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Abstract

In this paper we investigate the interaction between a credit portfolio and an-
other risk type, which can be thought of as market risk. Combining Merton-like
factor models for credit risk with linear factor models for market risk, we ana-
lytically calculate their inter-risk correlation and show how inter-risk correlation
bounds can be derived. Moreover, we elaborate how our model naturally leads to
a Gaussian copula approach for describing dependence between both risk types.
In particular, we suggest estimators for the correlation parameter of the Gaussian
copula that can be used for general credit portfolios. Finally, we use our findings
to calculate aggregated risk capital of a sample portfolio both by numerical and
analytical techniques.

1 Introduction

A core element of modern risk management and control is analyzing the capital adequacy

of a financial institution, which is concerned with the assessment of the firm’s required

capital to cover the risks it takes. To this end, financial firms seek to quantify their overall

risk exposure by aggregating all individual risks associated with different risk types or

business units, and to compare this figure with a so-called risk taking capacity, defined as

the total amount of capital as a buffer against potential losses.

Until now no standard procedure for risk aggregation has emerged, but, according to

an industry survey of The Joint Forum [2], a widespread approach in the banking industry
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is aggregation across risk types where the marginal loss distributions of all relevant risk

types are independently modelled from their dependence structure. This approach splits

up into three steps:

• First, assign every individual risk position to a certain risk type.

• Second, calculate an aggregated measure for every risk type encompassing all busi-

ness units by using separate, risk-type specific techniques and methodologies.

• Third, integrate all pre-aggregated risk figures of different risk types to obtain the

overall capital number, henceforth called aggregated risk capital.

The easiest solution for the last step is simply to add up all pre-aggregated risk figures.

This, however, is only a rough estimate of the bank-wide total risk exposure. Moreover,

banks usually try to reduce their overall risk by accounting for diversification between

different risk types because it allows them either to reduce their capital buffer (and thus

expensive equity capital) or to increase their business volume (and thus to generate ad-

ditional earnings). As a consequence thereof, return on equity and eventually shareholder

value increase. Hence, advanced approaches for risk aggregation begin with an analysis of

the dependence structure between different risk types.

In this paper, we combine a Merton-like factor model for credit risk with a linear

factor model for another risk type—henceforth referred to as market risk—and investigate

their correlation and the resulting aggregate risk. Both models are driven by a set of

(macroeconomic) factors Y = (Y1, . . . , YK) where the factor weights are allowed to be

zero so that a risk type may only depend on a subset of Y .

As an important measure of association, we start with an in-depth analysis of linear

correlation between both risk types (henceforth referred to as inter-risk correlation). Our

approach allows us to derive closed-form expressions for inter-risk correlation in the case

of normally distributed and heavy-tailed risk factors, providing valuable insight into inter-

risk dependence of a credit risk portfolio in general. In particular, we give upper bounds

for inter-risk correlation, which only depend on typical credit portfolio characteristics such

as its asset correlation or rating structure.

A very natural integration technique, especially in the context of aggregation across

risk types, is based on copulas, see, e.g., Dimakos & Aas [5], Rosenberg & Schuermann

[10]), Ward & Lee [11], or Böcker & Spielberg [4]. As a result of Sklar’s theorem, copulas

allow for a separate modelling of marginal distribution functions (second step above) on

one hand and their dependence structure (third step above) on the other hand. However,

the choice and parametrization of a copula is usually not straightforward, especially in the

context of risk aggregation where reliable data are often difficult to obtain. We show that

for large homogenous portfolios our model quite naturally leads to a Gaussian coupling
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model between both risk types and provides a simple estimator for the copula correlation

parameter, which can be used as an approximation also in the case of more general credit

portfolios.

Finally, we perform a simulation study where we apply our findings to a test portfo-

lio, for which aggregated risk capital is calculated by means of the copula technique as

well as the well-known square-root-formula approach. Though mathematically justified

only in the case of elliptically distributed risk types (with the multivariate normal or

t distributions as prominent examples), this approach is very often used as a first ap-

proximation because total aggregated capital can then be calculated explicitly without

(time-)expensive simulations, see, e.g., The IFRI/CRO Forum [7], The Joint Forum [2] or

Rosenberg & Schuermann [10]. If ECT = (EC1, . . . , ECm) is the vector of pre-aggregated

risk figures (e.g., economic capital ECi for risk-types i = 1, . . . , m as defined in Section 5),

and R the inter-risk correlation matrix, then total aggregated risk ECtot is estimated via

ECtot =
√

ECT R EC . (1.1)

Hence, a typical problem of risk aggregation is the estimation of the inter-risk correla-

tion matrix R. While we observe that the square-root-formula seriously underestimates

aggregated risk capital in the case of a Student t copula between market and credit risk,

it seems to be a quite reasonable approximation if a Gaussian dependence structure is

assumed.

2 Preliminaries: Modelling Credit and Market Risk

2.1 Factor Models for Credit Risk

To describe credit portfolio loss, we choose a classical structural model as it can be found

for example in Bluhm, Overbeck and Wagner [3]. Within these models, a borrower’s

credit quality (and so his default behaviour) is driven by its asset-value process, or, more

generally and in the case of unlisted customers, by a so-called “ability-to-pay” process.

Consider a portfolio of n loans. Then, default of an individual obligor i is described by a

Bernoulli random variable Li, i = 1, . . . , n, with P(Li = 1) = pi and P(Li = 0) = 1 − pi

where pi is the obligor’s probability of default within time period [0, T ] for T > 0. Following

Merton’s idea, counterparty i defaults if its asset value log-return Ai falls below some

threshold Di, sometimes referred to as default point, i.e.

Li = 11{Ai<Di} , i = 1, . . . , n .
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If we denote the exposure at default net recovery of an individual obligor by ei, portfolio

loss is finally given by

L(n) =
n∑

i=1

ei Li . (2.1)

For a credit portfolio of n obligors, credit portfolio loss L(n) at time horizon T is driven

by n realizations of the asset values Ai, which usually are assumed to depend on factors

(Y1, . . . , YK). The following factor model is widely spread in financial firms and similar

versions are implemented in various software packages for credit risk.

Definition 2.1. [Normal factor model for credit risk] Let Y = (Y1, . . . , YK) be a K-

dimensional random vector of (macroeconomic) factors with multivariate standard normal

distribution. Then, in the normal factor model, each of the standardized asset value log-

returns Ai, i = 1, . . . , n, depends linearly on Y and a standard normally distributed

idiosyncratic factor (or noise term) εi, independent of all Yk, i.e.

Ai =
K∑

k=1

βikYk +

√√√√1−
K∑

k=1

β2
ik εi , i = 1, . . . , n , (2.2)

with factor loadings βik satisfying R2
i :=

∑K
k=1 β2

ik ∈ [0, 1] describing the variance of Ai

that can be explained by the systematic factors Y.

For later usage we recall some properties of the normal factor model as can be found,

e.g., in Bluhm et al. [3] or McNeil, Frey and Embrechts [9], Chapter 8.

Remark 2.2. (a) The log-returns A1, . . . , An are standard normally distributed and

dependent with correlations

ρij := corr(Ai, Aj) =
K∑

k=1

βikβjk , i, j = 1, . . . , n , (2.3)

the so-called asset correlations between Ai and Aj.

(b) The default point Di of every obligor is related to its default probability pi by

Di = Φ−1(pi) , i = 1, . . . , n , (2.4)

where Φ is the standard normal distribution function.

(c) The joint default probability of two obligors is given by

pij := P(Li = 1, Lj = 1) = P(Ai ≤ Di, Aj ≤ Dj) =





Φρij
(Di, Dj) , i 6= j ,

pi , i = j ,
(2.5)
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where Φρij
denotes the bivariate normal distribution function with standard marginals

and correlation ρij given by (2.3). Moreover, the default correlation between two different

obligors is given by

corr(Li, Lj) =
pij − pi pj√

pi(1− pi) pj(1− pj)
, i, j = 1, . . . , n . (2.6)

(d) Conditional on a realization y = (y1, . . . , yK) of the factors Y , defaults of different

obligors are independent. Moreover, the conditional default probability is given by

pi(y) = P(Li = 1|Y = y)

= P




K∑

k=1

βik yk +

√√√√1−
K∑

k=1

β2
ik εi ≤ Di




= Φ


Di −

∑K
k=1 βik yk√

1−∑K
k=1 β2

ik


 .

¤

A strong assumption of the model above is the multivariate normal distribution of

the factor variables Y = (Y1, . . . , YK), and thus of the asset value log-returns Ai. It is

well known that the normal distribution has very light tails and therefore may seriously

underestimate large fluctuations of the (macroeconomic) factors, eventually leading to

model risk of the normal factor model for credit risk.

A generalization allowing for heavier tails as well as a stronger dependence between

different counterparties is the class of normal variance mixture distributions, where the

covariance structure of the Ai is disturbed by means of a positive mixing variable WL

(see, e.g., McNeil et al. [9], Section 3.2). A particularly interesting model is the following

one (confer also Kostadinov [8]):

Definition 2.3. [Shock model for credit risk] Let Y = (Y1, . . . , YK) be a K-dimensional

random vector of (macroeconomic) factors with multivariate standard normal distribution.

Then, in the shock model, each of the standardized asset value log-returns Âi, i = 1, . . . , n,

can be written as

Âi = WL ·
K∑

k=1

βikYk + WL ·
√√√√1−

K∑

k=1

β2
ik εi , i = 1, . . . , n , (2.7)

where WL =
√

νL/SνL
and SνL

is a χ2
νL

distributed random variable with νL degrees of

freedom, independent of Y and the idiosyncratic factor εi.
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The mixing variable WL can be interpreted as a “global shock” driving the variance of

all factors. Such an overarching shock may occur from political distress, severe economic

recession or some natural disaster.

We conclude this section with some general remarks about the shock model for credit

risk (see again Bluhm et al. [3] and McNeil et al. [9] as well as references therein).

Remark 2.4. (a) In general, let X = (X1, . . . , Xn) be a standardized multinormal vector

with covariance matrix R and SνL
is a chi-square variable with νL degrees of freedom.

Then (X1, . . . , Xn)/
√

SνL
/νL has a multivariate t-distribution with correlation matrix R

and νL degrees of freedom. Hence, from (2.2) and (2.7) it follows for the shock model

for credit risk that the vector of standardized asset value log-returns (Â1, . . . , Ân) is t-

distributed with νL degrees of freedom; in particular, it has the same asset correlation ρij

as the normal factor model given by equation (2.3).

(b) The default point D̂i of the shock model is linked to the obligor’s default probability

by

D̂i = t−1
νL

(pi) , i = 1, . . . , n , (2.8)

where tνL
is the Student t distribution function with νL degrees of freedom.

(c) The joint default probability p̂ij for two obligors can be written as

p̂ij = tνL;ρij
(D̂i, D̂j) , i 6= j , (2.9)

where tνL;ρij
denotes the standard bivariate Student t distribution function with correla-

tion ρij given by (2.3) and degree of freedom parameter νL. ¤

2.2 Joint Factor Models for Credit and Market Risk

Market risk is related to a bank’s potential loss associated with its trading activities. We

assume that it is already pre-aggregated so that losses can be approximately described

by a one-dimensional random variable Z (or Ẑ, see below), which can be thought of

as the bank-wide, aggregated profit and loss (P/L) distribution due to changes in some

market variables, such as interest rates, foreign exchange rates, equity prices or the value

of commodities.

Similarly as for credit risk, we explain fluctuations of the random variable Z by means

of (macroeconomic) factors (Y1, . . . , YK). We use the same macroeconomic factors for

credit and market risk, where independence of risk from such a factor is indicated by a

loading factor 0. If the pre-aggregated P/L can be described by a normal distribution,

the following factor model is a sensible choice and can be used for risk aggregation. Even

if this assumption does not hold exactly, it can be used as an important approximation
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for investigating inter-risk dependencies (we use the convention that losses correspond to

positive values of Z).

Definition 2.5. [Normal factor model for market risk] Let Y = (Y1, . . . , YK) be a random

vector of (macroeconomic) factors with multivariate standard normal distribution. Then,

the normal factor model for the pre-aggregated market risk P/L is given by

Z = −σ




K∑

k=1

γkYk +

√√√√1−
K∑

k=1

γ2
k η


 , (2.10)

with factor loadings γk satisfying
∑K

k=1 γ2
k ∈ [0, 1], which is that part of the variance of Z

which can be explained by the systematic factor Y . Furthermore, η is a standard normally

distributed idiosyncratic factor, independent of Y , and σ is the standard deviation of Z.

Clearly, for an actively managed market portfolio the idiosyncratic factor η is more

important than for an unmanaged portfolio (e.g., an index of stocks). As a matter of fact,

portfolio managers are paid owing to their skills to achieve the best possible portfolio

performance that is independent of some macroeconomic indicators.

Note that both in Definition 2.1 of the credit factor model as well as above, the factor

loadings βik and γk, respectively, are allowed to be zero. For instance, Yk can be relevant

for credit but not for market by setting γk = 0.

Definition 2.6. [Joint normal factor model for credit and market risk] Let Y = (Y1, . . . , YK)

be a random vector of (macroeconomic) factors with multivariate standard normal distri-

bution. Let the credit portfolio loss L(n) be given by (2.1), and the asset value log-returns Ai

for i = 1, . . . , n be modeled by the normal factor model (2.2). Let Z be the pre-aggregated

market risk P/L modeled by the normal factor model (2.10). When the idiosyncratic fac-

tors εi for i = 1, . . . , n of the credit model are independent of η, then we call (L(n), Z) the

joint normal factor model for credit and market risk.

In order to account for possible heavy tails in the market risk P/L, we again rely on

the global shock approach already used for credit risk.

Definition 2.7. [Shock model for market risk] Let Y = (Y1, . . . , YK) be a random vector

of (macroeconomic) factors with multivariate standard normal distribution. Then the shock

model for the pre-aggregated market risk P/L is given by

Ẑ = −σ


WZ ·

K∑

k=1

γkYk + WZ ·
√√√√1−

K∑

k=1

γ2
k η


 , (2.11)

where σ is a scaling factor, WZ =
√

νZ/SνZ
, and SνZ

is a χ2
νZ

distributed random variable

with νZ degrees of freedom, independent of Y and the idiosyncratic factor η.
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Definition 2.8. [Joint shock model for credit and market risk] Let Y = (Y1, . . . , YK) be a

random vector of (macroeconomic) factors with multivariate standard normal distribution.

Let the credit portfolio loss be given by (2.1), now denoted as L̂(n), and the asset value

log-returns Âi for i = 1, . . . , n be modeled by the shock model (2.7) with shock variable

WL. Let Ẑ be the pre-aggregated market risk P/L modeled by the shock model (2.11) with

shock variable WZ.

(1) (Independent shock model for credit and market risk). If the credit model’s idiosyn-

cratic factors εi for i = 1, . . . , n are independent of η, and furthermore WL is independent

from WZ, then we call (L̂(n), Ẑ) the independent shock model for credit and market risk.

(2) (Common shock model for credit and market risk). If the credit model’s idiosyncratic

factors εi for i = 1, . . . , n are independent of η, and furthermore if we set

WL ≡ WZ =: W,

then we call (L̂(n), Ẑ) the common shock model for credit and market risk.

3 Inter-Risk Correlation

3.1 Normal Factor Model Approach

The proposed models shall now be used to investigate the dependence between credit

risk L(n) and market risk Z, introduced by the factors Y . Let us start with the linear

correlation, which is defined as

corr(L(n), Z) =
cov(L(n), Z)√

var(L(n))
√

var(Z)
. (3.1)

Although linear correlation only describes linear dependence between different random

variables, it is a very popular and important concept in finance, frequently used both by

practitioners and academics. Moreover, since we calculate expressions for linear correlation

in closed form, we are able to analytically investigate the linear dependence structure

between market and credit risk. Note also that the correlation completely describes the

dependence in the joint normal factor model.

We begin with the joint normal factor model for credit and market risk. Here as well

as for all subsequent results, all proofs are given in the appendix.

Theorem 3.1 (Inter-risk correlation for the normal factor model). Suppose that credit

portfolio loss L(n) and market risk Z are described by the joint normal factor models of

Definition 2.6. Then, linear correlation between L(n) and Z is given by

corr(L(n), Z) =

∑n
i=1 ri ei exp

(−1
2
D2

i

)
√

2π var(L(n))
, (3.2)
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where Di is the default point (2.4),

ri := corr(Ai, Z) =
K∑

k=1

βikγk , i = 1, . . . , n,

and

var(L(n)) =
n∑

i,j=1

ei ej (pij − pi pj)

with joint default probability pij given by (2.5).

Note that ri may become negative if (some) factor loadings βik and γk have different

signs. Therefore, in principle, also negative inter-risk correlations can be achieved in our

model. Moreover, in (3.2) the term ei e
−D2

i /2 can be interpreted as a kind of rating-adjusted

exposure. For instance, a relatively low default probability of debtor i corresponds to a

relatively small value of e−D2
i /2. As a consequence thereof, for two obligors with equal

exposure size ei, the one with the better rating has less impact on inter-risk correlation

as the low-rated creditor.

The fact that corr(L(n), Z) linearly depends on the correlation ri and thus on the factor

loadings γk, implies the following Proposition.

Proposition 3.2 (Inter-risk correlation bound for the joint normal factor model). Suppose

that credit portfolio loss L(n) is described by the normal factor model of Definition 2.1,

and market risk Z by the normal factor model of Definition 2.5, however, with unknown

factor loadings γk, k = 1, . . . , K. Then, inter-risk correlation is bounded by

|corr(L(n), Z)| ≤
∑n

i=1 ei Ri exp
(−1

2
D2

i

)
√

2π var(L(n))
(3.3)

with Ri =
√∑K

k=1 β2
ik.

Note that (3.3) does not depend on any specific market risk parameter. Therefore,

solely based on the parametrization of the normal credit factor model, a bound for inter-

risk correlation can be derived. This bound then holds for all market risk portfolios de-

scribed by Definition 2.5. Furthermore, as R2
i is that part of the variance of Ai which can

be explained by the factor Y , it follows from (3.3) that the inter-risk correlation bound

is affine linearly increasing with Ri. This is also intuitively clear because with increasing

R2
i , credit portfolio loss is more and more dominated by the systematic factor Y , which

by construction drives the inter-risk dependence with market risk.
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3.2 Shock Model Approach

We now investigate how the existence of global shocks affects inter-risk correlation. We

consider both kinds of joint shock models for credit and market risk given by Definition 2.8

and calculate inter-risk correlation similarly to Theorem 3.1.

Theorem 3.3 (Inter-risk correlation for the joint shock model). Suppose that credit port-

folio loss L̂(n) and market risk Ẑ are described by the joint shock factor model of Definition

2.8.

(1) (Independent shock model, Definition 2.8 (1)). If shocks in credit and market risk

are driven by different independent shock variables WL and WZ with degrees of freedom

νL > 0 and νZ > 2, respectively, linear correlation between L̂(n) and Ẑ is given by

corr(L̂(n), Ẑ) =

√
νZ − 2

2

Γ
(

νZ−1
2

)

Γ
(

νZ

2

)
∑n

i=1 ei ri

(
1 +

bD2
i

νL

)− νL
2

√
2 π var(L̂(n))

. (3.4)

(2) (Common shock model, Definition 2.8 (2)). If shocks in credit and market risk are

driven by the same shock variable W with ν > 1 degrees of freedom, linear correlation

between L̂(n) and Ẑ is given by

corr(L̂(n), Ẑ) =

√
ν − 2

2

Γ
(

ν−1
2

)

Γ
(

ν
2

)
∑n

i=1 ei ri

(
1 +

bD2
i

ν

) 1−ν
2

√
2 π var(L̂(n))

. (3.5)

In both cases,

ri := corr(Âi, Ẑ) =
K∑

k=1

βikγk , i = 1, . . . , n,

and

var(L̂(n)) =
n∑

i,j=1

ei ej (pij − pi pj) .

Furthermore, D̂i and p̂ij are given by (2.8) and (2.9), respectively, with degree of freedom

νL for the independent shock model (1) and ν for the common shock model (2).

Analogously to the normal factor model, inter-correlation bounds can be derived.

Proposition 3.4 (Inter-risk correlation bounds for the joint shock model). Suppose that

credit portfolio loss L̂(n) is described by the shock model of Definition 2.3 and market risk

Ẑ by the shock model of Definition 2.7, however, with unknown factor loadings γk, k =
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1, . . . , K.

(1) For the independent shock model, inter-risk correlation is bounded by

|corr(L̂(n), Ẑ)| ≤
√

νZ − 2

2

Γ
(

νZ−1
2

)

Γ
(

νZ

2

)
∑n

i=1 ei Ri

(
1 +

bD2
i

νL

)− νL
2

√
2 π var(L̂(n))

. (3.6)

(2) For the common shock model, inter-risk correlation is bounded by

|corr(L̂(n), Ẑ)| ≤
√

ν − 2

2

Γ
(

ν−1
2

)

Γ
(

ν
2

)
∑n

i=1 ei Ri

(
1 +

bD2
i

ν

) 1−ν
2

√
2 π var(L̂(n))

. (3.7)

In both cases (3.6) and (3.7) is Ri =
√∑K

k=1 β2
ik.

For practical purposes, very relevant is the situation where credit risk quantification

is based on a normal factor model, whereas heavy tails are assumed for the market risk,

which therefore shall be described by the shock model approach. This can be referred to

as a hybrid factor model, which is a special case of the joint shock model of Definition 2.3

with νL →∞. We formulate our results as a Corollary.

Corollary 3.5 (Inter-risk correlation for the hybrid factor model). Suppose that credit

portfolio loss L(n) is described by the normal factor model of Definition 2.1, and market

risk Ẑ by the shock model of Definition 2.7. Assume that the credit model’s idiosyncratic

factors εi for i = 1, . . . , n are independent of η, then we call (L(n), Ẑ) the hybrid factor

model.

(1) Inter-risk correlation is given by

corr(L, Ẑ) =

√
νZ − 2

2

Γ
(

νZ−1
2

)

Γ
(

νZ

2

) corr(L,Z)

with corr(L,Z) as in (3.2).

(2) If the factor loadings γk, k = 1, . . . , K of market risk are unknown, the inter-risk

correlation bound is given by

|corr(L, Ẑ)| ≤
√

νZ − 2

2

Γ
(

νZ−1
2

)

Γ
(

νZ

2

) |corr(L,Z)|

with |corr(L,Z)| as in (3.3).
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4 An Application to One-Factor Models

4.1 Joint One-Factor Models for Credit and Market Risk

Instructive examples regarding inter-risk correlation and its bounds can be obtained for

one-factor models, and they are useful to explain general characteristics and systematic

behaviour of inter-risk correlation. In the context of credit risk, one-factor models can

quite naturally be obtained by considering the special case of a large homogenous portfolio

(LHP).

Let us start with a homogenous portfolio for which we define that ei = e, pi = p,

βik = βk for i = 1, . . . , n, and k = 1, . . . , K. Then, by setting ρ :=
∑K

k=1 β2
k and

Ỹ :=

(
K∑

k=1

βkYk

)
/
√

ρ , (4.1)

expression (2.2) for the general factor model can be transformed into a one-factor model

Ai =
√

ρ Ỹ +
√

1− ρ εi , (4.2)

where Ỹ is standard normally distributed and independent of εi, and ρ is the uniform

asset correlation within the credit portfolio. If we now additionally increase the number

of counterparties in the portfolio by n →∞, then the relative portfolio loss satisfies1

L(n)

n e

a.s.→ Φ

(
D −√ρ Ỹ√

1− ρ

)
= : L , n →∞ , (4.3)

where D = Φ−1(p) and n e is the total exposure of the credit portfolio. Often L is used

as an approximative loss variable for large and almost homogeneous portfolios. For later

usage recall that the variance of L is given by var(L) = p12 − p2 with p12 = Φρ(D,D).

Similarly, in the case of the shock model, the LHP approximation reads

L̂(n)

n e

a.s.→ Φ

(
D̂/WL −√ρ Ỹ√

1− ρ

)
= : L̂ , n →∞ ,

where now D̂ = t−1
νL

(p). The variance is given by var(L̂) = p̂12− p2 with p̂12 = tνL;ρ(D̂, D̂).

We now apply the one-factor approach to market risk so that both market and credit

risk are systematically described by one and the same single factor Ỹ . To achieve this, we

use (4.1) and

η̃ :=
1√

1− γ̃2




K∑

k=1

(
γk − γ̃√

ρ
βk

)
Yk +

√√√√1−
K∑

k=1

γ2
k η




1Actually, there are less restrictive conditions for the exposures ei and the individual default variables
Li under which the LHP approximation still holds, see, e.g., in Bluhm et al. [3], Section 2.5.1.
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with

γ̃ :=
1√
ρ

K∑

k=1

βkγk . (4.4)

Then, we obtain the formal identities

Z = −σ
(
γ̃ Ỹ +

√
1− γ̃2 η̃

)
(4.5)

and

Ẑ = −σ WZ

(
γ̃ Ỹ +

√
1− γ̃2 η̃

)
(4.6)

for the normal factor model (2.10) and for the shock model (2.11), respectively. In both

cases, η̃ is standard normally distributed and independent of Ỹ . Moreover, Z in (4.5) is

normally distributed with zero mean and variance var(Z) = σ2, whereas Ẑ in (4.6) follows

a t-distribution with νZ degrees of freedom.

While the one-factor weight
√

ρ for the credit portfolio depends only on the βk, the

one-factor weight γ̃ for market risk given by (4.4) is a function of βkγk. In particular, in

order to obtain non-vanishing systematic market risk within the one-factor model, both

risk types have to share at least one common factor.

4.2 One-Factor Inter-Risk Correlation

The calculations of Section 3 easily apply to the case of the joint one-factor model of credit

and market risk and the results regarding inter-risk correlation simplify considerably. We

start with the normal one factor model.

Normal Factor Model Approach. Instead of (3.2) we now obtain

corr(L
(n)
hom, Z) =

√
n r e−D2/2

√
2π

√
p12(n− 1) + p(1− np)

,

where D = Φ−1(p) is the default point, p12 = Φρ(D, D) is the joint default probability

within the homogenous portfolio, and r = corr(Z,Ai) =
√

ρ γ̃ =
∑K

k=1 βkγk. If the credit

portfolio is not only homogenous but also very large, we arrive at the following LHP

approximation for the inter-risk correlation between the credit portfolio loss (4.3) and

market risk P/L (4.5) in the limit n →∞:

corr(L,Z) =
r e−D2/2

√
2π(p12 − p2)

. (4.7)
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Figure 1: LHP approximations of inter-risk correlation for r = 0.2 as a function of the asset
correlation ρ according to the normal factor model (equation (4.7)) and the common shock
model (equation (4.10)). The average default probability is assumed to be p = 0.002.

Given the uniform asset correlation ρ =
∑K

k=1 β2
k of a homogenous credit portfolio, it

follows from (4.4) that |γ̃| ≤ 1, and thus |r| ≤ √
ρ, implying the bounds

|corr(L,Z)| ≤
√

ρ e−D2/2

√
2π(p12 − p2)

=: ψ(p, ρ) . (4.8)

Shock Model Approach. The LHP approximation for inter-risk correlation in the

case of the independent shock model of Definition 2.8 (1) yields

corr(L̂, Ẑ) =

√
νZ − 2

2

Γ
(

νZ−1
2

)

Γ
(

νZ

2

)
r
(
1 +

bD2

νL

)− νL
2

√
2 π (p̂12 − p2)

, (4.9)

whereas for the common shock model of Definition 2.8 (2) we obtain

corr(L̂, Ẑ) =

√
ν − 2

2

Γ
(

ν−1
2

)

Γ
(

ν
2

)
r
(
1 +

bD2

ν

) 1−ν
2

√
2 π (p̂12 − p2)

, (4.10)

where D̂ = t−1
ν (p) is the default point, p̂12 = tν;ρ(D̂, D̂) is the joint default probability

within the homogenous portfolio, and r = corr(Ẑ, Âi) =
√

ρ γ̃. Similarly as for the LHP

approximation of the normal factor model, bounds for the inter-risk correlation can be

obtained from (4.9) and (4.10) together with |r| ≤ √
ρ. In the special case that νL = νZ = ν

it follows by comparison of (4.9) and (4.10) that the assumption of one single common

14
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Figure 2: LHP approximations of the inter-risk correlation bound as a function of the asset
correlation ρ according to the normal factor model (equation (4.8)) and the common shock model
(equation (4.10) with r =

√
ρ). The average default probability is assumed to be p = 0.002.

shock increases inter-risk correlation by a factor of

√
1 +

bD2

ν
compared to the independent

shock model. For typical values of p, this factor lies in a range of about 1.0–2.0.

To find out how global (macroeconomic) shocks affect inter-risk correlation, let us

contrast the LHP approximations (4.9) and (4.10) of the shock models with that of the

normal factor model (4.7). For this purpose, Table 4.1 as well as Figures 1 and 2 compare

the inter-risk correlation and its upper bound for the common shock model with the

outcome of the normal factor model. One can see that the common shock model yields—

particularly for small asset correlations—lower inter-risk correlations and bounds than the

normal factor model. In the case of the independent shock model, the spread between the

normal inter-risk correlation and the shocked inter-risk correlation would be even higher.

Needless to say, the one-factor asset correlation ρ is a popular parameter in the context

of credit portfolio modelling. It is often used as a “single-number measure” to evaluate

the average dependence structures between different counterparties of a credit portfolio.

Moreover, it plays an important role also in the calculation formula for regulatory capital

charges according to the internal-ratings-based (IRB) approach of Basel II [1]. Equations

(4.8)–(4.10) now show that ρ is a very important parameter also beyond credit risk itself

as it determines its maximum possible inter-risk correlation with another risk type, here

market risk; see again Figure 2 where inter-risk correlation bounds are plotted as a function

of ρ2.

2Note that ρ enters |corr(L,Z)| not only directly by
√

ρ but also indirectly via the joint default
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Normal Model Common Shock Model
ρ

ν = ∞ ν = 4 ν = 10 ν = 50

p = 0.002

5 % 0.81 (0.90) 0.17 (0.19) 0.22 (0.24) 0.46 (0.51)

10 % 0.51 (0.81) 0.16 (0.25) 0.19 (0.30) 0.36 (0.56)

15 % 0.38 (0.73) 0.15 (0.28) 0.17 (0.33) 0.29 (0.56)

20 % 0.30 (0.66) 0.14 (0.31) 0.15 (0.35) 0.24 (0.53)

p = 0.02

5 % 0.85 (0.95) 0.27 (0.31) 0.37 (0.42) 0.62 (0.70)

10 % 0.57 (0.90) 0.25 (0.40) 0.33 (0.52) 0.48 (0.76)

15 % 0.44 (0.86) 0.24 (0.46) 0.29 (0.57) 0.39 (0.76)

20 % 0.37 (0.82) 0.22 (0.50) 0.27 (0.59) 0.33 (0.75)

Table 4.1: LHP approximation for inter-risk correlation for the normal factor model (4.7) and the
common shock model (4.10) using r = 0.2 but different values for p and average asset correlation
ρ. The values in brackets indicate upper inter-risk correlation bounds for which r =

√
ρ.

Similarly, for a fixed uniform asset correlation ρ, inter-risk correlation and its bound

depend on the average default probability p and thus on the average rating of the credit

portfolio. This is depicted in Figure 3 where LHP inter-risk correlation as well as the

corresponding upper bounds are plotted as a function of the average portfolio rating. One

can see that an improvement of the average portfolio rating structure decreases inter-risk

correlation (as well as its bounds) and thus tends to result in a lower volatility of the total

portfolio of market and credit.

A Moment Estimator for the Inter-Risk Correlation Bound. Even if the actual

credit portfolio is not homogenous, the derived LHP approximation provides us with a

useful estimator for approximating the upper inter-risk correlation bound.

Let us consider the normal factor model and so expression (4.8). For any credit loss

distribution—obtained for instance by Monte Carlo simulation— estimators p̂ and ρ̂ for

p and ρ, respectively, can be (numerically) obtained via moment matching. In doing so,

we compare the empirical expected loss µ and the empirical variance ς2 derived from the

simulated credit portfolio with the corresponding figures of an LHP approximation, i.e.,

average default probability p and variance var(L). Thus we require that

µ = etot p̂ (4.11)

probability p12 = Φρ(Φ−1(p), Φ−1(p)). This implies that |corr(L,Z)| 6= 0 for ρ → 0.
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Figure 3: LHP approximations of inter-risk correlation bound as a function of the average port-
folio rating according to the normal factor model (equation (4.8)) and the common shock model
(equation (4.10) with r =

√
ρ). The average asset correlation is assumed to be ρ = 10 %.

and

ς2 = e2
tot (p12 − p̂2) (4.12)

= e2
tot

[
Φρ̂(Φ

−1(p̂), Φ−1(p̂))− p̂2
]
,

where etot denotes the total credit exposure. From (4.8) we then obtain the following

moment estimator for the upper inter-risk correlation bound:

ψ̂(p̂, ρ̂) =
etot

ς

√
ρ̂ exp

[− 1
2

(
Φ−1(p̂)

)2]
√

2π
. (4.13)

For instance, for the credit test portfolio described in Appendix 7.1 we have etot/ς = 92.41,

p̂ = 0.54 %, ρ̂ = 23.31 %, and (4.13) yields ψ̂ = 0.69. In contrast, the exact bound for the

inter-risk correlation given by expression (3.3) evaluates to 0.57.

5 Risk Aggregation

As we already mentioned in the introduction, the estimation of aggregated economic

capital is a key element both for regulatory and bank internal purposes. Usually economic

capital is defined as a quantile-based risk measure that only reflects unexpected potential

loss. More precisely, assume that a certain risk type is represented by a random variable

Xi with distribution function Fi(x) = P(Xi ≤ x). If the expectation of Xi exists, we define

its economic capital at confidence level α as

ECi(α) = F←
i (α)− E(Xi) ,
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where F←
i (α) = inf{x ∈ R : Fi(x) ≥ α}, 0 < α < 1, is the generalized inverse of Fi. If Fi

is strictly increasing and continuous, we may write F←
i (·) = F−1

i (·).
The joint factor models proposed here allow us to compare some of the most important

approaches for risk aggregation that are used in practice and discussed in the literature.

First, most straight forward is clearly the simple summation of pre-aggregated risk

figures obtained for each risk type. Though it typically overestimates total risk, it is still

used in practice. Second, aggregated risk capital can be obtained by a joint Monte Carlo

simulation of the factor Y as well as the idiosyncratic factors εi and η entering both

(2.2) and (2.10). Finally, the last two techniques we want to mention here are the copula

approach and the square-root-formula approach, which shall be considered in greater

detail below. According to The IFRI/CRO Forum [7], the square-root formula approach

is most popular in the banking industry while copula methods are often used in insurance.

In the sequel we restrict ourselves to the joint normal factor model for credit and market

risk given by Definition 2.6.

Square-Root-Formula Approach. Though mathematically justified only in the case

of elliptically (e.g., multivariate normally) distributed risk types, this approach is often

used in practice because risk-type aggregation can be achieved without simulation by

means of a closed-form expression. In our bivariate case of a credit portfolio L(n) and

(pre-aggregated) market portfolio Z, the square-root formula (1.1) reads

ECL(n)+Z(α) =
√

ECL(n)(α)2 + ECZ(α)2 + 2 corr(L(n), Z) ECL(n)(α) ECZ(α) ,

where corr(L(n), Z) is the inter-risk correlation (3.2).

Copula Aggregation Approach. A d-dimensional distributional copula C is a d-

dimensional distribution function on [0, 1]d with uniform marginals. The relevance of dis-

tributional copulas for risk integration is mainly because of Sklar’s theorem, which states

that for a given copula C and (continuous) marginal distribution functions F1, . . . , Fd, the

joint distribution can be obtained via

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (5.1)

Therefore, if one has specified marginal distributions for each risk type together with an

appropriate copula, total aggregate loss can be obtained numerically or by Monte Carlo

simulation.

With regard to the copula technique, an apparent problem is which copula to choose

and how to calibrate the model. A remarkable feature of the joint normal factor model for

credit and market risk is that it can easily be interpreted as a Gaussian coupling model

between market and credit risk.
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γ̃ 0.0 0.2 0.4 0.6 0.8 1.0

corr(L,Z) 0.0 0.15 0.29 0.44 0.59 0.73

Table 5.2: Relation between inter-risk correlation corr(L,Z) and Gaussian copula parameter γ̃

according to (5.2) for p = 0.002 and ρ = 15 %.

Proposition 5.1 (Normal one-factor model and Gaussian copula). Consider the joint

normal one-factor model for credit and market risk, i.e., we consider (4.2) and (4.5)

where all idiosyncratic factors εi of the credit model are independent the idiosyncratic

factors η̃ of market risk. Then

(1) both risk types are coupled by a Gaussian copula with parameter γ̃ given by (4.4).

(2) the copula parameter γ̃ and the inter-risk correlation corr(L,Z) are related by

γ̃ =
corr(L,Z)

ψ
(5.2)

where ψ is the LHP approximation (4.8) for the inter-risk correlation bound.

It follows from (5.2) that the absolute value of the inter correlation between credit and

market risk is always below the absolute value of the copula parameter γ̃. Furthermore,

maximum inter-risk correlation corresponds to γ̃ = 1 for which market risk is completely

determined by one single risk factor without having any idiosyncratic component, cf.

equation (4.5). A numerical example for (5.2) is given in Table 5.

Estimators for the Gaussian Copula Parameter. Particularly important for prac-

tical applications is the question of how the Gaussian copula parameter can be estimated

for general credit portfolios. Note that in this case Proposition 5.1 (1) is not directly ap-

plicable because βk in (4.4) is only defined for a homogenous portfolio. However, we can

extend the LHP approximation for a credit portfolio, which we have used to construct the

estimator ψ̂ for the inter-risk correlation bound given by (4.13), to the joint one-factor

risk model of credit and market risk by matching the inter-risk correlations. If market

and credit risk are described by the joint normal factor model of Definition 2.6, we can

calculate inter-risk correlation by Theorem 3.1 and compare it to the result in the case

of the LHP approximation, i.e., expression 4.7. Then, using Proposition 5.1 (2), we arrive

at the following general estimator for the copula parameter γ̃,

̂̃γ1 =
ĉorr(L,Z)

ψ̂
(5.3)

where

ĉorr(L,Z) = corr(L(n), Z)
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with corr(L(n), Z) calculated as in (3.2).

An alternative estimator for γ̃ can be constructed by applying the right-hand side of

(5.2) directly to a non-homogenous portfolio without introducing a one-factor approxima-

tion before. In this case it follows together with (3.2) and (3.3) that

̂̃γ2 =

∑n
i=1

∑K
k=1 βik γk ei exp

(−1
2
D2

i

)
∑n

i=1 ei

√∑K
k=1 β2

ik exp
(−1

2
D2

i

) . (5.4)

We now illustrate our findings by means of the sample portfolio of credit and market

risk described in Appendix 7.1. For the estimators above as well as the inter-risk correla-

tion (3.2) we then obtain ̂̃γ1 = 0.32, ̂̃γ2 = 0.39, and corr(L(n), Z) = 0.22. These parameters

can now be used for risk aggregation as described before. Results for aggregated economic

capital at different confidence levels α are summarized in Table 5.3. Some remarks are ap-

propriate. In the first two rows of Table 5.3, stand-alone credit risk and market risk were

calculated by the general models of Definitions 2.1 and 2.5, respectively. These figures were

directly used in the square-root formula approach. In contrast, for copula aggregation the

marginal distribution function for credit risk was first approximated by a one-factor model

using moment matching (4.11) and (4.12). Finally, the copula parameter was estimated

via the moment estimator ̂̃γ1.

EC α = 0.9 α = 0.99 α = 0.999 α = 0.9998

Credit 0.16 0.87 1.91 2.68

Market 0.23 0.42 0.56 0.64

Sum 0.39 1.29 2.47 3.32

Square-root formula (corr(L(n), Z) = 0.22) 0.31 1.04 2.10 2.89

Copula approach (γ̃ = 0.32) 0.32 1.03 2.20 3.16

Simulation approach 0.32 1.04 2.09 2.89

Table 5.3: Aggregated economic capital in EUR bn for different confidence levels α obtained by
the four aggregation methods described in the text.

In this particular example, the square-root formula seems to be a reasonable proxy

when economic capital at high confidence level is considered. The copula approach leads

to a heavier tailed loss distribution estimate resulting in more conservative quantile esti-

mates.

6 Conclusion

The model we have proposed here extends a classical structural portfolio model for credit

loss to a joint linear model for both credit and market (or other) risk. This enables us to
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calculate inter-risk correlation between credit and market risk analytically, and to derive

upper bounds for inter-risk correlation, which can be applied in the absence of any specific

information regarding the market risk portfolio. Moreover, we have suggested a moment

estimator for the inter-risk correlation bound that works for almost arbitrary simulated

credit loss distributions. Hence, our findings are of utmost importance for economic capital

aggregation, in particular in the context of Pillar II compliance.

Our approach turns out to be quite flexible in the sense that also typical heavy tail

characteristics of market as well as credit risk can easily be included by allowing the

underlying factors to be t-distributed. This enables the risk manager to investigate how

inter-risk correlation between credit and market risk is potentially impacted by model

risk.

We have used the results obtained for the inter-risk correlation to numerically explore

risk aggregation of a credit and market risk portfolio using different popular methodolo-

gies. First, adopting an LHP approximation, we have shown how a Gaussian coupling

model between the two risk types can explicitly be parameterized and estimated. Hence,

our approach is an important step forward towards a reliable and feasible method for eco-

nomic capital aggregation that can be implemented in practical risk measurement without

greater obstacles.

We then have compared the copula based technique with the popular square-root

formula (or variance-covariance method) for risk type aggregation. The latter can be

easily applied here because we have obtained inter-risk correlation analytically. Needless

to say, since the marginal distributions of different risk types in general do not belong to

the class of elliptical distributions, the square-root-formula approach has to be applied

cautiously. Interestingly, in the normal factor model, it matches quite accurately with

the aggregated risk of our sample portfolio when high confidence levels are considered.

We made similar observations in the case of other sample portfolios, and it might be

interesting to investigate whether this is the consequence of a more general result.

Our approach could be extended in several ways. First, it could be examined whether

the idea of closed-form expressions for the inter-risk correlation could be applied also to

other risk types (instead of market risk) that are neither normal nor t-distributed, such as

operational risk as a prominent example. Another interesting question is how our results

would change if one would switch from the default-mode credit model we have used here

to a fair-value approach, i.e, if one would allow for rating migrations.

From our discussions we have had so far with colleagues from the banking industry,

we feel that there is still room for investigation with regard to inter-risk correlation. Here,

we have focused on credit and market risk, and we would like encourage the economic

capital community to share their experience, feedback and findings.
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Figure 5: Relative exposures of the industry sectors in the sample credit portfolio.

7 Appendix

7.1 The Test Portfolios of Market and Credit Risk

The sample credit portfolio consists of 7,124 loans with a total exposure of ca. 18 billion

Euro. The obligors are assigned to seven different industry sectors such as car industry or

telecommunication. The single exposures range between 3,200 and 82 million Euro. The

default probabilities are given with an average default probability of 2.08 percent and an

exposure-weighted average default probability of 1.21 percent. Loss given default is set to

45 percent.

The standard deviation σ of the market portfolio, represented by the single random

variable Z, is 180 million Euro.

In the normal factor approaches, dependence between the asset log returns Ai, i =

1, . . . , n, of the obligors and the market loss variable Z is due to the systematic factors Y =

(Y1, . . . , YK). The corresponding factor loadings βik and γk are estimated by Maximum-

Likelihood factor analysis, see, e.g., Fahrmeir et al. [6]. However, since we cannot observe

the Ai directly, we assume that the dependence between the corresponding industry sector

stock indices is similar and hence we use them for the estimation of the factor loadings.

For the market loss variable, we use P/L figures as they typically occur in trading

business. The data range is between February 2002 and March 2006.
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7.2 Proofs

Proof of Theorem 3.1. First we calculate the covariance between L(n) and Z. Using

E(Z) = 0, expression (2.1), and the fact that η in (2.10) is independent from Y (and thus

from Li), we can write

cov(L(n), Z) = E(ZL(n)) = −σ

n∑
i=1

ei

K∑

k=1

γk E(YkLi) . (7.5)

To evaluate the expectation, conditioning with respect to Yk = yk and using the law of

iterated expectation yield

E(Yk Li) = E(Yk Li(Y1, . . . , YK))

= E
(
E(Yk Li(Y1, . . . , YK) |Yk)

)

=

∫ ∞

−∞
E(Yk Li(Y1, . . . , YK) |Yk = yk) dΦ(yk)

=

∫ ∞

−∞
E(yk Li(Y1, . . . , yk, . . . , YK)) dΦ(yk)

=

∫ ∞

−∞
yk E(Li(Y1, . . . , yk, . . . , YK)) dΦ(yk)

where Φ is the standard normal distribution function. Using E(Li) = P(Li = 1), we have

E(Yk Li) =

∫ ∞

−∞
yk P(Li(Y1, . . . , yk, . . . , YK) = 1) dΦ(yk)

=

∫ ∞

−∞
yk P




K∑
l=1
l6=k

βil Yl + βik yk +

√√√√1−
K∑

j=1

β2
ij εi ≤ Di


 dΦ(yk)

=

∫ ∞

−∞
yk P




K∑
l=1
l6=k

βil Yl +

√√√√1−
K∑

j=1

β2
ij εi ≤ Di − βik yk


 dΦ(yk)

=:

∫ ∞

−∞
yk P (X ≤ Di − βik yk) dΦ(yk)

where X is normally distributed with variance var(X) = 1− β2
ik. Hence, we obtain

E(Yk Li) =

∫ ∞

−∞
yk Φ

(
Di − βik yk√

1− β2
ik

)
dΦ(yk) .
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Since the derivative of the density ϕ of the standard normal distribution is given by

ϕ′(y) = y ϕ(y), it follows by partial integration that

E(Yk Li) = − βik√
1− β2

ik

∫ ∞

−∞
yk ϕ

(
Di − βik yk√

1− β2
ik

)
ϕ(yk) dϕ(yk) ,

where the right-hand side is just −βik times the density of a random variable Ψ =√
1− β2

ikX + βikYk for standard normal iid X, Yk at point Di. Since Ψ is then again

standard normal, we obtain

E(Yk Li) = −βikϕ(Di) = − βik√
2π

e−
D2

i
2 , (7.6)

which together with (7.5) yields

cov(L(n), Z) =
σ√
2π

n∑
i=1

K∑

k=1

ei γk βik e−
D2

i
2

=
σ√
2π

n∑
i=1

ei ri e
−D2

i
2

where we have introduced ri := corr(Ai, Z) =
∑K

k=1 βikγk. With
√

var(Z) = σ and

var(L(n)) =
n∑

i,j=1

ei ej cov(Li, Lj)

=
n∑

i,j=1

ei ej

(
E(LiLj)− E(Li)E(Lj)

)

=
n∑

i,j=1

ei ej (pij − pi pj) , (7.7)

where pij is the joint default probability (2.5), the assertion follows. ¤

Proof of Proposition 3.2. Since the obligor’s exposures are assumed to be positive,

ei ≥ 0, it follows from (3.2) that

|corr(L(n), Z)| ≤
∑

i ei |ri| exp
(−1

2
D2

i

)
√

2π
∑

ij ei ej (pij − pi pj)
.

From the Cauchy-Schwarz inequality together with
∑K

k=1 γ2
k ≤ 1, it follows that

|ri| =
∣∣∣∣∣

K∑

k=1

βikγk

∣∣∣∣∣ ≤
(

K∑

k=1

β2
ik

)1/2 (
K∑

k=1

γ2
k

)1/2

≤
(

K∑

k=1

β2
ik

)1/2

≤ 1 ,

which completes the proof. ¤
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Proof of Theorem 3.3.

(1) Using (2.1) and the law of iterated expectation, we obtain

cov(L̂(n), Ẑ) =
n∑

i=1

ei E(Ẑ L̂i) =
n∑

i=1

ei E
(
E(Ẑ L̂i |WL,WZ)

)
. (7.8)

Now, in the credit shock model of Definition 2.3 we have that for each loss variable L̂i

P(L̂i = 1) = P


WL

K∑

k=1

βik Yk + WL

√√√√1−
K∑

j=1

β2
ij εi ≤ D̂i




= P




K∑

k=1

βik Yk +

√√√√1−
K∑

j=1

β2
ij εi ≤ D̂i

WL


 .

Hence, the shock factor model conditional on the shock variable WL is equivalent to a

normal factor model with adjusted default points D∗
i := D̂i/WL. Therefore, we obtain

from (7.6) without any further calculation

E(Ẑ L̂i |WL,WZ) = −σ

K∑

k=1

γk WZ E(Yk L̂i |WL)

= −σ

K∑

k=1

γk WZ

(
− βik√

2π
e−

D∗2i
2

)

=
σ ri√
2π

WZ e−
D∗2i

2 ,

where ri =
∑K

k=1 βikγk for i = 1, . . . , n . Integration over WL and WZ yields

E
(
E(Ẑ L̂i |WL,WZ)

)
=

σ ri√
2π

∫ ∞

0

WZ dFνZ
(s)

∫ ∞

0

e−
D∗2i

2 dFνL
(s) (7.9)

=
σ ri√
2π
E(WZ)

∫ ∞

0

e
− bD2

i
2νL

s
fνL

(s) ds

where Fν is the distribution function of a χ2
ν distributed random variable with density

fν(s). By substitution, we can perform the integration for νL > 0,

∫ ∞

0

e
− bD2

i
2νL

s
fνL

(s) ds =

∫ ∞

0

2−ν/2 sν/2−1

Γ
(

ν
2

) exp

[
−

(
1 +

D̂2
i

νL

)
s

2

]
ds

=

(
1 +

D̂2
i

νL

)− νL
2 ∫ ∞

0

2−ν/2 e−s/2 sν/2−1

Γ
(

ν
2

) ds

=

(
1 +

D̂2
i

νL

)− νL
2

.
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Together with

E(WZ) =

√
νZ

2

Γ
(

νZ−1
2

)

Γ
(

νZ

2

)

for νZ > 1 we obtain

E
(
E(Ẑ L̂i |WL,WZ)

)
=

σ ri√
2π

√
νZ

2

(
1 +

D̂2
i

νL

)−νL
2 Γ

(
νZ−1

2

)

Γ
(

νZ

2

) , (7.10)

Now, plugging (7.10) into (7.8), and using (7.7) together with

var(Ẑ) =

(
νZ

νZ − 2

)
σ2 , νZ > 2 ,

finally leads to

corr(L̂(n), Ẑ) =

√
νZ − 2

2

Γ
(

νZ−1
2

)

Γ
(

νZ

2

)
∑n

i=1 ei ri

(
1 +

bD2
i

νL

)−νL
2

√
2 π var(L̂(n))

.

(2) Similarly to the case of independent shock variables, we are now conditioning on the

single shock variable W . Instead of (7.9), we obtain for ν > 1 by substitution

E
(
E(Ẑ L̂i |W )

)
=

σ ri√
2π

∫ ∞

0

W e−
D∗2i

2 dFν(s)

=
σ ri√
2π

∫ ∞

0

√
ν

s
e−

bD2
i

2ν
s fν(s) ds

=
σ ri√
2π

∫ ∞

0

2−ν/2 ν1/2

Γ(ν/2)
s

ν−1
2
−1 exp

[
−

(
D̂2

i

ν
+ 1

)
s

2

]
ds

=
σ ri√
2π

∫ ∞

0

2−ν/2 ν1/2

Γ(ν/2)

(
D̂2

i

ν
+ 1

)− ν−1
2

s
ν−1
2
−1e−s/2ds

=
σ ri√
2π

ν1/2 2−1/2

Γ(ν/2)

(
D̂2

i

ν
+ 1

) 1−ν
2

Γ

(
ν − 1

2

) ∫ ∞

0

2−
ν−1
2

Γ
(

ν−1
2

)s
ν−1
2
−1e−s/2ds

=
σ ri√
2π

ν
ν
2

(
D̂2

i + ν
) 1−ν

2
Γ

(
ν−1
2

)
√

2 Γ
(

ν
2

) , (7.11)

which finally completes the proof. ¤
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Proof of Proposition 3.4. The proof is analogous to the proof of Proposition 3.2.

Proof of Proposition 5.1.

(1) An important characteristic of copulas is their invariance under monotonously in-

creasing transformations. Since the portfolio loss L in the LHP approximation as given

by (4.3) is a monotonously increasing function of −Ỹ , it follows that L and Z have the

same copula as −Ỹ and Z. For the latter we know from the one-factor representation of

market risk (4.5) that they are bivariate normally distributed with correlation

corr(−Ỹ , Z) = γ̃ .

Hence, also L and Z are linked by a Gaussian copula with correlation parameter γ̃.

(2) This follows directly from (4.7) and (4.8) together with r =
√

ρ γ̃.
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