceding years. 

One way to see these interyear differences is to com- 
pare the theoretical value of a lower struck CAT call 
with that of a higher struck CAT call. Since CAT fu- 
tures and options are capped at a 200% loss ratio, we 
can standardize the comparisons using rates-on-line, 
which is the ratio of premium to exposure. Table 1 
compares the theoretical ROLs of the 50 and 150 calls 
for each of the three years traded. 
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FIGURE 1 
IMPLIED LOSS DISTRIBUTIONS (THIRD QUARTER EASTERN) 
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TABLE 1 
THEORETICAL PRICES ( R O L % )  

1993 1994 1995 

50 Call 11% 19% 15% 
150 Call 4 12 7 

Now the difference in the relative market prices be- 
comes apparent. Prices have changed dramatically dur- 
ing the past few years as supply and demand in the 
reinsurance market and at the CBOT have changed. 

Franchise Covers versus Layers 
In Table 1, a buyer would only receive full recovery 

from his or her CAT cover if third quarter eastern ag- 
gregate loss ratios equalled or exceeded 200%. One can 
think of CAT covers as proportionate covers, but more 
specifically, they are proportionate by industry loss, not 
insured loss. For example, in 1995, $1 of full cover 
attaching at a 50% ISO loss ratio and achieving full 
recovery at 200% ISO would cost 15¢. 

Most trading in CAT covers has actually occurred in 
the 50/70 call spread. In this spread, recovery attaches 
at 50% ISO and is fully received above 70% ISO. Nat- 
urally, since this type of  cover pays out in full sooner, 
it is more expensive. In 1995, the 50/70's theoretical 
rate-on-line is approximately 29%. 
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Press clippings over the past two years reveal a great 
deal of  debate about whether the price for this layer is 
too expensive (and therefore should not be bought) or 
too cheap (and therefore should not be sold). Some of 
these comments are self-serving excuses for inaction. 
Beyond this, however, comparing the 50/70 directly 
with the underlying cash market is difficult. What ex- 
actly is being compared? Traditional catastrophic re- 
insurance programs are reinsured, not industry, 
specific. Industry loss warranties (a.k.a. franchise 
covers or original market loss warranties) usually pay 
out in full once the industry trigger is reached, not pro- 
portionately over a layer of industry events. Also, most 
ILWs are not covers for aggregate losses; they are sin- 
gle-event covers with reinstatement provisions. Finally, 
not all policies cover the same causes of  loss or re- 
porting times as the CBOT contract. 

Lane Financial's theoretical model cannot resolve all 
these differences but can make a comparison between 
covers which pay out fully at a trigger level and those 
which pay out proportionately over a layer. For ex- 
ample, assume an ILW is based on a 50% ISO trigger, 
covers third quarter east coast (ISO) aggregate losses, 
and has no reinstatement provisions. The theoretical 
price of this warranty cover is shown in comparison 
with the 50/70 layer in Table 2. 

With the above discussion, we have started an ex- 
planation of  the prices at which different covers should 
trade. In a future paper, we will look at the implied 
cost of reinstatements versus aggregate cover. 

The Effect of Time 
The passage of time is an important factor in trading 

conventional financial options and can best be seen 
when the price of  the underlying remains steady. These 
option prices do not decline linearly; they actually "de-  
cay"  more rapidly as expiration approaches. What 
about insurance? What is the value of  an insurance pol- 
icy during its last few months if  there have been no 
claims? Does its value decline linearly? 

Third quarter eastern CAT trading over the 1994 
hurricane season has provided the first insight into the 
effect of  the passage of time on the value of  insurance 
options as shown in Table 3. Because the 1994 season 
was the quietest season since 1925, it is an ideal period 
to gauge the effect of  the passage of  time. Figure 2 
shows how the market assessed the risk (in probability 
terms) for the final three months, two months, and two 
weeks of  the loss period. Corresponding points from 
the ILDs reveal that, as with financial options, prices 
seem to decline at an accelerating rate. 

TABLE 2 
THEORETICAL PRICES (ROL%) 

1993 1994 1995 

50% ILW 27% 35% 33% 
50/70 Layer 23 32 28 

TABLE 3 
THEORETICAL LEVELS 

( R O L s )  

July Aug Sept 

50/70: 32% 17% 12% 

What the table shows is that instant-pay warrants 
should be priced some 20% or more higher than the 
equivalent-attachment 20-point CAT layers. (It is im- 
plicitly assumed that with the ILW the reinsured will 
always have losses sufficient to make the claim. To the 
extent that this is not true, the ILW price should be 
discounted). 

A buyer of  the above 1995 50% ILW at a 35% ROL 
should be willing to pay up to 29% for the 50/70 CAT 
layer. Similarly, sellers prepared to sell the ILW should 
be indifferent between selling it at 36% and selling the 
50/70 layer at 29%. In 1994, the seller would have been 
indifferent between a 50% ILW at 40% ROL and the 
50/70 layer at 32% ROL. 

In active years, end-of season prices are likely to be 
highly volatile just like financial options. 

Cheapness and Dearness 
This paper has mainly dealt with using implied loss 

distributions derived from existing market prices to 
value insurance derivatives. As research on these in- 
struments (and their new cousins--PCS, CATs and 
crop insurance contracts) develops, more theory and 
analyses will occur. For the present, however, a theo- 
retical model produces a most important framework 
within which to trade. Certainly Lane Financial has 
made successful use of  these models for its own 
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FIGURE 2 
IMPLIED LOSS DISTRIBUTIONS (1994 THIRD QUARTER EASTERN) 
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FIGURE 3 
HISTORICAL LOSS EXPERIENCE VERSUS IMPLIED LOSS DISTRIBUTION EARLY MAY, 1995 
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FIGURE 4 
HISTORICAL L o s s  EXPERIENCE VERSUS 1995 IMPLIED LOSS DISTRIBUTION EARLY MAY, 1995 
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proprietary trading and market making. Using Table 4 
as an illustration, consider these prices and their theo- 
retical values as of  February 15, 1995: 

TABLE 4 

ACTUAL VERSUS THEORETICAL PRICES 
EASTERN CATASTROPHE CONTRACTS 

T m R D  QUARTER 1 9 9 5  

Instrument Bid/Ask Theoretical Price 

Future 47.7 

Calls 
100 8.5/12.0 10.0 
150 4.0/ 5.5 3.6 
190 0.2/ 0.9 0.6 

Call Spreads 
35/55 6.2/ 7.5 7.1 
45/65 6.0/ 6.5 6.1 
50/70 5.3/ 5.5 5.7 
60/80 4.0/ 5.5 5.0 
100/120 3.0 
140/160 1.5/ 2.0 1.9 
160/180 1.5 

Butterflies 
20/55/90 7.0/12.5 5.5 
50/100/150 / 6.5 5.5 

Condors 
40/60 100/120 1.5/ 3.5 
50/60 70/80 0.4/ 0.7 

Clearly, the theoretical model shows a number of  
interesting things. First, it indicates that the futures the- 
oretical price is 46.8 (i.e., an ROL of  23.4%). 

Second, of  the outright calls, the 150 call seems par- 
ticularly overbid at 4.0 (ROL of  8%) versus its theo- 
retical price of  3.5. It would make a good sale. 

Third, of  the call spreads, the 45/65 is well bid (with 
its bid close to its theoretical prices), and the 50/70 is 
well offered at 5.5 (it is two ticks below its theoretical 
price). The 140/160 also provides a good offer at 2.0. 

Fourth, the 20/55/90 butterfly was at one time bid at 
7.0. According to the model, it should have sold be- 
cause its theoretical value was only 5.1. 

In the exotica corner, of  the two condors where bids 
have been shown, the 50/60 and 70/80 are reasonably 
priced to theory, whereas the 40/60 and 100/120 are 
cheaply bid. 

Finally, we have shown two prices for the 100/120 
and 160/180 where no market has presently been 
shown. The well-prepared market-maker (who ac- 
cepted the analysis proposed here) would be prepared 
to bid or offer around 3.1 and 1.5, respectively. 

Concluding Remarks 
In this paper we have discussed the differences and 

similarities between insurance and options pricing, de- 
rived implied loss distributions from market prices 
transacted at the CBOT, and used these ILDs to con- 
tribute to the debate on whether traded contracts (sur- 
rogate insurance) are cheaper or more expensive than 
real insurance. We have also shown how the ILDs can 
be used to identify cheap and expensive alternatives. 
Although this paper has covered a lot of ground, it has 
barely scratched the surface of  the possibilities that lie 
ahead. 
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The Emerging Asset Class: 
Insurance Risk* 

Ten years ago, the insurance industry never talked 
in terms of  a $10 billion loss; today, the industry is 
concerned about a potential earthquake or hurricane 
loss of  $50 to $100 billion. Catastrophic risks can be 
much larger as a result of  greater concentrations of  peo- 
ple and developed property, as well as higher exposed 
values than previously believed. 

Reinsurance has always provided a level of  surplus 
protection to insurance companies; however, as the 
stakes get higher, traditional reinsurance capacity is un- 
able to handle these new enormous potential losses. 

By establishing insurance risk as an asset class, par- 
ticipants (insurance and reinsurance companies, rein- 
surance intermediaries, capital market institutions, and 
investors) will provide the insurance industry with vast 
pools of  capital to mitigate catastrophic risk through 
the use of  new nontraditional reinsurance products. 
These products look like financial instruments to in- 
vestors and reinsurance contracts to insurance compa- 
nies. Investors can now invest directly and solely in 

*Reprinted with permission from Guy Carpenter & Com- 
pany, Inc., New York, N.Y., July 1995. 
The principal authors for this article are Kenneth A. Froot, 
Brian S. Murphy, Aaron B. Stem, and Stephen E. Usher. 
Professor Froot is a Professor of Finance at the Harvard Busi- 
ness School, Special Consultant to National Economic Re- 
search Associates, Inc. (NERA) and Consultant to Guy 
Carpenter & Company, Inc. 
Mr. Murphy is a Managing Director with Guy Carpenter and 
President of Marsh & McLennan Risk Products. 
Mr. Stern is president of Stern A.B. Inc., a consulting firm 
specializing in the securitization of insurance risk. 
Stephen Usher is a Ph.D. Economist and Senior Consultant 
with NERA. 
The authors are grateful to David Govrin, Senior Vice Pres- 
ident of Marsh & McLennan Risk Products; Barney Schau- 
ble; and Paul Hinton and Paul O'Connell of NERA, for their 
assistance with data. 

insurance risk through these instruments without be- 
coming a reinsurance company. 

Catastrophe Exposure Coverage 

The High Cost of Catastrophe 
Insurance 

Financial innovation is changing the property-casu- 
alty insurance industry. The driving forces are the size 
of  the industry and the economic inefficiencies surfac- 
ing in some areas of  the insurance/reinsurance infra- 
structure. U.S. property and casualty (P&C) premiums 
totaled $264 billion in 1994. Of  this, the most rapidly 
growing area is that of  catastrophe (commonly referred 
to as CAT) exposure coverage, an area which currently 
accounts for anywhere between $10 and $20 billion of  
premiums annually. These flows are by no means small 
in comparison with other major financial cash flows. 
For example, dividends paid in 1994 by all firms listed 
on the NYSE were $130 billion. The sheer size of  in- 
surance markets means there are substantial rewards for 
value-added innovation. 

High cost is one factor that attracts innovation. P&C 
costs are high for several reasons. First, there are lim- 
ited pools of  capital dedicated to P&C exposures, with 
the limitations being particularly severe in certain seg- 
ments. A paucity of  risk-takers implies poor diversifi- 
cation, resulting in high costs of  insurance capital. 

Second, innovators attempting to capture profit as- 
sociated with new forms of  risk distribution will have 
a window of  opportunity to earn large returns, and, at 
the same time, substantially reduce system-wide costs. 

Third, the information and analysis used to identify and 
price risk--particularly CAT--has lacked sophistication. 
Inadequate information generates unwillingness to 
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supply insurance. It also dampens consumer demand 
for insurance products, as lack of hard exposure anal- 
ysis makes it difficult to tell consumers a straight story 
justifying price and credit quality. 

Fourth, widely accepted standardized packages of 
aggregated risks are just beginning to become accepted 
and used. The presence of this type of aggregated risk 
packaging is essential for promoting liquidity and 
low-cost transferability of CAT risks. 

Today, these high cost barriers are eroding rapidly. 
With existing technology, it is possible to spread un- 
diversifiable insurance risks better, make distribution 
activities more efficient, provide better identification 
and analysis of risks for product pricing, and create 
standardized packages of risks which can be priced in 
a broader, more liquid marketplace. 

When measured by these technological capabilities, 
today's institutional mechanisms for financing insur- 
ance have fostered an environment for rapid evolution. 
Innovative approaches are springing up. 

liabilities into liquid investor assets. In practice, this 
means that customers will obtain high-credit quality, 
low-cost insurance for their homes by having their pen- 
sion portfolios underwrite a portion of those risks. 

The notion that insurance exposures constitute an as- 
set class might at first seem lofty and impossibly dis- 
tant. Most market participants today would not 
consider CAT exposures as a potential asset class. 
However, it is hard to overemphasize how such widely- 
held notions are changeable. A useful example comes 
from that of foreign currencies. 

Foreign exchange certainly meets the major require- 
ments for an asset class. It is a large risk class (from a 
dollar-based investor's perspective, over half of the 
world portfolio is exposed to currency risk); a durable 
source of risk; and a distinctive exposure. It is also 
highly liquid, with a daily world trading volume of 
over $900 billion. Foreign exchange has today become 
widely accepted as an asset class. However, it has not 
always been thus. 

The Long and Short o f  CA T 
Exposures 

Although the route that innovation will take is com- 
plex and unsure, its destination is clear: some insurance 
risks will be traded among investors and issuers like 
the securities of any other asset class. Here we focus 
in on the most immediately securitizable of these in- 
surance risks: CAT exposures. 

CAT exposures constitute the largest unacknowled- 
ged asset class today. However, this lack of recognition 
is about to change. While in the past people viewed 
CAT risks primarily from the perspective of an insur- 
ance customer, it will soon be commonplace that the 
investor perspective will be of equal importance. The 
job of the financial system is to redistribute CAT risks 
from insurance customers to investors. ~ 

There is only one way to accomplish this redistri- 
bution: make insurance investors out of insurance cus- 
tomers. That is, people who buy insurance for 
themselves as customers must sell insurance to others 
as investors. It is as though each person is born exces- 
sively "long" for his own risks and excessively 
"short" for the risks of others. To undo this, financial 
intermediation is required. New forms of intermedia- 
tion must provide the bundling, repackaging, and un- 
bundling needed to transform reliable customer 

Can Insurance Be an Asset Class? 
In the early 1990s, a common theme at asset man- 

agement conferences was: "Is currency an asset 
class?" Only four years ago, most practitioners were in 
agreement that foreign exchange was not an asset class 
on par with stocks, bonds, and real estate. 

As for insurance risks, whatever the past preconcep- 
tions of investors might be, insurance exposures are 
clearly large enough, durable enough, and distinctive 
enough to be considered a separate asset class. 

Some observers argue that there is no point distrib- 
uting insurance risks across more investors. They main- 
tain that certain of these risks--say a $100 billion 
hurricane--are too large and sudden to be managed 
effectively by the capital markets. This line of argu- 
ment, however, is flawed. There is plenty of liquidity 
to finance these risks in an inexpensive and orderly 
way, if and when the risks are widely distributed. 

While a CAT loss of $100 billion would surely be 
large by historical standards, it is small compared to 
what happens in the capital markets every day. To see 
this, note that a recent study puts U.S. wealth in stocks 
and bonds at approximately $13 trillion. 2 If one in- 
cludes real estate (an illiquid but nevertheless risky as- 
set class), U.S. financial wealth is probably at least $19 
trillion. The daily standard deviation of this portfo- 
lio--which is one way to measure an average day's 
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fluctuation--is on the order of  70 basis points, or about 
$133 billion? 

In other words, a large and infrequently experienced 
CAT exposure is smaller than the average daily change 
in total financial wealth. 

The Impact o f  CA T Risk 
on Financial Portfolios 

As with any asset class, diversified investor holdings 
can only be achieved through the creation of  low cost, 
standardized portfolio investments that can be pur- 
chased by pension funds, mutual funds, endowments, 
and high net-worth individuals. As with any asset class, 
the rationale for holding these instruments must lie in 
their portfolio properties. Too much exposure to CAT 
risk in a specific portfolio is clearly bad, as is too little. 

As we will see, moderate amounts of exposure to 
CAT risk have little effect on portfolio returns while 
decreasing portfolio risk. 

Portfolio Aspects of CAT Risks 
To see the impact of CAT risks on portfolios, we 

need to examine their return characteristics. In the past, 
this would not have been possible because hard infor- 
mation on returns from underwriting such risks was not 
available. 

However, in this paper, we use new pricing and 
claims data from actual reinsurance contracts--more 
than 2,000 of them--brokered by Guy Carpenter from 
1970 to 1994. For much of this sample period, the data 
cover a substantial portion of  the CAT risks reinsured 
by large U.S. insurance carriers. There is coverage of 
regional insurers in the sample as well. Most of the 
contracts carry CAT risks that last one year. 

Our returns are those an investor would have earned 
by providing capital directly to fund reinsurance con- 
tracts. All of  our contracts are "excess-of-loss," which 
means that there is a prespecified maximum amount, 
or limit, at risk. Each contract "layer" represents a 
limit in excess of  a deductible. However, many of the 
contracts also include reinstatement commitments 
which require that a fresh contract of the same limit be 
struck should an event occur prior to the end of  the 
contract year. Because of  this reinstatement feature, it 
is theoretically possible that, if two large events occur 

during the contract period, an investor could lose twice 
the limit. 

Calculating Returns 
To calculate return, we act as though the investor 

puts up an amount at the beginning of  the contract year 
equal to two times the limit, thus accounting for a po- 
tential limit reinstatement. Insurers contribute the re- 
insurance premium and reinstatement premium (if any) 
into the same dollar pool. We assume that all these 
funds are invested in U.S. Treasury bills, until and un- 
less there is a drawdown due to the occurrence of  an 
event. At the end of the year, the investor takes home 
all funds remaining in the account minus 1% of the 
limit, which we assume goes toward transaction fees. 4 
Unless otherwise mentioned, we calculate the resulting 
investor's return as the excess above what an equal- 
sized investment in one-year Treasury bills would have 
returned. 

The above return calculation is conservative, in that 
it assumes investors have "fully collateralized" their 
risk exposure. That is, there is no way that they can 
lose more than they have put up, and indeed, are guar- 
anteed to get at least something back at year's end. In 
practice, investors tend to "lever" such investments, 
often putting up only a fraction of the maximum po- 
tential loss. However, with leverage, there is at least a 
chance that they will have to pay out more later, much 
like Lloyd's names have recently done. In any event, 
leverage has the effect of increasing, by equal factors, 
the magnitude of  excess returns and risk. 

Return on Investment 
Table 1 presents summary data from the fully col- 

lateralized returns in excess of  the risk-free rate. By 
investing in a portfolio of  CAT reinsurance contracts 
(weighted by limit), an investor would have earned 200 
basis points above the Treasury bill rate. If  insurance 
companies were to prepay the full premiums, investors 
would need to put up less of  their own money initially. 
The investment, therefore, could be fully collateralized 
using less investor-provided funds. As a result, the re- 
turn on the same portfolio of  reinsurance contracts rises 
to 224 basis points ~ above the Treasury bill rate. 

In the best and worst years from 1970 to 1994, the 
excess return would have been 7.5% and -22.1%, 
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TABLE 1 

RETURNS IN EXCESS OF RISK-FREE RATE FROM INVESTMENTS IN CAT REINSURANCE 1,2 

Mean Maximum Minimum Standard 
Deviation 

Basis Points (%) Observations 

1970-1994: All Layers Limit Weighted 200 753 - 2211 5.8 25 
National 210 879 -2561 6.6 25 
Regional 44 253 - 245 1.1 25 

1970-1994: Upper Layers Limit Weighted 137 599 - 1843 4.3 25 
National 142 726 -2258 5.2 25 
Regional 43 173 - 3 0.5 24 

1970 1994: Lower Layers Limit Weighted 232 1198 -2970 10.8 25 
National 249 1290 - 3257 11.7 25 
Regional 78 469 - 733 3.2 25 

1970-1994: All Layers Equally Weighted 237 595 - 1182 3.9 23 
National 248 823 -2764 7.3 25 
Regional 83 364 -241 1.3 25 

National refers to a company that writes policies throughout the United States. Regional refers to a company that writes policies in a 
sub-part of the United States. A third classification, International, refers to a company whose underwriting extends beyond the United 
States. International contains only a few observations, so it is not shown separately, but it is included in the totals. 

2 CAT returns are net of expenses of 100 basis points of limit. 

respectively. Higher average returns were earned by the 
lower layers, which are the excess-of-loss contracts that 
are most frequently impacted by loss. Also, the returns 
on national exposures were generally higher than re- 
turns on regional exposures. However, they were more 
volatile too, which is expected given national compa- 
nies are, on average, more exposed to high risk areas 
(such as Florida and California). 

Figure 1 shows that CAT investments under-per- 
formed domestic stocks, but over-performed domestic 
bonds. 6 It is evident from Figure 2 that the returns on 
CAT risks are less volatile than either stocks or bonds. 
Even the largest of  these losses (due to Hurricane An- 
drew in 1992) is smaller than some of  the losses in 
stocks/  

Taken together, Table 1 and Figures 1 and 2 suggest 
that CAT risk investments on average earned returns 
substantially in excess of  Treasury bills during this pe- 
riod, much like investments in stocks and bonds. CAT 
investments appear somewhat less volatile than these 
other asset classes, but still have large downsides 
should a serious event occur. 8 

Zero Beta Asset 

between returns on CAT exposures and other major as- 
set classes: foreign stocks and bonds, in addition to the 
domestic stocks and bonds shown above. The results 
suggest that CAT risks are basically uncorrelated with 
these other asset classes. The estimated correlation co- 
efficients between CAT exposures and other asset clas- 
ses range from a low of  -0 .13  to a high of  0.21. None 
are statistically distinguishable from zero. 

By comparison, the correlation between U.S. stocks 
and bonds is estimated to be much higher, at 0.40; be- 
tween international stocks and international bonds at 
0.45; and between international stocks and domestic 
stocks at 0.58. All of  these latter correlations are sta- 
tistically positive at standard levels of  significance. 

The fact that CAT risks are uncorrelated with returns 
on other asset classes suggests that the "fair" return on 
CAT risks are low. In particular, expected returns on 
CAT risk are likely to be lower than fair returns on 
stocks, which are commonly thought to be about 6% 
in excess of  Treasury bills. The lack of  correlation with 
all other asset classes and the small relative size of  
CAT exposures compared to U.S. liquid financial 
wealth, point toward a fair return for CAT risks that is 
approximately equal to the Treasury bill rate. 

The second major characteristic of  CAT exposures is 
that they are uncorrelated with the returns on other ma- 
jor asset classes, such as stocks and bonds. This point 
is made in Table 2. The table shows the correlations 

Portfolio Enhancements 
Our findings that CAT risks have provided average 

returns above Treasury bills, with no correlation with 
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TABLE 2 

RETURN CORRELATION MATRIX OF EXCESS 

RETURNS FOR FIVE ASSET CLASSES 

Inter- 
CAT S&P Government national 

Bonds 500 Bonds EAFE ~ Bonds 

CAT Bonds 
S&P 500 -0.13 
Government Bonds -0.07 0.40 
EAFE 1 0.21 0.58 0.25 
International Bonds 0.21 -0.03 0.24 0.45 

EAFE is an index constructed from a portfolio of European, 
Asian and Far East stock indices. Source: Goldman Sachs 

other major asset classes, have an important implica- 
tion for portfolios: adding CAT risk products improves 
overall portfolio performance. 

Table 3 shows what happens when CAT risk in- 
vestments are mixed in with a diversified portfolio of  
domestic and international stocks and bonds? Note 
that, with additional increments of  CAT risks, overall 
portfolio return falls somewhat while portfolio volatil- 
ity falls substantially. This can be seen by comparing 

their ratio, commonly termed the "reward-to-risk" ratio 
(computed by calculating the realized return minus the 
risk-free return divided by the standard deviation of  the 
portfolio). This ratio rises strongly as CAT risks are 
included in the portfolio. Indeed, it keeps rising after 
the CAT risk level in the mix rises all the way to 25%. 
Note, that if Treasury bills are sold when CAT notes 
are purchased, the net effect on overall portfolio returns 
is more positive, and the increase in the reward-to-risk 
ratio is retained. 

All this occurs because CAT risks help to signifi- 
cantly diversify the portfolio. Greater portfolio diver- 
sification and lower volatility allow the investor to take 
on additional high-return, high-risk investments with- 
out a substantial net increase in portfolio risk. 

Conclusion 
The characteristics of  CAT exposures make the link- 

age with capital markets very desirable. The benefits to 
investors are: 
• the improvement of  the overall behavior of  their port- 

folios, 

TABLE 3 

PORTFOLIO ENHANCEMENT EFFECTS OF CAT BONDS 1 

Basic Portfolio 

5% 10% 15% 20% 25% 
Unlevered Unlevered Unlevered Unlevered Unlevered 
Expense Expense Expense Expense Expense 
Adjusted Adjusted Adjusted Adjusted Adjusted 

CAT CAT CAT CAT CAT 
Bonds z Bonds 2 Bonds ~ Bonds z Bonds 2 

(1) (2) (3) (4) (5) (6) 

Average Excess Return (b.p.) 313 306 298 290 282 275 
Portfolio Volatility 11.8% 11.3% 10.7% 10.1% 9.5% 9.0% 
Reward to Risk Ratio 0.26 0.27 0.28 0.29 0.30 0.30 
Minimum Return -22.5% -21.1% -19.8% -18.5% -17.1% -15.8% 
Maximum Return 24.4% 23.3% 22.2% 21.1% 20.0% 19.0% 
Skewness 3 -0.34 -0.32 -0.30 -0.27 -0.25 -0.22 
Kurtosis 4 2.56 2.54 2.51 2.47 2.42 2.37 

Summary statistics are given for a dataset of 23 annual excess returns from 1970-1992. The "Basic Portfolio" is composed of 70% 
domestic and 30% international securities. The domestic securities consist of 70% S&P 500 and 30% long-term U.S. government bonds. 
The international securities consist of 70% EAFE and 30% international government debt. 

2 Columns (2)-(6) represent the excess returns a modified portfolio containing varying amounts of unlevered CAT bonds and the com- 
plimentary amount of the "Basic Portfolio." The 23 annual CAT returns are average values for policies in that year weighted by 
occurrence limit. The CAT returns are net of expenses of 100 basis points of limit. 

3 Skewness is an indicator of asymmetry in returns. A negative skewness coefficient indicates that the distribution of returns "tails off" 
to the lett. The skewness of the portfolio moves closer to 0 as the proportion of CAT bonds in the portfolio increases, a consequence 
of the fact that CAT returns are negatively correlated with other elements in the portfolio. 
Kurtosis is a measure of the peakedness of a frequency distribution. The normal distribution has a kurtosis coefficient of 3. For a given 
standard deviation, a distribution with high kurtosis may have more outlying points farther from the expected value (the mean). 
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• the opportunity to add different investments without 
increasing portfolio risk, and 

• the creation of a larger reservoir from which to sup- 
port more efficient and more reliable customer insur- 
ance products. 

The historical evidence suggests the addition of CAT 
exposures to investment portfolios is the equivalent to 
a free lunch for investors and insurance consumers 
alike. 

END NOTES 

1. For the distinction between customers and investors 
as claimants of financial firms, see Robert C. Mer- 
ton, Continuous Time Finance, Basil Blackwell 
(Cambridge), 1990. 

2. This study, by the U.S. General Accounting Office, 
puts the value of world liquid bonds and stocks at 
$18.6 and $13.7 trillion, respectively. The U.S. 
share of the $32.2 trillion total is about $13 trillion. 
This number leaves out not only real estate and 
cash, but also illiquid financial holdings such as let- 
ter stock private-company holdings. 

3. The volatility of stock returns over the last two dec- 
ades has been approximately 17% per annum, or 
108 basis points per day. Average daily bond-return 
volatilities are about 70 basis points. Daily real 
estate volatilities cannot be measured directly. How- 
ever, real estate returns (inclusive of mortgage bor- 
rowing) display volatility just below that of stocks. 
For the purpose of this report, we have used the 
more conservative 70-basis point figure in determin- 
ing average daily fluctuation. 

4. We make no attempt here to reconstruct actual 
costs. Given the arguments above, the costs of dis- 
tributing insurance exposures can be expected to be 
quite different going forward than in the past. One 
percent of limit seemed to us a sensible level of 
expenses, but readers can make their own judg- 
ments -and  adjustments--accordingly. 

5. The tables and figures assume (conservatively) that 
the premium is not fully pre-paid, so that investors 
put up two times the limit of their own funds. 

6. Domestic stock retums are measured here as the re- 
turn on the S&P 500, while bond returns are mea- 
sured by the Ibbotson long-term government bond 
index. Returns on these asset classes have not been 
reduced for expenses. 

7. Our annual CAT return series pools together differ- 
ent contract inception dates, whereas stock and bond 
returns represent January 1 through December 31 
results. Thus, Figures 1 and 2 and Table 2 do not 
contain exact figures and are intended only to be 
indicative of CAT return behavior and correlation. 

8. Of course, the average returns reported here are very 
sensitive to the frequency with which large storms, 
such as Hurricane Andrew, or earthquakes happen 
to occur in the sample. 

9. In this exercise, we use a base portfolio of 70% 
domestic (of which 70% is stocks and 30% is 
bonds) and 30% foreign (of which 70% is stocks 
and 30% is bonds). To the extent that the base port- 
folio is less heavily invested in U.S. stocks, CAT 
risk provides an even more attractive addition to the 
portfolio than reported in Table 3. Average holdings 
of U.S. stocks versus bonds are considerably less 
than the 70%/30% assumed above. 
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An Actuarial Bridge 
to Option Pricing 

by Hans U. Gerber and Elias S.W. Shiu 

1. Introduction 
Actuaries measure, model, and manage risks. Risk 

associated with the investment function is a major un- 
certainty faced by many insurance companies. Actu- 
aries should have knowledge of the asset side of the 
balance sheet of an insurance company and how it re- 
lates to the liability side. Such knowledge includes the 
operation of financial markets, the instruments avail- 
able to the insurance companies, the options imbedded 
in these instruments, and the methods of pricing such 
options and derivative securities. 

In this paper we study the pricing of financial options 
and derivative securities, and their synthetic replication 
by means of the primitive securities. We show that a 
time-honored concept in actuarial science, the Esscher 
transform, is an efficient tool for pricing many options 
and contingent claims if the logarithms of the prices of 
the primitive securities are certain stochastic processes 
with stationary and independent increments. The Swed- 
ish actuary F. Esscher (1932) suggested that the Edge- 
worth approximation (a refinement of the normal 
approximation) yields better results, if it is applied to 
a modification or transformation of the original distri- 
bution of  aggregate claims. Here, this Esscher trans- 
form is defined more generally as a change of measure 
for certain stochastic processes. An Esscher transform 
of such a process induces an equivalent probability 

measure on the process. The Esscher parameter or 
parameter vector is determined so that the discounted 
price of each primitive security is a martingale under 
the new probability measure. A derivative security or 
contingent claim is valued as the expectation, with re- 
spect to this equivalent martingale measure, of the dis- 
counted payoffs. 

Although there may be more than one equivalent 
martingale measure, in general, the risk-neutral Esscher 
measure provides a unique and transparent answer, 
which can be justified if there is a representative 
investor maximizing his or her expected utility. The 
option price is unique whenever a self-financing rep- 
licating portfolio can be constructed. This is the case 
in the multidimensional geometric Brownian motion 
model and also in the multidimensional geometric 
shifted compound Poisson process model. The latter is 
at the same time simpler (in view of its sample paths) 
and richer (the former can be retrieved as a limit). The 
Esscher method can be extended to pricing the deriv- 
ative securities of (possibly) dividend-paying stocks. 

We show that, in the case of a multidimensional ge- 
ometric Brownian motion model, the price of a Euro- 
pean option does not depend on the interest rate, 
provided that the payoff is a homogeneous function of 
degree one with respect to the stock prices. Moreover, 
with the aid of Esscher transforms, a change of nu- 
meraire can be discussed in a concise way. 
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2. The Esscher Transform 
of a Single Random Variable 

Let Y be a given random variable and h a nonzero 
real number for which the expectation 

E[e hr] 

exists. The positive random variable 

e hY 

(2.1) 
E[e by] 

can be used (as the Radon-Nikodym derivative) to de- 
fine a new probability measure, which is equivalent to 
the old measure in the sense that they both have the 
same null sets (sets of  measure zero). In other words, 
the old and new measures are mutually absolutely con- 
tinuous. For a measurable function ~b, the expectation 
of the random variable ~(Y) with respect to the new 
measure is 

E[d~(Y)e hr] 
E[¢(Y); hi - (2.2) E[e hr] 

We call this new measure the Esscher measure of 
parameter h. The corresponding distribution is usually 
called the Esscher transform in the actuarial literature 
(Esscher, 1932; Philipson, 1963; Jensen, 1991). In 
some statistical literature, the term exponential tilting 
is used to describe this change of  measure. 

The method of  Esscher transforms was developed to 
approximate the aggregate claim amount distribution 
around a point of  interest, Yo, by applying an analytic 
approximation (the first few terms of  the Edgeworth 
series) to the transformed distribution with the param- 
eter h=h o chosen such that the new mean is equal to 
Yo- Let 

c(h) = ln(E[ehV]) (2.3) 

be the cumulant-generating function. Its first- and sec- 
ond-order derivatives are 

E[Ye hr] 
c'(h) = ~ = ElY; hi (2.4) 

E[e ~r] 

and 

c"(h) - e[e~']  ',E[-X-(Uq-J = Var[Y; h]. (2.5) 

Since Vat[Y; h i>0  for a nondegenerate random vari- 
able Y, the function c'(h) is strictly increasing; thus the 
number ho for which 

Yo = c'(ho) = E[Y; ho] 

is unique. In using the Esscher transform to calculate 
a stop-loss premium, the parameter ho is usually chosen 
such that the mean of  the transformed distribution is 
the retention limit. 

3. Discrete-Time Stock-Price 
Models 

A purpose of  this paper is to show that the concept 
of  Esscher measures is an effective tool for pricing 
stock options and other derivative securities. We need 
to extend the change of measure for a single random 
variable to that for a stochastic process. In this section 
we consider the simpler case of  discrete-time stochastic 
processes. 

For j = 0 ,  1, 2 . . . .  , let SO') denote the price of  a stock 
a time j.  Assume that there is a sequence of  indepen- 
dent (but not necessarily identically distributed) ran- 
dom variables { Yk} such that 

S( j )  = S(O)exp(Y, + II2 + " ' "  + Yj), 

j = 1 , 2 , 3  . . . .  (3.1) 

Assume that the moment generating function for each 
Y, exists, and write 

(3.2) Mr,(h) = E[ehV,]. 

For a sequence of  real numbers {hk}, define 

= exp(Zh.:'0/1-lM,Xh0 
k ~ j - -  k~j 

(3.3) 

Then {~} is a positive martingale which can be used 
to define a change of  measure for the stock-price pro- 
cess. For a positive integer m, let t~(m) be a random 
variable that is a function of  Y , . . . ,  I'm, 

~(m) = ~(Yt . . . . .  Y,). (3.4) 

The expected value of  O(m), with respect to the new 
measure, is 

E [dd(m) Z,,]. (3.5) 

In (3.5) the random variable Z,, can be replaced by Z s, 
j>m, because of  the martingale property. 

We assume that the risk-free interest rate is constant 
through time and the stock pays no dividends. Let 8 
denote the risk-free force of  interest. The risk-neutral 
Esscher measure is the measure, defined by the se- 
quence of  numbers {h~,}, with respect to which 
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{e-aJS( j ) ; j  = 0, 1, 2 . . . .  } (3.6) 

is a martingale. This leads to 

e ~ = My,(1 + h2)/M,,(h'Q, k = 1, 2, 3 . . . .  (3.7) 

As we pointed out at the end of  the last section, the 
numbers {hl} are unique. 

Suppose that each Yk is a Bernoulli random variable, 
i.e., it takes on two distinct values, ak and bk, only. 
Then there is only one risk-neutral measure, given by 

e s - -  e b ~  

Pr'(Yk = ak) - - -  (3.8) 
ea~ - eb, 

and 

e ~ - e a k  

P r ' ( Y  k = bk) e ~' _ ea ,. (3.9) 

(To rule out arbitrage opportunities we assume that the 
force of  interest 5 is between ak and bk for each k.) 

If we assume that the random variables {Yk} are 
identically distributed in addition to being independent, 
then all h~ are the same number. This points to an ap- 
proach to extend the change of  measure to certain con- 
tinuous-time models, as we shall see in Section 5. On 
the other hand, the risk-neutral Esscher measure can 
also be defined for dependent random variables {Yk}. 
In this more general situation, each hl is a function of  
Yl, Y2, . . - ,  Y,-i and thus a random variable itself. 

4. Fundamental Theorem 
of Asset Pricing 

In this paper we assume that the market is friction- 
less and trading is continuous. There are no taxes, no 
transaction costs, and no restriction on borrowing or 
short sales. All securities are perfectly divisible. It is 
now understood that, in such a security market model, 
the absence of  arbitrage is "essentially" equivalent to 
the existence of  a risk-neutral  measure or an equivalent 
martingale measure,  with respect to which the price  of  
a random payment is the expected discounted value. 
Dybvig and Ross (1987) call this result the Fundamen-  
tal Theorem o f  Asset  Pricing. In general, there may be 
more than one equivalent martingale measure. A merit 
of  the risk-neutral Esscher measure is that it provides 
a general, transparent, and unambiguous solution. 

That the condition of  no arbitrage is intimately re- 
lated to the existence of  an equivalent martingale mea- 
sure was first pointed out in Harrison and Kreps (1979) 
and Harrison and Pliska (1981, 1983). Their results are 

rooted in the idea of  the risk-neutral valuation of  Cox 
and Ross (1976). In a finite discrete-time model, the 
absence of  arbitrage opportunities is equivalent to the 
existence of  an equivalent martingale measure (Dalang, 
Morton, and Willinger 1990; Schachermayer 1992b). 
In a more general setting the characterization is deli- 
cate, and we have to replace the term "equivalent to" 
by "essentially equivalent to." It is beyond the scope 
of  the present paper to discuss the details. Some recent 
papers are Artzner and Heath (1995), Back (1991), 
Back and Pliska (1991), Christopeit and Musiela 
(1994), Cox and Huang (1989), Delbaen (1992), Del- 
baen and Schachermayer (1994a, 1994b), Frittelli and 
Lakner (1994), Mfiller (1989), Schachermayer (1992a, 
1994), Schweizer (1992), and Stricker (1993). 

We note that the idea of  changing the probability 
measure to obtain a consistent positive linear pricing 
rule has appeared in the actuarial literature in the con- 
text of  equilibrium reinsurance markets. See Borch 
(1960, 1990), Bfihlmann (1980, 1984), Deprez and 
Gerber (1985), Lienhard (1986), Gerber (1987), Son- 
derman (1991), Aase (1993a, 1993b), and Chevallier 
and Mfiller (1994). 

5. Continuous-Time Stock-Price 
Models 

In the rest o f  the paper, we consider continuous-time 
stock-price models. For t>0, let S(t) denote the price at 
time t of  a nondividend-paying stock. We assume that 
there is a stochastic process {X(t)} with independent 
and stationary increments such that 

S(t)  = S(O) e x('), t > O. (5.1) 

For a theoretical "justification" that stock prices should 
be modeled with such processes, see Samuelson (1965) 
or Parkinson (1977). (Some authors call {X(t)} a LOW 
process . )  To rule out arbitrage opportunities, we need 
the condition that X ( t ) - 8 t  assumes positive and nega- 
tive values. If  this were not the case, for example, if 
X ( t ) - 8 t > O  for all t, we would have 

S(O)# ~ < S(0)eXm; 

thus, by borrowing S(0) and investing it in the stock, 
one could make a sure profit (unless X ( t ) - S t ) .  This 
condition is analogous to the condition in the Bernoulli 
example at the end of  Section 3 that 8 is between ak 
and bk. 

We assume that the moment generating function of  
X(t), 
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exists and that 

The process 

M(h, t) = E[e~V¢')], 

M(h,  t) = M(h,  1)'. (5.2) 

{e ~", M(h,  1) '} (5.3) 

is a positive martingale and can be used to define a 
change of probability measure, i.e., it can be used to 
define the Radon-Nikodym derivative dQ/dP, where P 
is the original probability measure and Q is the Esscher 
measure of  parameter h. The risk-neutral Esscher mea- 
sure is the Esscher measure of  parameter h=h" such 
that the process 

{e ~' S(t)} (5.4) 

is a martingale. 
The condition 

yields 

o r  

E[e-s'S(t); h °1 = e-s°S(O) = S(O) 

e s' = E[e "+h';'"' M(h',  1)-'] 

= [M(1 + h', 1)/M(h*, 1)1', 

e a = M(1 + h*, 1)/M(h*, 1), (5.5) 

which is analogous to (3.7) with { Yk} being identically 
distributed. The parameter h" is unique. There may be 
many other equivalent martingale measures. 

Because, for t>0, 

ehX~ ,) S(t)  h 
e ~('' M(h,  1)-' - E[ehX(,--------- ] -- E[S(t)h], (5.6) 

we have the following: Let g be a measurable function 
and h, k, and t be real numbers, t>0; then 

E[S(t )  k g(S(t));  h] 

= E[S(t)* g(S( t ) )  e hx(', M(h ,  1)-'] 

E[S(t)  h+k g(S(t))]  

E[S(t)  h] 

E[S(t)  h+*] E[S(t)  h+k g(S(t))]  

E[S(t)*] E[S(t)  h+*] 

= E[S(t)*; hi E[g(S(t));  h + k]. (5.7) 

Thisfactorizat ion formula  simplifies many calculations 
and is a main reason why the method of  Esscher meas- 
ures is an efficient device for valuing certain derivative 
securities. For example, applying (5.7) with k= 1, h=h" 

and g ( x ) = I ( x > K )  [where I(A) denotes the indicator 
random variable of an event A], we obtain 

E[S('r) I (S(r )  > K); h*] 

= E[S(-r); h'] EU(S(7)  > K); h" + 1] 

= E[S('r); h'] Pr[S(r )  > K; h" + 1] 

= S(O)e ~" Pr[S(r )  > K; h" + 1]. (5.8) 

The last equality holds because (5.4) is a martingale 
with respect to the risk-neutral Esscher measure. Thus 
we have a pricing formula for a European call option 
on a nondividend-paying stock, 

E[e-~"  (S (¢ )  - K)+; h'] 

= E[e -~, (S('r) - K)  I(S('r) > K); h'] 

= e-~'{E[S(T) I(S(~r) > K); h'] 

- KE[I (S (¢ )  > K); h']} 

= S(O)Pr[S('r) > K; h" + 1] 

- Ke-~'Pr[S("O > K; h']. (5.9) 

For {X(t)} being a Wiener process, (5.9) is the cele- 
brated Black-Scholes formula; see also (10.20) below. 

6. Representative Investor 
with Power Utility Function 

When there is more than one equivalent martingale 
measure, why should the option price be the expecta- 
tion, with respect to the risk-neutral Esscher measure, 
of  the discounted payoff?. This particular choice may 
be justified within a utility function framework. Con- 
sider a simple economy with only a stock and a risk- 
free bond and their derivative securities. There is a 
representative investor who owns m shares of  the stock 
and bases his or her decisions on a risk-averse utility 
function u(x). Consider a derivative security that pro- 
vides a payment of  ~'(T) at time "r, "r>0; ~r('r) is a func- 
tion of  the stock price process until time ~'. What is the 
investor's price for the derivative security, such that it 
is optimal for him or her not to buy or sell any fraction 
or multiple of it? Let V(0) denote this price. Then, 
mathematically, this is the condition that the function 

d~('q) = E[u(mS('r) + xl[rr('r ) - e~'V(0)])] (6.1) 

is maximal for "q=0. From 

6 ' ( 0 )  = 0,  

we obtain 
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V(O) = e -~" E[Tr('r)u'(mS("r))] (6.2) 
E[u'(mS('r))] 

(as a necessary and sufficient condition, since +"( 'q)<0 
if u"(x)<0). In the particular case of  a power utility 
function with parameter c>0 ,  

X1 -c  
- -  i f c ¢  1 

u(x) = 1 - c , (6.3) 

l n x  i f c  = 1 

we have u ' ( x )=x  -c, and 

V(O) = e ~" E[~r(r)[mS(r)]-c] 
E[[mS('r)]  -~] 

= e - ~  E[W(T)S(T)  -c] 

E[S( r ) -q  (6.4) 

Formula (6.4) must hold for all derivative securities. 
For 7r(r)=S(r) and therefore V(0)=S(0), (6.4) becomes 

S(O) = e - ~  E[S('r)l-c] 
E[S(¢) -~] 

M(1 - c, "r) 
= e -~ S(0) 

m ( - c ,  "c) ' 

o r  

M(1 - c, 1) 
e ~ - (6.5) 

M ( - c ,  1) 

On comparing (6.5) with (5.5), we see that the value 
of  the parameter c is - h * .  Hence V(0) is indeed the 
discounted expectation of  the payoff "rr('r), calculated 
with respect to the Esscher measure of  parameter 
h* = --c. 

By considering different points in t ime  % we get a 
consistency requirement. This is satisfied if the investor 
has a power utility function. We conjecture that it is 
violated for any other risk-averse utility function, 
which implies that the pricing of  an option by the risk- 
neutral Esscher measure is a consequence of  the con- 
sistency requirement. Some related papers are 
Rubinstein (1976), Bick (1987, 1990), Constantinides 
(1989), Naik and Lee (1990), Stapleton and Subrah- 
manyam (1990), He and Leland (1993), Heston (1993), 
and Wang (1993). 

7. Logarithm of  Stock Price 
as a Shifted Poisson Process 

Here we consider the so-called pure jump model. 
The assumption is 

X ( t )  = kN( t )  - ct, (7.1) 

where {N(t)} is a Poisson process with parameter h, and 
k and c are constants with k4:0. Then the price of  the 
nondividend-paying stock is modeled as 

S( t )  = S(O)e ku(t)-et, (7.2) 

The condition that X ( t ) - ~ t  assumes positive and neg- 
ative values is that k and c + 8  have the same sign. This 
model contains the classical Wiener process model as 
a limiting case. Note that 

E[X(1)] = kk - c (7.3) 

and 

Var[X(1)] = k2h. (7.4) 

Suppose that we vary k, k, and c so that (7.3) and (7.4) 
remain the constant values I-t and cr 2, respectively, i.e., 
we set 

k = (or~k) 2 (7.5) 

and 

c = (¢rVk) - It. (7.6) 

In the limit as k---)0, {X(t)} has continuous sample 
paths, and hence it is a Wiener process with drift I.t and 
infinitesimal variance ¢r z. This is illustrated in the two 
graphs in Figure 1. We note that the discontinuities o f  
the second sample path are not recognizable and that 
it appears to be a sample path of  a Wiener process. 

We now determine the risk-neutral Esscher measure 
according to Section 5. Since 

we have 

Because 

E[e ~x(')] = exp[kt(e = - 1)], 

M(z ,  t) = E[e ~")] 

= E(e~t~,l--~) 

= exp([k(e ~k - 1) - zc]t). (7.7) 

M ( z  + h, t) 
E[e~"~; h] - 

M ( h ,  t) 

= exp([kehk(e ~k -- 1) -- zc]t), 

we see that, under the Esscher measure of  parameter h, 
the process {X(t)} remains a shifted Poisson process, 
but with modified Poisson parameter hehL Formula 
(5.5) is the condition that 

= keh'k(e k -- 1) -- c. (7.8) 
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Hence, the risk-neutral Esscher measure is the measure 
with respect to which {N(t)} becomes a Poisson process 
with parameter 

k* = he ~'k. 

= (~ + c)/(e* - I). (7.9) 

The ratio in (7.9) is indeed a positive number because 
we have imposed the condition that k and b + c  have 
the same sign. 

Consider a European option or contingent claim with 
exercise date "r and payoff  function II(s). [At time r 
the option owner receives II(S('r)).] The method of  the 
Esscher transforms prices the option as the expected 
discounted payoff, with the expectation taken with re- 
spect to the risk-neutral Esscher measure. That is, for 
~'r, the Esscher  opt ion pr ice  at time t, with S( t )=s ,  is 
the conditional expectation. 

V(s, t) = E[e ~" '~H(S(T))IS(t ) = s; h*] 

= e ~ '~ ~ Pr[N("r) - N(t)  = n; h*] I](se "k-~'-')) 
n = 0  

= e ~+~'~"-'~ ]~ [X*('r - t)]" H(se, k_,,~,_ % (7.10) 
n-O /"/! 

In this stock price model, the option price is unique 
and given by (7.10). To see this, we construct a self- 
financing portfolio of  the stock and risk-free bond 
whose value at time t is V(S(t), t). The amounts in- 
vested in the stock and bond are dynamically adjusted. 
The term sel f - f inancing means that, once started, no 
funds are added or withdrawn from the portfolio until 
the option exercise date -r. As t--+~, V(S(t), t)---)FI(S("¢)) 
with certainty; hence, at time % the value of  the self- 
financing portfolio is equal to the payoff  of  the option. 
Consequently, the option price at any previous point in 
time must be identical to the portfolio value at that 
time, i.e., the option price is indeed the Esscher option 
price (7.10). 

For t<'r, let "q(S(t), t) denote the amount in the port- 
folio invested in the stock at time t; therefore the dif- 
ference V(S(t), t ) - ~ ( S ( t ) ,  t) is the amount invested in 
the risk-free bond at time t. The crucial question is 
whether we can define "q(S(t), t) so that the portfolio is 
self-financing, i.e., that the investment gain of  the port- 
folio is identical to the change of  the portfolio value, 
as defined by V, in any time interval and in any situ- 
ation. We have to examine two scenarios. 

First, we consider the case where the stock price has 
a discontinuity at time t, jumping from S(t)  to S(t)e  k. 
Then the condition that the instantaneous investment 

gain is equal to the instantaneous change of  the port- 
folio value yields the equation 

"q(S(t), t)e k - "q(S(t), t) 

= V(S( t )e  k, t) - V(S( t ) ,  t), (7.11) 

resulting in the condition 

V(S( t )e  k, t) - V(S( t ) ,  t) 
~(s( t) ,  0 = (7.12) 

e k -  1 

Second, we consider the case where the stock price 
process does not have a jump in a time interval around 
a certain point to. Let S(to)=S. For t in the time interval, 
we have 

and 

S( t )  = se -c~'-'°~ (7.13) 

v(s(o, t) 
= V(se-c t ' -% t) 

~,  [X*(-r - t)]" 
e-I~+x*X,r-t) 

n=o n !  
II(se"k-c~'-'o,). (7.14) 

Thus 

d 
dt V(S( t ) ,  t) 

= (~ + k * ) V ( S ( t ) ,  t) - k * V ( S ( t ) e  k, t), (7.15) 

and the instantaneous change of  the portfolio value is 

[(~ + k * ) V ( S ( t ) ,  t) - h * V ( S ( t ) e  ~, t)]dt. (7.16) 

On the other hand, the instantaneous investment gain 
of  the portfolio is 

~(S(t), t ) ( -ed t )  + [V(S(t), t) - ~(S(t),  t)](~dt). (7.17) 

Here, the condition that the instantaneous investment 
gain is equal to the instantaneous change of  the port- 
folio value yields the equation 

- c 'q (S ( t ) ,  t) + 8[V(S(t) ,  t) - "q(S(t), t)] 

= (~ + k*)V(S(t), t) - ~k*v(g(t)e k, t), 

o r  

~(S( t ) ,  t) = ~ [V (S ( t  e k, t) - V(S(t) ,  t)]. (7.18) 
e + 8  

Since h* is defined by (7.9), conditions (7.12") and 
(7.18) are equivalent, and with this choice of'q(S(t), t), 
the portfolio is indeed self-financing. 
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Observe that, in constructing the self-financing port- 
folio which replicates the option payoff, we did not 
need {N(t)} to be a Poisson process. The self-financing 
portfolio can be constructed because in each infinites- 
imal time interval exactly two scenarios are possible: 
a jump with known magnitude, or no jumps. Thus N(t)  
in (7.1) and (7.2) can be assumed to come from a more 
general class of counting processes; the equivalent mar- 
tingale measure is the measure with respect to which 
{N(t)} becomes a Poisson process with parameter h* 
given by (7.9). 

It is of  interest to consider the limiting case where 
k---)0, with h and c varying according to (7.5) and (7.6). 
With respect to the risk-neutral Esscher measure, the 
drift and infinitesimal variance of  the process (7.1) are 
k h * - c  and U h * ,  respectively. Because of  (7.6), 

lim kc = 0"2. (7 .19)  
k--+O 

Hence 

and 

kh* - c = k - -  

- S i n  

B + c  
C 

e k -  1 

k e k -  1 - k  
C 

e * -  1 e k - 1 

0.2 
--+ 8 - - -  (7.20) 

2 

B + c  
k2h* = k 2 - -  

e ~ -  1 

__+ 0"2 (7.21 ) 

as k--+0. Thus, in the limit the risk-neutral Esscher mea- 
sure corresponds to the Wiener process with drift (7.20) 
and infinitesimal variance (7.21). 

Furthermore, in the limit (k--+0), formula (7.12) 
becomes 

"q(S(t), t) = S ( t )V , (S ( t ) ,  O, (7.22) 

showing that the number of  shares in the replicating 
portfolio at time t, "q(S(t),t)/S(t), is given by the partial 
derivative Vs(S(t),t ), which is usually called del ta  in the 
option literature. Also, by means of the Taylor expansion, 
we have 

h * [ V ( S ( t ) e  ~, t) - Z (S( t ) ,  t)] 

= X*{(e k - I )S( t )V~(S(t) ,  t) 

+ [(e k - I )S( t )]zV, , (S( t ) ,  t)/2 + . . . }  

= (8 + c)S(t)l{~(S(t) ,  t) 

+ 0"2S(t)2V~s(S(t), t)/2 + . . .  (7.23) 

Substituting (7.23) in the right-hand side of  (7.15) and 

d 
dt V(S(t), t) = Vs(S(t), t )[-cS(t)]  + V,(S(t), t) (7.24) 

in its left-hand side, canceling the cSl{~ terms, and let- 
ting k tend to 0 yields the equation 

V,(S(t) ,  t) = ~V(S ( t ) ,  t) - 8S( t )V , (S( t ) ,  t) 

0"2 
2 S(t)zVs,(S(t) ,  t), (7.25) 

which was first derived by Black and Scholes (1973) 
with a replicating portfolio argument. 

8. Extension to Multiple Assets 
In this section we extend the model in the last sec- 

tion to more than one nondividend-paying stock. For 
j =  1, 2 . . . .  , n, let Sj(t) denote the price of stock j at 
time t, t>0, and write 

Xj( t )  = In[Sj(t)/Sj(O)]. (8.1) 

Generalizing (7.1) we model the processes {X~(t)}, 
{X2(t)} . . . . .  {X,(t)} as shifted compound Poisson pro- 
cesses with 

E[~(t)]  = lajt (8.2) 

and 

Cov(X,(t), ~ ( 0 )  = 0"J, (8.3) 

where p.j and 0",j, 1 <i, j<n ,  are constants with the n-by-n  
matrix 

(0",j) (8.4) 

being positive definite. Let k4:0, and let {N,(t)}, 
{N2(t)} . . . . .  {N,(t)} be n independent Poisson pro- 
cesses, each with the same parameter value 

h = k 2. (8.5) 

Let {a,/ l<_i,j<n} be n 2 numbers such that 

~ a 0 a h ~  = 0",h, 1 <i ,  h < n .  (8.6) 
j = l  

(The numbers a~ are not unique. One way to obtain 
them is the Choleski factorization algorithm. As 
n-by-n  matrices, they are related to each other by left 
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multiplication with orthogonal 
i= 1, 2 . . . . .  n, define 

= ai)  - -  ~ i  c~ k j=l  

matrices.) For 

(8.7) 

and 

X~(t) = k ~ a,jNj(t) - c,t. (8.8) 
j=l  

Then (8.2) and (8.3) are satisfied. (To reconcile with 
the notation in this section, one would replace the k in 
the last section by ktr.) 

Let 

X(t) : (X~(t), X2(t ) . . . . .  X,,(t))'. (8.9) 

The process {X(t)} has independent and stationary 
increments with drift vector 

(kt,, kt2 . . . .  , kt,)' (8.10) 

and covariance matrix per unit time (8.4). With ktl and 
a,j held fixed, as k ~ 0  [)~ and c, varying according to 
(8.5) and (8.7)], the limiting stochastic process {X(t)} 
has continuous sample paths and is thus an n-dimen- 
sional Wiener process with drift vector (8.10) and dif- 
fusion matrix (8.4). 

To rule out arbitrage opportunities in the model of 
the last section, we imposed the condition that k and 
~+e  have the same sign, which, in turn, guarantees that 
the new Poisson parameter as defined by (7.9), 

x* = (8 + c ) / ( e *  - 1), 

is positive. Here, we need to generalize the condition 
to one on the parameters a,j, c,, k, and ~. We make the 
following assumption: if'q1, x12 . . . . .  "q, are any n real 
numbers such that 

~'q,(e",J * - 1) _> 0, j = 1, 2 . . . . .  n, (8.11) 
i=1 

with strict inequality for at least one j ,  then this implies 
that 

]~ -q,(c, + ~) > 0. (8.12) 
i=1 

This assumption can be justified by an arbitrage argu- 
ment. If it were violated, there would be n real num- 
bers, "ql, r h , . . , ,  "q,, satisfying (8.11), with strict 
inequality for at least one j ,  and such that 

~ ' q , ( c ,  + ~) <_ O. (8.13) 
i=1 

Inequality (8.13) is equivalent to 

~.  ~ + ~ ( - c ~  s'7 >- ~ e~', 
i=l 

t>_0, (8.14) 

both sides of  which have economic interpretations. If 
the amount of  

i=1 

is invested in the risk-free bond at time 0, the expres- 
sion on the right-hand side is the (accumulated) value 
of  the investment at time t. An alternative, more so- 
phisticated investment strategy is to invest the amount 
of "q, in stock i at time 0 and keep this amount fixed 
at all subsequent times by investing all gains (or losses) 
in the risk-free bond, i=  1, 2 . . . . .  n. The expression on 
the left-hand side of (8.14) is the value at time t of  this 
investment portfolio if  no jumps have yet occurred. 
When the first jump occurs, say, due to Poisson process 
j ,  the instantaneous change of  portfolio value is 

-q,(e ",~k - 1). (8.15) 
i=l 

Because (8.15) is nonnegative for all j and positive for 
at least one, we see how a risk-free profit can be made: 
by selling a bond of the amount 

i=1 

and investing this amount in the n stocks according to 
the strategy described above. 

We assume that the n-by-n matrix (¢,0k-1) is non- 
singular. [This is a relatively weak assumption: since 
the matrix (a,) is nonsingular and k~0,  it is satisfied 
if  Ik] is sufficiently small or if (a~) is triangular.] Let 
~*, h* . . . . .  h* be the solution of  the system of  
equations 

~ h *  (e ~,,k - 1) = c, + ~, i = 1, 2 . . . . .  n. (8.16) 
)=1 

Analogous to h* defined by (7.9), each h* is positive. 
To see this, let r h, r b . . . . .  0, be the solution of the 
system of  equations 
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• ( e  ~,,*- 1 ) =  1 
i=1 

' ~ ' q , ( e  °''k - 1) = 0, m ~ j ,  m = 1, 2 . . . . .  n. (8.17) 
i=1 

Hence, (8.11) is satisfied with one strict inequality, and 
according to (8.12) we have 

0 < ~ -q,(c, + 8) 
i = l  

: ~ vii ~ h* (e a ' -k-  1) 
i=1 m = l  

= ~ h *  ~ ~ , (e  ' ' k -  1) 
r a= l  i=1 

= x*. (8 .18 )  

Extending the self-financing portfolio argument in 
the last section, we show that the price of  a European 
option or contingent claim of  the n stocks is the ex- 
pectation of  its discounted payoff, with the expectation 
taken with respect to a certain modified probability 
measure, which is unique. We introduce the function 
V(s z, s z . . . . .  s°, t), ~'r, defined as the discounted 
conditional expectation 

V ( s ,  s2 . . . . .  s, ,  t) 

= e-~ ' - '~E*[H(S, ( ' r ) ,  S2('r) . . . . .  S,(T)) 

IS, if) = s,, Sz(t) = s z . . . . .  S ,( t )  = s,], (8.19) 

where the expectation is to be taken with respect to the 
new Poisson parameters h*, h* . . . . .  h* defined by 
(8.16). [For j =  1, 2 . . . .  , n, the Poisson process {~(t)} 
is to have the new Poisson parameter h*.] The option 
price at time t, ~'r, is necessarily 

V(St(t) ,  Sz(t) . . . . .  S,( t) ,  t). (8.20) 

To prove this, we note that (8.20) converges to II(S~('r), 
Sz('r) . . . . .  S,('r)) with certainty for t-+r, and we con- 
struct a self-financing portfolio of  the stocks and risk- 
free bond whose value at time t is precisely given by 
(8.20). In this portfolio, let 

"qj(S,(t), S2(t) . . . . .  S,(t) ,  t) 

be the amount invested in stock j at time t; therefore 
the difference 

V(S~(t) . . . . .  S.(t), t) - ~ %(S, ( t )  . . . . .  S.(t), t) (8.21) 
j = l  

is the amount invested in the risk-free bond at time t. 
We have to show that it is possible to choose the 

quantities {~qi(S,(t), Sz(t), . . . , S,(t) ,  t ) , j = l ,  2 . . . . .  n} 
such that the portfolio is self-financing, i.e., that the 
change of  the portfolio value is equal to the investment 
gain in any time interval under each scenario. 

We have to examine n + 1 scenarios. (In an infinites- 
imally small time interval, exactly one of n+  1 events 
will take place: either none of  the n independent 
Poisson processes has a jump, or else exactly one of  
them has a jump.) If  Poisson process j has a jump at 
time t, the price of  stock i jumps from SM)  to S~(t)e ~'j*, 
i= 1, 2 . . . . .  n, and the portfolio value changes from 
V(S,(t),  S2(t) . . . . .  S,( t) ,  t) to 

V(S,( t)e ~',~, S2(t)e ~2,k . . . . .  S . ( t )e  ~",*, t). 

For the portfolio to be self-financing, the change must 
be identical to the investment gain, yielding the 
equation 

V(S~(t)e a',k . . . . .  S , ( t )e  a"~*, t) - V(St( t )  . . . . .  S,(t), t) 

= ~.~ "q,(S,(t) . . . . .  S,(t) ,  t) (e ark - 1). (8.22) 
i=1 

There are n such equations, one for each of the Poisson 
processes ( /=1,  2 . . . . .  n). The solution values 
{Xli(St(t ) . . . . .  S,(t) ,  t), i=1,  2 . . . .  , n} of  these n si- 
multaneous equations are the amounts of  stocks in the 
self-financing portfolio at time t. 

Next, we examine the scenario of  a time interval, 
say around to, in which none of the Poisson processes 
has a jump. For t in this interval, 

Si(t) = S,(to)e -C'<'-'°), i = 1, 2 . . . . .  n. (8.23) 

Then, generalizing (7.15), we have 

d 
dt V(S~(t) . . . . .  S,(t) ,  t) 

= (8 + ~ X*)V(S , ( t )  . . . . .  S,(t) ,  t) 
j = l  

- ~ h* V(S, ( t )e  a~,k . . . . .  S , ( t )e  a",k, t), (8.24) 

and the instantaneous change of  the portfolio value is 

[(8 + ~ h*)V(S , ( t )  . . . . .  S,(t) ,  t) 
j=l  

- ~ X* V(S,( t )e  ~j* . . . . .  S . ( t )e  ~",k, t)]dt. 
J = l  

On the other hand, the instantaneous investment gain 
of  the portfolio is 
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£ Xl, (-c,  dt) + [V - £ "q,](~dt). 
i = 1  i = 1  

[For simplicity we write "q, for 1]i(Sl(t ) . . . . .  Sn(t), t), 
and V for V(SI(t) . . . . .  S.(t), t).] Hence, the condition 
that the instantaneous change of  the portfolio value is 
equal to the instantaneous investment gain is that 

(8 + £ h*)V - £ h*V(S,(t)e",* . . . . .  S.(t)e"",*, t) 
j = l  j= l  

=--£Ci~liJl-~[ V-£~li i = , 

= 8 V -  £-q,(~ + c,), (8.25) 
i=  I 

o r  

L "q,(8 + c,) = L h*[V(S,e"'J* . . . . .  S,e"J*, t) 
i = 1  j = l  

- V ( S , , . . . ,  S,, t)]. (8.26) 

It follows from (8.22) and (8.16) that the right-hand 
side of  (8.26) is 

j~ X* [~ xl,(e'"- I)] 

= £ xl, (8 + el), (8.27) 
i = 1  

which is the left-hand side. Hence, the portfolio so con- 
structed is indeed self-financing, which completes the 
proof that the option price at time t is given by (8.20). 

Let us now consider the limiting case where k--->0 
and h and c, vary according to (8.5) and (8.7). It fol- 
lows from (8.7) that, for i= 1, 2 . . . . .  n, 

lim kG = £ aij. (8.28) 
k---~0 j =  I 

Expanding the exponential functions in (8.16) as a 
Maclaurin series yields 

+ c, = k ~ h* a,j + . . . ,  (8.29) 
j = l  

from which and (8.28) we obtain that, for i= 1, 2, 
. . .  , n ,  

lim k 2 £ X* a,j = lim k(8 + c,) 
k---~0 j =  1 k---~0 

~- ~ao.. 
j = l  

Since the matrix (a,) is nonsingular, we have, for j =  1, 
9 . • • , n ,  

2 * lim k hj  1. (8.30) 
k--*0 

It now follows from (8.6) that 

l i m k Z £  * = £ k--,o j= 1 h j aq ahJ j=l aij ah) 

= o',h. (8.31) 

Considering one more term in the Maclaurin series 
expansion of  (8.29), we have 

+ c, = kj=t h* a o + -~s=, h* a f  + O(k)  

Orii 
= k h* au + - -  + O(k),  (8.32) 

j = '  2 

by (8.31). [We write f ( k ) = O ( g ( k ) )  if f ( k ) /g (k )  is 
bounded as k--->0.] Let E* and Cov* denote the expec- 
tation and covariance operators with respect to the 
equivalent martingale measure [the probability measure 
such that the (independent) Poisson processes {N,(t)}, 
{Nz(t)} . . . . .  {N,(t)} have parameters X*, X* . . . . .  X*, 
respectively]. Then 

E*[X,,(1)] = k £ a,j E*[Nj(1)] - c, 
)=1 

= k £ a,jX* - c, 
j = l  

2 '  

as k--->0, by (8.32), and 

Cov*(X,(1), x~(1)) 

(8.33) 

=  ov,(k £ k £ 
j=l m = l  

k2~ • 
= aij ahj h j 

j = l  

~ih, (8.34) 
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as k---)0, by (8.31). In the limit the process (8.9) is an 
n-dimensional Wiener process, which, with respect to 
the equivalent martingale measure, has a drift vector 
given by (8.33) instead of  (8.10), and unchanged dif- 
fusion matrix (8.4). See also (10.15) below. 

Furthermore, in the limit as k---)0, 

xl,(s, . . . . .  s,,, t) = s, ~(s, . . . . .  s,, t), (8.35) 

showing that the number of  shares of  stock i in the 
replicating portfolio at time t is simply the partial 
derivative 

V~.(S,(t), S2(t) . . . . .  S,(t) ,  t). (8.36) 

To derive (8.35), divide (8.22) [with S~(t)=s~ . . . . .  
SAt)=s,,] by k and let k tend to 0 to obtain 

£ ~s,a, j  = £ xl~aij, j = 1, 2 . . . . .  n. (8.37) 
i : l  "' i=1 " 

Since the matrix (a,) is nonsingular, we have (8.35). 
For another proof that, in a multidimensional Brownian 
motion model, the number of  shares of  stock i in the 
replicating portfolio is V,,, see Theorem 1 of Pedersen 
(1995). 

If the payoff function II is homogeneous of  degree 
one in the stock-price variables, then the option-price 
function V is also homogeneous of  degree one in the 
stock-price variables. By Euler's theorem for homo- 
geneous functions, 

V(s~ . . . . .  s,, t) = £ siV,,(s, . . . . .  s,, t). (8.38) 
i=1 

It follows from (8.35) that, in the multidimensional 
geometric Brownian motion model, 

V(s, . . . . . .  % t) = £ "q,(s, . . . . .  s,, t); (8.39) 
i--I 

hence there is no bond component in the replicating 
portfolio and the option price V does not depend on 
the interest rate g. In Section 10 we derive this inde- 
pendence of  interest rate result in the context of  change 
of  numeraire. For a proof by means of differential 
equations, see Pedersen (1995). 

To conclude this section, we derive the generaliza- 
tion of  (7.25). It follows from (8.23) and an application 
of  the chain rule that (8.24) can be rewritten as 

- ~  c,s,~ + V,, 
i--I 

= g V  - £ X*[V(Sle",, k . . . . .  s ,e" , ' ,  t) - V]. (8.40) 
j=J 

By the multivariate Taylor expansion formula, 

V(s,e  °°k . . . . .  s ,e  ""~k, t) - V(s, . . . . .  s,, t) 

= £ (e "'jk - 1)s, V,, 
i = l  

1 £ £ (e "'k I)( e"~'k 1)sis h V, ,, + (8.41) _ _ _ . . , 

+ 2 ,=I h=J 

Multiplying (8.41) with h* and summing over j gives 
the sum in the right-hand side of(8.40). It follows from 
(8.16) that 

1=~1 ~ ' ~  i=1 £ (e""k- -  1)s~. 

= ~ ~s,~, + ~ c,,,~, 
i=1 i=1 

(8.42) 

the last sum of which cancels with the one on the 
left-hand side of  (8.40). Because of (8.31), 

h,* ( e  "'jk - l ) ( e  "*k - 1) 
i=1 

= £ h*k2a,jahj + . . .  ---) (r,h, (8.43) 
j = l  

as k---)0. It follows from (8.42) and (8.43) that, in the 
limit as k---~0, (8.40) becomes the parabolic differential 
equation 

i=1 ' 2 ,=, h=, ( r j ' s h  g' ~" (8.44) 

9. Extension to Dividend-Paying 
Stocks 

l he results in Section 5 can be extended to the case 
where the stock pays dividends continuously, at a rate 
proportional to its price. In other words, we assume 
that there is a nonnegative number + such that the div- 
idend paid between time t and t + d t  is 

dO S( t )  dt. (9.1) 

(The number dO may be called the dividend-yield rate.) 
If all dividends are reinvested in the stock, each share 
of  the stock at time 0 grows to e*' shares at time t. The 
risk-neutral Esscher measure is the Esscher measure of  
parameter h = h  * such that the process 

{e -~ -*"S ( t ) }  (9.2) 

is a martingale. Condition (5.5) now becomes 
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e ~-* = M(1 + h*, 1)/M(h*, 1). (9.3) 

Since 

E[S('r); h*] = S(0) e I~-*', (9.4) 

the European call option pricing formula (5.9) is 
generalized as 

E[e -~" (S("r) - X)+; h*] 

= S(O)e *" Pr[S(-c) > K; h* + 1] 

- Ke -~  Pr[S(" 0 > K; h*]. (9.5) 

Formula (9.5) may also be used to price currency ex- 
change options, with S('r) denoting the spot exchange 
rate at time "r, g the domestic force of interest, and + 
the foreign force of  interest. For {S(t)} being a geo- 
metric Brownian motion, (9.5) is known as the Gar- 
man-Kohlhagen formula; see also (10.20) below. 

We can extend the model to more than one dividend- 
paying stock. As in the last section, we let Sj(t) denote 
the price of  stock j at time t, j =  1, 2 , . . . ,  n. For each 
j ,  we assume that there exists a nonnegative constant 
qSj such that stock j pays dividends of  amount 

,l,j sj(t) at 

between time t and t+dt.  Same as (8.1) and (8.9), we 
write 

Xj(t) = ln[Sj(t)/Sj(O)], j = 1, 2 . . . . .  n, (9.6) 

and 

X(t) = (Xl(t), X2(t), . . . ,  X,(t))' .  (9.7) 

Let R" denote the linear space of column vectors with 
n real entries, and 

M(z, t) = E[ez'X"q, z ~ R', (9.8) 

be the moment generating function of X(t). We assume 
that {X(t)},_,o is a stochastic process with independent 
and stationary increments and that 

M(z, t) = [m(z, 1)]', t > 0. (9.9) 

Let h = ( h ,  h2 . . . . .  h,)' ~ R" for which M(h, 1) exists. 
The positive martingale 

{e "'x"~ M(h, 1) '},~ (9.10) 

can be used to define a new measure, the Esscher mea- 
sure of  parameter vector h. The risk-neutral Esscher 
measure is the Esscher measure of  parameter vector 
h = h *  such that, for eachj ,  j = l ,  2 . . . . .  n, 

{e -(8-*j' Si(t)} (9.11) 

is a martingale. Condition (9.3) is generalized as n 
simultaneous conditions: 

e "-*, = M(Ij + h*, l)/M(h*, l ) , j  = 1 . . . . .  n. (9.12) 

Here, 

lj = (0 . . . . .  0, 1, 0 . . . . .  0)', (9.13) 

where the 1 in the column vector 1~ is in the j-th 
position. 

As an illustration, let us consider the model in Sec- 
tion 8, where {X(t)} is defined by n independent Pois- 
son processes {Nl(t)}, . . .  , {N,(t)}, each with the same 
parameter value 

h = k-2; (9.14) 

see (8.8). Because 

/ 

E(exp  bjNj(t = E(exp[bjNj(t)]) 
j = l  

n 

= [I exp(th[e b j -  1]) 

(9.15) 

]/ 

j=l 
n 

we have 

M(z, 1) = E[e "'x"~] 

= e x p ( - i ~  1 z , G ) E ( e x p k  z, ao.Nj(t) 
j = l  i = l  

= exp , , -~ (  ~] z, ci + h exp z,a~ - 
j = I  i=1  

Hence, 

M(z + h, 1)/M(h, 1) 

On comparing (9.16) with (9.15), we see that the 
Esscher measure of parameter vector h is the probability 
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measure such that, for j =  1, 2 . . . . .  n, the Poisson pro- 
cess {Nj(t)} has the parameter value 

hi(h) = hexp(k £ h,a,j) 
i=1 

, £ 
k2 exp(k i=t hia°)" (9.17) 

It follows from (9.12) and (9.16) that the risk-neutral 
Esscher measure is determined by the equations 

- +, = - G  + £ hi(h*)( e~'j - 1), 
j=t  

i = 1, 2 . . . . .  n. (9.18) 

Not surprisingly, with +~=0 and hj(h*)=h*, (9.18) is 
identical to (8.16). 

It follows from (9.17) that, for l<j, re<n, 

hj(h)e k''j = hj(h + lm). (9.19) 

Hence, an interesting way to express (9.18) is 

~b , -  c, + £ Xj(h* + 1,) : ~ + ~] Aj(h*), 
j = ]  j = t  

i = 1 ,2  . . . . .  n, (9.20) 

where the right-hand side is constant for all i. 
For k=(k,  . . . . .  k,)', write 

o k S(t) k = S l ( t ) * ' . . .  o,(t)".  (9.21) 

Then, 

E[S( t )kg(S( t ) ) ;  h] 

E[S( t )~g(S( t ) )  e b'x.~] 
E [eWX~,)] 

E[S(t)~g(S(t ) )  S(t)"] 

E[S(t)"] 

E[S(t)  k+h] E[g(S(t))  S(t) k+h] 

E[S(t)  h] E[S(t)  k+h] 

= E[S(t)k; h] ELg(S(t)); k + h], (9.22) 

which generalizes the factorization formula (5.7). An 
immediate consequence of  formula (9.22) and that 
(9.11) is a martingale under the risk-neutral Esscher 
measure is the formula: 

E[e  ~%(t)g(S(t));  h*] 

= E[e-~'Sj(t); h*] E[g(S(t)); h* + lj] 

= Sj(O) e -* ;  E[g(S(t)); h* + lj]. (9.23) 

The Margrabe  option (Margrabe 1978) is the option 
to exchange one stock for another at the end of  a stated 
period, say time % "r>0. The payoff  of  this European 
option is 

[St(a') - S2('r)]+. (9.24) 

Its value at time 0, calculated with respect to the 
risk-neutral Esscher measure, is 

E(e-~'[St( 'r) - S2('r)]+ ; h*). (9.25) 

Since 

(st - s2)+ = stI(st > sz) - s2I(st > s2), 

it follows from (9.23) that 

E(e-s'[St("r) - S2('r)]+ ;h* )  

= St(O)e-*"  E(I[St( 'r)  > S2('r)]; h* + I]) 

- S2(0)e -.2~ E(I[S,( 'r)  > S2('r)]; h* + 12) 

= St(O)e -+~¢ Pr[S]('r) > S2('r); h* + 1]] 

- S2(0)e -+2" Pr[St(x)  > S2('r); h* + 12]. (9.26) 

A special case of  (9.26) is (9.5). 

10. Change of Numeraire and 
Homogeneous Payoff Function 

Consider a European option or derivative security 
with exercise date -r and payoff  

l-I(S,(.r), . . . ,  S,('r)). (10.1) 

Let E,[.] denote the expectation conditional on all in- 
formation up to time t. For 0<~-r, let V(t)= V(St(t ), 
S 2 ( t  ) . . . .  , S.(t), t) denote the option price at time t, 
calculated with respect to the risk-neutral Esscher 
measure, 

V(t) = E,[e -~¢'-') II(S,(n') , . . . ,  So('r)); h*] 

= E,[e -~`, ')Sj(-r) I-I(S,(¢) . . . . .  S,("r))/Sj(r); h*] 

= E,[e -~''-° Ss(¢); h*] 

× E,[H(S,('r) . . . . .  S,("r))/Sj(r); h* + lj] 

= e -*j¢'-° Sj(t) E,[II(S,('r) . . . . .  

S,('r))/~('r); h* + lj]. (10.2) 

Thus, 

V(t) 

e*J' Sj(t) 

1 
E'[e*T----~(-r) H(St("r)' '" ., S,('r)); h* + lj], (10.3) 
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from which it follows that, with respect to the Esscher 
measure of parameter vector h* + lj, the process 

e*J' Sj(t)' 0 <_ t < "r (10.4) 

is a martingale. In particular, with respect to this 
measure, the processes 

e*,' Sj(t) J (10.5) 

and 

{e  *~' &(t)~ 
e *,--S ~(t) J (10.6) 

are martingales (and conversely these conditions deter- 
mine the parameter vector h*). To explain the denom- 
inator e*,'Sj(t), we consider stock j as a standard of  
value or a numeraire. We imagine that there is a mutual 
fund consisting of  stock j only and all dividends are 
reinvested; all other securities are measured in terms of 
the value of this mutual fund. See also Geman, E1 Ka- 
roui, and Rochet (1995). 

Now, we assume that the payoff function II is 
homogeneous of  degree one. It follows from 

1 - I ( s i , . . . ,  s , )  

= sj I-l(sJsj, . . . ,  sj_fsj, 1, sj+,/sj . . . . .  s,@) (10.7) 

that (10.3) becomes 

v(t) 
e*; S~(t) 

I1" 

: , , ,  + ( :0 .8)  
/ \e*,* Sj('r) '" "' e*," Sj('r)J' 

The fight-hand side is a conditional expectation, with 
respect to the Esscher measure of  parameter vector 
h* + lj, of  a function of  the ( n -  1)-dimensional random 
vector 

( x , ( ¢ )  - x j ( ¢ ) ,  . . . ,  x j _ , ( ¢ )  - x A ¢ ) ,  

Xj+I (*T  ) - -  X j ( e r )  . . . .  , X,('r) - Xj(-r))'. ( 1 0 . 9 )  

Consider the special case that {X(t)} is an n-dimen- 
sional Wiener process, with It=(I-tl, ~t2 . . . . .  I.t,)' and 
V=(or,j) denoting the mean vector and the covariance 
matrix of X(1), respectively. It is assumed that V is 
nonsingular. Because 

E( ' )] M(z, t) = exp t z'it + ~ z V z  , z ~  R", (10.10) 

we have, for he R", 

E[ez'Xm; h] 

= g ( z  + h, t)/M(h, t) 

{e 1 l} = exp t z'(it  + Vh) + ~ z V z  , z ~  R", (10.11) 

showing that, under the Esscher measure of  parameter 
vector h, {X(t)} remains an n-dimensional Wiener pro- 
cess with modified drift vector 

t t + V h  

and unchanged diffusion matrix V. It follows from 
(9.12) that, for k= 1, 2 , . . . ,  n, 

1 , 
i~ - +k = 1;(I 1, + Vh*) + : I ~ V I  k. (10.12) 

Thus, 

~* = E[X(1); h*] (10.13) 

= IX + Vh* (10.14) 

( 1 1 
= B1 - ~b I + ~tr,,, (~2 "l'- :0"22  ' 

1 ~' 
• . . ,  ~,° + : 0 " , , L  (1o.15) 

Z / 

where 

1 = (1 ,  1, 1 , . . . ,  1)'. (10.16) 

[Recall (8.33).] Also, 

E[X(1); h* + lk] 

= tt + V(h* + lk) 

= It* + V lk 

( 1 1 
= ~1 - ~b, - O' lk -~- : O ' 1 1  , (~)2 - -  O'2k "01- : O ' 2 2 ,  

l t, . . . .  + .  - ~.k + : ~ ° .  • ( 1 0 . 1 7 )  

For an n-dimensional Wiener process {X(t)}, (10.9) 
is a normal random vector under the Esscher measure 
of  parameter vector h*+l j ,  and it follows from (10.17) 
that its mean does not involve the force of  interest g, 
and, of course, its ( n -  1)-dimensional covariance ma- 
trix, which is the same for all h, does not depend on 
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8. Thus V(t), the price of a derivative security with a 
payoff function which is homogeneous of degree one, 
does not depend on 8. For example, consider the Eur- 
opean Margrabe option, which has the payoff function 

Let 

I I ( s , ,  s O  = (s,  - s~)+. 

v-' = Var[X,(l) - X2(1)] 

= 0"11 - -  20"12  + 0"22 , (10.18) 

1 ln(e ~blTSl(0)] (10.19) 
~('r) = ~ \e_,2,$2(0)1, 

and • denote the standardized normal distribution 
function. Then (9.26) becomes 

E(e ~[S,('r) - ~(T)]+; h*) 
_ 

which does not depend on 8. For nondividend-paying 
stocks (+~=~b2=0), formula (10.20) has been given by 
Margrabe (1978). Fischer (1978) has also derived 
(10.20) with +1=0 as a European call option formula; 
for him, ~(r )  is the stochastic exercise price at time r. 

This independence of the interest rate is not valid in 
general. Consider the shifted compound Poisson model 
discussed earlier, where 

X,(t) - Xm(t ) 

= k £ (a,j - a m j ) N j ( t  ) - ( c  i - C m ) t .  (10.21) 
/ =  I 

It follows from (9.19) that, under the Esscher measure 
of parameter vector h*+lm, the process Nj has param- 
eter value h*e ~"~,. The risk-neutral parameter values 
{X*}, which are the solution of  (9.18) [or (8.16)], de- 
pend on ~. To see how the interest rate ~ gets canceled 
away as k--->0 [with h and G varying according to (8.5) 
and (8.7)], we apply (8.33) with the interest rate, re- 
placing its difference with the dividend-yield rate and 
(8.34) to obtain 

E[X,(1) - Xm(l); h* + 1,,] 

= k ~ (a,:, - amj)h*e '~, - (c i - c,,,) 
j = l  

= k £ (a o - a,,j)h*(1 + ka,,j + . . . )  - (c, - c,,) 
i=  I 

( (~ rnnl (~ mm I . - , , 8 - + ,  + - - + 

(10.22) 

The last expression is identical to the one obtained 
from (10.17). 

Acknowledgment 
Elias Shiu gratefully acknowledges support from the 

Principal Financial Group Foundation. 

REFERENCES 

Aase, K.K. 1993a. "Equilibrium in a reinsurance syn- 
dicate: existence, uniqueness and characterization." 
ASTIN Bulletin 23:185-211. 

Aase, K.K. 1993b. "Premiums in a dynamic model of 
reinsurance market." Scandinavian Actuarial Jour- 
nal, 134-60. 

Artzner, P. and D. Heath. 1995. "Approximate com- 
pleteness with multiple martingale measures." 
Mathematical Finance 5, 1-11. 

Back, K. 1991. "Asset pricing for general processes." 
Journal o f  Mathematical Economics 20:371-95. 

Back, K. arid S.R. Pliska. 1991. "On the fundamental 
theorem of asset pricing with an infinite state 
space." Journal o f  Mathematical Economics 20: 
1-18. 

Bhattacharya, S. and G. Constantinides, ed., 1989. The- 
ory o f  Valuation." Frontier o f  Modern Financial 
Theory, 1. Totowa, N.J.: Rowman & Littlefie|d. 

Bick, A. 1987. "On the consistency of the Black-Scho- 
les model with a general equilibrium framework." 
Journal o f  Financial and Quantitative Analysis 22: 
259-75. 

Bick, A. 1990. "On viable diffusion price processes of 
the market portfolio." Journal o f  Finance 45: 
673-89. 

Black, F. and M. Scholes. 1973. "The pricing of op- 
tions and corporate liabilities." Journal o f  Political 
Economy 81:637-59. 

60 Securitization of  lnsurance Risk." The 1995 Bowles Symposium 



Borch, K. 1960. "The safety loading of reinsurance 
premiums," Skandinavisk Aktuarietidskrift, 163- 
84. 

Borch, K. 1990. Economics of Insurance. Elsevier, 
Amsterdam. 61-81. 

BiJhlmann, H. 1980.  "An economic premium 
principle." ASTIN Bulletin 11:52-60. 

Biihlmann, H. 1984. "The general economic premium 
principle." ASTIN Bulletin 14:13-21. 

Chevallier, E. and H.H. M/iller. 1994. "Risk allocation 
in capital markets: portfolio insurance, tactical as- 
set allocation and collar strategies." ASTIN Bulle- 
tin 24:5-18. 

Christopeit, N. and M. Musiela. 1994. "On the exis- 
tence and characterization of arbitrage-free meas- 
ures in contingent claim valuation." Stochastic 
Analysis and Applications 12:41-63. 

Constantinides, G.M. 1989. "Theory of valuation: 
overview and recent developments." In Theory of 
Valuation: Frontier of Modern Financial Theory, 
ed. by S. Bhattacharya and G. Constantinides, 1- 
23. Rowman & Littlefield. 

Cox, J.C. and C.F. Huang. 1989. "Option pricing the- 
ory and its applications." In Theory of Valuation: 
Frontier of Modern Financial Theory, ed. by S. 
Bhattacharya and G. Constantinides, 272-88. Row- 
man & Littlefield. 

Cox, J.C. and S.A. Ross. 1976. "The valuation of op- 
tions for alternative stochastic processes." Journal 
of Financial Economics 3:145-66. 

Dalang, R.C., A. Morton, and W. Willinger. 1990. 
"Equivalent martingale measures and no-arbitrage 
in stochastic securities market models." Stochas- 
tics and Stochastic Reports 29:185-201. 

Delbaen, F. 1992. "Representing martingale measures 
when asset prices are continuous and bounded." 
Mathematical Finance 2:107-30. 

Delbaen, F. and W. Schachermayer. 1994a. "A general 
version of the fundamental theorem of asset 
pricing." Mathematische Annalen 300:463-520. 

Delbaen, F. and W. Schachermayer. 1994b. "Arbitrage 
and free lunch with bounded risk for unbounded 
continuous processes." Mathematical Finance 4: 
343-48. 

Deprez, O. and H.U. Gerber. 1985. "On convex prin- 
ciples of premium calculation." Insurance: Math- 
ematics" and Economics 4:179-89. 

Dybvig, P.H. and S.A. Ross. 1987. "Arbitrage." In The 
New Palgrave: A Dictionary of Economics, ed. J. 
Eatwell, M. Milgate, and P. Newman, 1:100-106. 
London: Macmillan. 

Elliott, R.J. and P.E. Kopp. 1990. "Option pricing and 
hedge portfolios for Poisson processes." Stochastic 
Analysis and Applications 8:157-67. 

Esscher, F. 1932. "On the probability function in the 
collective theory of risk." Skandinavisk Aktuarie- 
tidskrift 15:175-95. 

Fischer, S. 1978. "Call option pricing when the exer- 
cise price is uncertain, and the value of index 
bonds." Journal of Finance, 33:169-76. 

Frittelli, M. and P. Lakner. 1994. "Almost sure char- 
acterization of martingales." Stochastics and Sto- 
chastic Reports 49:181-90. 

Geman, H., N. El Karoui, and J.C. Rochet. 1995. 
"Changes of numrraire, changes of probability 
measure and option pricing." Journal of Applied 
Probability, 32:443-58. 

Gerber, H.U. 1987. "Actuarial applications of utility 
functions." In Advances in the Statistical Sciences, 
ed. I.B. MacNeill and G.J. Umphrey, 6:53-61. 
Dordrecht, Holland: Reidel. 

Gerber, H.U. and E.S.W. Shiu. 1994a. "Martingale ap- 
proach to pricing perpetual American options." 
ASTIN Bulletin 24:195-220. 

Gerber, H.U. and E.S.W. Shiu. 1994b. "Option pricing 
by Esscher transforms." Transactions of the Soci- 
ety of Actuaries XLVI:99-191. 

Gerber, H.U. and E.S.W. Shiu. 1995. "Actuarial ap- 
proach to option pricing." Actuarial Research 
Clearing House, 1995.1:301-36. 

Gerber, H.U. and E.S.W. Shiu. 1996. "Actuarial bridge 
to dynamic hedging and option pricing." Insur- 
ance: Mathematics and Economics 18:183-218. 

Harrison, J.M. and D.M. Kreps. 1979. "Martingales 
and arbitrage in multiperiod securities markets." 
Journal of Economic Theory 20:381-408. 

Harrison, J.M. and S. Pliska. 1981. "Martingales and 
stochastic integrals in the theory of continuous 
trading." Stochastic Processes and Their Applica- 
tions 11:215-60. 

Harrison, J.M. and S. Pliska. 1983. "A stochastic cal- 
culus model of continuous trading: complete 
markets." Stochastic Processes and Their Appli- 
cations 15:313-16. 

He, H. and H. Leland. 1993. "On equilibrium asset 
price processes." Review of Financial Studies 6: 
593-617. 

Heston, S.L. 1993. "Invisible parameters in option 
prices." Journal of Finance 48:933-47. 

Jensen, J.L. 1991. "Saddlepoint approximations to the 
distribution of the total claim amount in some 
recent risk models." Scandinavian Actuarial Jour- 
nal, 154-68. 

VI. An Actuarial Bridge to Option Pricing 61 



Kreps, D.M. 1981. "Arbitrage and equilibrium in ec- 
onomics with infinitely many commodities." Jour- 
nal of Mathematical Economics 8:15-35. 

Lienhard, M. 1986. "Calculation of price equilibria for 
utility functions of the HARA class." ASTIN Bul- 
letin 16:$91-$97. 

Margrabe, W. 1978. "The value of an option to ex- 
change one asset for another." Journal of Finance 
33:177-86. 

Mfiller, S.M. 1989. "On complete securities markets 
and the martingale property of securities prices." 
Economic Letters 31:37--41. 

Naik, V. and M. Lee. 1990. "General equilibrium pric- 
ing of options on the market portfolio with discon- 
tinuous returns." Review of Financial Studies 3: 
493-521. 

Parkinson, M. 1977. "Option pricing: the American 
put." Journal of Business 50:21-36. 

Pedersen, H.W. 1995. "Dynamic spanning of contin- 
gent claims." Actuarial Research Clearing House, 
1995.1:239-71. 

Philipson, C. 1963. "On Esscher transforms of distri- 
bution functions defining a compound Poisson pro- 
cess for large value of the parameter." 
Skandinavisk Aktuarietidskrift, 226--36. 

Rubinstein, M. 1976. "The valuation of uncertain in- 
come streams and the pricing of options." Bell 
Journal of Economics 7:407-25. 

Samuelson, P.A. 1965. "Rational theory of warrant 
pricing." Industrial Management Review 6, issue 
2:13-32. 

Schachermayer, W. 1992a. "A counterexample to sev- 
eral problems in the theory of asset pricing." Math- 
ematical Finance 3:217-29. 

Schachermayer, W. 1992b. "A Hilbert space proof of 
the fundamental theorem of asset pricing in finite 
discrete time." Insurance: Mathematics and Eco- 
nomics l 1:249-57. 

Schachermayer, W. 1994. "Martingale measures for 
discrete-time processes with infinite horizon." 
Mathematical Finance 4:25-55. 

Schweizer, M. 1992. "Martingale densities for general 
asset prices." Journal of Mathematical Economics 
21:363-78. 

Sonderman, D. 1991. "Reinsurance in arbitrage-free 
markets." Insurance: Mathematics and Economics 
10:191-202. 

Stapleton, R.C. and M.G. Subrahmanyam. 1990. "Risk 
aversion and the intertemporal behavior of asset 
prices." Review of Financial Studies 3:677-93. 

Stricker, C. 1993. "Some remarks on hedging of con- 
tingent claims." In Stochastic Process and Optimal 
Control, ed. H.J. Engelbert and I. Karatzas, 177- 
81, New York: Gordon & Breach. 

Wang, S. 1993. "The integrability problem of asset 
prices." Journal of Economic Theory 59:199-213. 

62 Securitization of Insurance Risk: The 1995 Bowles Symposium 



VII 
Insurance Futures: Examining 

the Context for Trading 
Insurance Risk 

by Prakash Shimpi 

Abstract 
Catastrophic insurance futures are being traded, al- 

beit thinly, at the Chicago Board of Trade. This paper 
examines the broad context for trading insurance risk. 
The term "insurance risk" is examined to provide a 
basis for understanding the concept of tradable insur- 
ance risk. The motivation for trading insurance risks, 
specifically to increase the capacity to cover risks, is 
discussed. Models for transforming insurance risk to a 
tradable form are considered, leading to a brief com- 
ment on the development of an insurance-specific in- 
dex. The perspectives of market participants such as an 
insurer, reinsurer, investor, and speculator are offered. 
Two examples of trading insurance risk are described. 

Introduction 
The fundamental principles of insurance include the 

transfer of risk, the diversification of risk, and the pool- 
ing of  risks. These elements contribute to our under- 
standing of the risks that can be covered and how 
insurance companies can cover these risks. 

With the innovations in the capital markets and the 
forces of change surrounding the insurance industry, 
this is an appropriate juncture to examine the context 
for trading insurance risk. Can insurance risk be 
traded? Can this trading activity provide a means for 
increasing capital to cover insurance risks? If so, how 
will the insurance industry participate in this activity? 
Only a few of the issues raised by these questions are 
examined in this paper. 

Most of the literature surrounding the trading of in- 
surance risk has focused on the mathematical devel- 
opment of the risk pricing models. It is hoped that this 
paper, which is entirely nonmathematical, will stimu- 
late discussion of why, rather than how, insurance risks 
should be traded. 

Insurance Risk 
A first step in the examination of trading insurance 

risk is to examine the concept of an insurance risk. 
Specifically, the terms "risk" and "insurance" can 
have broad interpretations and, apart from strict legal 
constraints, the concepts of sharing risk and providing 
insurance need not be confined to the insurance mar- 
kets alone. 

Broadly, a risk can be defined simply as an event 
whose occurrence triggers a loss. In most jurisdictions, 
the type of  loss (and, therefore, the type of risk) that 
can be covered by insurance companies, and cannot be 
provided by others, is defined by law. A loss exposure 
is the set of circumstances that presents the possibility 
of a loss, whether or not the loss actually takes place. 
The event triggering the loss can be a one-time event, 
such as a death resulting in a claim on a life insurance 
policy. Alternatively, there can be several events of 
varying degrees of loss occurring within a preset time 
period, as in automobile insurance, for example. 

Just as broadly, insurance can be defined simply as 
the act of sharing the risk of loss. More precisely, all 
or part of the financial consequence of the loss is 
shared. The financial consequence of a loss provides a 
means of quantifying the risk. There are certain risks 
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where the "value" of  the loss cannot be defined. An 
example is the value of a life. However, by concen- 
trating on the financial consequence (however broadly 
defined) of  the loss of that life, an insurance contract 
can be formed. 

Another definition of  insurance" is: "Insurance is a 
device for the reduction of uncertainty of  one party, 
called the insured, through the transfer of particular 
risks to another party, called the insurer, who offers a 
restoration, at least in part, of  economic losses suffered 
by the insured." 

Based on these broad definitions of  risk and insur- 
ance, "insurance risk" can be defined as those loss ex- 
posures that are covered (or insured) by insurance 
companies. This is a retrospective view since it con- 
siders only those types of  risks that have been covered 
by insurance companies at any time in the past. The 
definition can include a prospective view as well if it 
includes risks that are coverable (or insurable) by 
insurance companies. 

Without allowing for any new developments in the 
insurance and capital markets, how does an insurance 
company decide whether a risk is insurable? There are 
several criteria which are discussed extensively in the 
actuarial and insurance literature. One can presume 
rather simplistically that all risks that are insurable are 
currently being insured by insurance companies and 
that those risks that are not insurable are not being 
insured. But that cannot be the whole truth. 

There are several cases of  risks that one might con- 
sider insurable based on objective criteria, where 
coverage is not available in the insurance market. For 
example, certain types of  catastrophic risks may not be 
covered to the extent desired by the insured in some 
locations. There are two fundamental reasons for this: 
1. the price (premium) to cover the risks, and 
2. the sources of  capital available to cover the risks. 

One aspect of  risk transfer that has not been dis- 
cussed so far is the price or premium at which the risk 
will be ceded by the insured and accepted by the in- 
surer. The premium makes all risks insurable. This is 
not as absurd as it may sound. All risks are insurable 
in the context that the premium sets a threshold below 
which the risk is self-insured and above which it is 
insured by another party. This is demonstrated clearly 
in the captive insurance market and in the reinsurance 
market. In the captive insurance market, for example, 
an industrial company sets up a captive which will 

"Irving Pfeffer, Insurance and Economic Theo O, (Home- 
wood, Ill.: Richard D. Irwin, 1956), p. 53 

cover the risks of  its sponsor. It may decide to retain 
all the risk or reinsure part of it. 

The price of risk transfer does not exist in isolation. 
It depends on the sources of  capital available to share 
the risk. i f  the capital sources are small in relation to 
the risks, then the demand for capital is greater than 
supply and some risks will remain uncovered. Expand- 
ing the capital available to cover insurance risks 
should, therefore, provide the capacity to bring pre- 
miums to levels where a transfer of risk becomes ec- 
onomically feasible. 

Allowing, now, for new developments in the insur- 
ance and capital markets, how does an insurance com- 
pany decide whether a risk is insurable? It can stay 
with its conventional criteria for defining insurability, 
some of which may be artifacts of  idiosyncratic rules 
and regulations, or it can expand its criteria. One way 
to expand the definition of  insurability is to consider 
whether there are entities, insurance companies or oth- 
erwise, who will be willing to participate in the risk. 
This does have a price dimension to it as well, but the 
distinction here is that the search for capital may lead 
to other risk takers who are willing to participate in 
risks not conventionally covered by the insurance 
industry. 

As an example of  risk taking, consider a bank that 
sells an interest rate cap. In exchange for a premium, 
the bank takes the risk in exchange for a premium that 
it will have to make payments at several points in time 
over the life of  the cap if interest rates rise above the 
strike level. Presumably the buyer of  the cap is hedging 
its exposure to rising interest rates. This sounds like 
insurance, except that the principle of insurable interest 
is not necessarily present. A key difference in the way 
the bank and an insurer manage this risk is that the 
bank will make a conscious decision about the value 
of  this risk that it wishes to retain. It could keep none 
of the risk simply by entering into offsetting transac- 
tions in the cash and futures markets, or it could keep 
all of the risk. Therefore, the bank is not necessarily a 
risk taker; it is a risk manager. 

There are two questions that arise from this discus- 
sion. 
1. How can more capital (capacity) be attracted to 

share in insurance risks? 
2. How can the risks covered by insurance companies 

be expanded? 
The rest of  this paper will consider the first of these 

questions. In doing so, some aspects concerning the 
second question may arise. This discussion has brought 
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us to the point where it is relevant to consider the 
meaning of  tradable insurance risk. 

Tradable Insurance Risk 
When an insured buys an insurance policy from an 

insurer, insurance risk is being traded. When an insurer 
cedes some risk to a reinsurer, insurance risk is being 
traded. When a reinsurer retrocedes some risk to a re- 
trocessionaire, insurance risk is being traded. If all this 
trading is taking place, why is there a need to discuss 
the concept of  tradable insurance risk? The reason is 
that the trading is taking place within the insurance 
market only. 

There may be entities in the broader capital markets 
willing to share in insurance risks. This statement raises 
several issues which are addressed in this section. 
1. Are these entities currently providing capital to 

cover insurance risks? 
2. If  they are not, what are the obstacles? 
3. How would they prefer to provide capital, i.e., what 

is the form of risk sharing? 
4. What is the nature of the risks they are willing to 

share? 
In answer to the first question, some entities do pro- 

vide capital to cover insurance risks, but there are many 
that do not. The insurance market does not exist in 
isolation. It is part of  a broader capital market. Insur- 
ance companies and reinsurers have capital that allow 
them to provide the capacity to cover insurable risks. 
This capital is primarily in the form of equity in the 
insurance operating companies and, where permitted by 
regulation, debt capital (although debt is often at a 
holding company with the proceeds downstreamed to 
the operating entity). 

The answer to the second question lies in the form 
of  investment that an entity can make in an insurance 
enterprise. Some investors have restrictions dictated by 
investment policy or regulation, on the types of in- 
vestments that they can make. With some exceptions, 
the majority of  the capital provided to the insurance 
industry is in the form of direct equity, either at the 
insurance operating company or at a holding company. 
Opportunities for fixed-income investors in this sector 
are limited. In addition, for those investors who want 
to leverage their investment, there is no real derivatives 
market in insurance risk apart from the Catastrophic 
Futures (CAT) market at the Chicago Board of Trade 
(CBOT). In order to increase the capacity to cover in- 
surance risks, the form of risk sharing has to be 

expanded to better serve the needs of  these types of  
investors. 

When capital is provided to an insurance company, 
it participates in more than just the pure insurance risk; 
it also shares in the fortunes of  the insurance company 
as a business enterprise. Is it possible, or even desira- 
ble, to separate the two? It may be if  the objective is 
to attract new participants to provide capital. Unless 
the form of  risk sharing is modified, only the same 
investment vehicles (equity and some debt) and the 
same participants will be present. 

In order to increase the fixed income and derivative 
vehicles for investing in insurance risk, it is necessary 
to consider the general nature of the risk in which in- 
vestors will be willing to participate. Broadly, it should 
be the opposite of  the risk in an equity investment. The 
investor should be able to calculate a fair value of  the 
investment reasonably efficiently. The risk should be 
finite and subject the investor to the pure insurance risk 
only; otherwise, it is an equity investment. The risk 
definition should be such that the trading of insurance 
risk can take place in the secondary capital markets, in 
contrast to the secondary insurance markets of reinsur- 
ance and retrocession. 

It is probably difficult to isolate the pure insurance 
risk without also including the skill of the insurance 
company's personnel who underwrite and manage the 
risk. The price (premium) to cover the risk includes the 
cost of  managing the business. This cost may be an 
average over several lines of business and over several 
time periods. The actual allocation of  cost when as- 
sessing profitability of  a policy may be different from 
that assumed in the pricing. At best, therefore, the iso- 
lation is a matter of degree. 

In addition, one of the fundamental principles of in- 
surance is the pooling of risks to minimize the variance 
of operating results over time. Isolating the pure insur- 
ance risk and taking it out of  the insurance company's 
intertemporal setting may increase the capital neces- 
sary to cover the risk. This defeats the purpose. 

The last two paragraphs point to some of  the diffi- 
culties of  isolating pure insurance risk. However, it 
may still be necessary to make the separation in order 
to develop a market for trading insurance risk outside 
the traditional group of investors. One possible frame- 
work to consider when making the separation of pure 
insurance risk from enterprise risk is that of  a hedge- 
able risk. If  a risk is "hedgeable," then there is a basis 
for price discovery. That, in turn, forms the basis for 
active trading. This is considered in the next section. 
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Transformation of Insurance Risk 
to Tradable Form 

In order to convert an insurance risk into a tradable 
form, it is useful to consider the replication argument 
that forms the basis for developing the fair value of 
other investment vehicles. Essentially, if a risk can be 
hedged exactly (i.e., it is a hedgeable risk) and the price 
of the hedge vehicles can be observed, then the price 
of that risk is determined and is equal to the price of 
the hedge vehicles. 

There are two risk transformation models that mo- 
tivate the development of hedging insurance risk. The 
first is the derivatives model, and the second is the 
asset-backed securitization (ABS) model. The rest of 
this paper will focus on the derivatives model. 

The derivatives model can be used where there is an 
explicit index available that is highly correlated with 
the insured risk. The insured risk can be characterized 
by the type of index used for hedging it. There are two 
types of insured risk: 
1. Insurance-specific: Index generally not used by 

other noninsurance entities. 
2. Noninsurance-specific: Index generally used by 

other entities for purposes other than managing 
insurance risk. 

At present, there are many indices, but only one that 
is insurance-specific, i.e., the ISODATA index which 
forms the basis of the CAT futures contract at the 
CBOT. More indices are expected to be developed as 
interest in this subject increases. 

Insurance risks are also correlated with some of the 
noninsurance-specific indices. In particular, life insur- 
ance policies have significant exposure to interest rate 
risk directly through the investment component of the 
insurance benefit and indirectly through the lapse be- 
havior of policyholders. Hedging this risk using interest 
rate derivatives is already being done actively. 

There are two risk transfer vehicles that can be used 
under this model. 
1. Naked derivatives: These are futures, options, 

swaps, caps, floors, and other such instruments that 
are based on the performance of a measure under- 
lying an index. Generally, counterparty risk of vary- 
ing degrees exists with these instruments. 

2. Embedded derivatives: These are structured notes or 
bonds that have the index-based naked derivatives 
embedded in the bond structure, not unlike the call 
feature of callable bonds or the prepayment feature 

of mortgage-backed securities. These bonds are gen- 
erally of a quality acceptable to an investor. 

The ABS Model can be used where no explicit index 
is available. Instead, an implicit index results from sep- 
arating a pool of liabilities and paying investors a re- 
turn based on the performance of the pool. To the 
extent that the investments in the pool are fixed income 
in nature, they can be called liability-backed securities 
(LBS). They can also be classified as structured notes 
or bonds. The specific elements of LBS will not be 
considered in this discussion. 

Development of an Explicit 
Insurance-Specific Index 

As mentioned above, the ISODATA index used for 
trading the CAT futures contract at the CBOT is the 
only insurance-specific index available for trading at 
present. Other bodies do report loss estimates, e.g., 
Property Claims Services (PCS) and Swiss Re's 
SIGMA, and these can be used to create customized 
reinsurance contracts. 

Although the CBOT contract is a start in the right 
direction, it is by no means the final form. Both the 
index and the contract design have met with some crit- 
icism, which is only to be expected as the various mar- 
ket participants make their preferences known. 
Focusing on the index design alone, it is worthwhile 
asking whether an index based on industry loss expe- 
rience (the ISODATA index) is necessarily the only 
way to proceed. 

From an insurance industry perspective, the closer 
the index is to the loss experience, the better the ability 
to hedge the loss exposure of insurers. On the other 
hand, it does place a noninsurance industry expert, i.e., 
an investor, at a disadvantage. The investor is handi- 
capped when translating weather information into loss 
experience. Over time, as both the investor and insurer 
understand the market better and as the contract and 
index evolve, this may not turn out to be such a big 
issue. 

An alternative to a loss experience-based index 
would be to have an index based on some indepen- 
dently verifiable measure of a physical phenomenon 
that is highly correlated to loss experience. For exam- 
ple, in a flood prone area, the water level at any instant 
at a given location could form the basis for an index. 
Both the insurer and the investor have an equal chance 
of modeling the behavior of the water level since they 
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would both have access to scientists specializing in 
making such predictions. With such an index, only the 
insurer need worry about correlating the water level to 
a loss exposure and thereby developing a hedge 
strategy. 

Other models combining these two extremes are also 
under consideration. As interest in this topic increases, 
it is likely that additional indices will be developed. At 
present, the London International Financial Futures Ex- 
change (LIFFE) and several insurance intermediaries 
are racing to develop their own insurance-specific in- 
dices. 

Participants in 
Traded Insurance Risk 

Whether insurance risk is traded over-the-counter 
(OTC) or through an exchange, it is useful to consider 
the types of participants in the market. Simplistically, 
there are two types of participants: hedgers and risk 
takers. Hedgers are exposed to insurance risk and want 
to transfer some portion of it to the risk takers. 

In order to better understand the market participants, 
it may be useful to discuss the stage at which exact 
hedging is desirable. (Ira hedge is not exact, the hedger 
retains some basis risk.) There are three stages to con- 
sider: the insured, the insurer, and the reinsurers. The 
distinctions between these three levels are size of cap- 
ital base and diversification of risk exposure. 

Generally, the insured has the smallest capital base 
and the least diversification of risk exposure. Risk 
transfer to the next level is, therefore, desirable in the 
most complete form. This is accomplished through an 
insurance contract. The insurer has more capital than 
the insured and better risk diversification, but generally 
is not as well off as the reinsurers. With the exception 
of the very large, financially sound insurers, the risk 
transfer to the reinsurer should also be as complete as 
possible. The only way to do so is through a custom- 
ized reinsurance contract. 

The reinsurer, by virtue of its capital and the signif- 
icant diversification of risks on its books, is in the 
strongest position to withstand the basis risk in any 
hedge that does not perfectly replicate the insurance 
risk. The term "hedgeable risk" can, therefore, be 
viewed in the context of a reinsurer wishing to retro- 
cede part of its insurance risk to the capital markets; 
the risk is hedgeable if it can be transformed fully or 
partially from a pure insurance risk to a traded risk. 

The risk takers can be categorized as investors and 
speculators. There is not necessarily a clear distinction 
between the two, but it is useful to consider them sep- 
arately within the context of additional capital to be 
attracted to the insurance market. Both are necessary 
to develop an active market in traded insurance risks; 
the investors provide the additional capital that is the 
object of the exercise, and the speculators operate to 
enhance the efficiency of the market. 

The investors run the range of participants in the 
fixed-income markets. They include pension funds, 
mutual funds, insurance companies, and other corpo- 
rate investors. Until the traded insurance risks market 
develops sufficient liquidity, it is unlikely to attract re- 
tail investors and would, therefore, be a market for in- 
stitutional investors. These institutional investors have 
significant capital to deploy. The attraction of this mar- 
ket to these investors is the potential of high-quality 
investments providing a spread over alternative invest- 
ments, as well as risk diversification to the extent that 
the insured risk is not correlated with other investment 
risks. 

The practical question then remains: how is capacity 
increased with these participants? The answer lies in 
the value of the risks that can be passed on to the in- 
vestors. As reinsurers lay off their risk to investors, 
they free up some of their capital to cover other risks. 
Ultimately, if the reinsurers are able to pass all hed- 
geable risks to the investors, they will retain a portfolio 
of unhedgeable risks (or at least the portion of risk that 
they do not want to hedge.) The next section describes 
some possible applications. 

Examples of 
Trading Insurance Risk 
A. CAT risk cover hedged by CBOT CAT contract: 
1. Reinsurance Need: A medium-sized insurer writes 

significant property insurance, with concentrations 
in Florida and New York. The reinsurer has a good 
relationship with this customer but is not willing to 
cover the CAT risk entirely. 

2. Solution: Reinsurer can provide reinsurance as be- 
fore, but lays off a portion of its risk via the CBOT 
CAT market. The effectiveness of the hedge will 
depend on the correlation of the reinsured CAT loss 
relative to the CBOT CAT loss. The reinsurer will 
be retaining the basis risk of the hedge. 
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B. Double-Trigger CAT Cover: 
1. Reinsurance Need: A strong, well-capitalized in- 

surer wishes to purchase CAT reinsurance at a 
cheaper cost than available through conventional 
programs. It believes that it can cover its CAT 
claims if  bond markets remain stable or rise. The 
concern is that it may have to liquidate bonds when 
interest rates are high and a CAT claim has to be 
paid. 

2. Solution: Provide a double trigger CAT cover which 
provides a sliding scale of  cover up to some maxi- 
mum limit. The premium for the coverage should 
be less than the cost of  the underlying interest rate 
derivative (cap) alone and the cost of  the CAT cover 
alone. Assuming that the CAT risk is not hedgeable 
using an explicit derivative, then only the interest 
rate risk would be hedged. The hedge would be 
based on assessing the probability of  a CAT loss in 
the loss exposure period and combining that with 
an interest rate derivative. The hedge would be ad- 
equate if it were to cover the expected long-run 

experience on a large group of  similar policies. With 
a small number of  transactions and short-term 
covers, there may be a significant basis risk. The 
basis risk can be mitigated somewhat by building in 
a hedging strategy that increases in a nonlinear form 
as interest rates rise. 

Conclusion 
The market for trading insurance risks is in its early 

days. Many elements of  this market are evolving. In 
particular, a thorough evaluation of  risk transformation 
models may indicate that there are several alternatives 
to insurance futures that are worth considering. It may 
well be that these alternatives have to develop in tan- 
dem so that the traded risks market has greater breadth 
and depth. As these alternatives develop, so too will 
the market participants. And with them, the capital 
available to cover the risks that are insurable must 
grow. 
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