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Introduction 
Undeniable trends in the age composition of  the pop- 

ulation present significant challenges and opportunities 
to the actuarial profession. In an effort to manage the 
increasing demand for health care services, the public 
and private sectors are exploring new health care fi- 
nancing and delivery schemes such as managed care 
programs, capitated reimbursement, and private long- 
term care (LTC) insurance. Effective actuarial analysis 
of  such programs requires an understanding of  the mi- 
gration of  individuals between health statuses that af- 
fect health care utilization and costs. This paper 
presents a health status transition model developed as 
part o f  a larger LTC insurance pricing model. The 
model is fitted to longitudinal data on Medicare en- 
rollee functional and cognitive impairments obtained 
from the 1982/84/89 National LTC Surveys. The paper 
discusses model features, estimation, and applications. 

Status Transition Models: General 
For this paper I limit the discussion to processes in 

which an individual is in one of  a finite number of  
discrete statuses at any point in time. For most appli- 
cations, the state space of  the underlying process can 
be adequately approximated by a limited number of  
statuses. 

A few of  the status transition models available from 
the literature are described below. 

Markov Chains 

In this context, a Markov chain might be used to 
describe the evolution of  an individual's health status 

over uniform increments in time, say, month-by-month. 
Such models assume that the probability of  moving to 
status j in the next month depends only on the current 
status, ignoring the sequence o f  past statuses leading to 
the current status. Although this seems to be a very 
restrictive assumption, some imagination in the con- 
struction of  status definitions combined with variation 
in the status transition probabilities over time allows 
such models to mimic the characteristics of  many real 
processes. A wealth of  analysis is available on the 
properties of  Markov chains. See chapter 7 of  Heyman 
and Sobel (1982) for an introduction or part 1 of  Chung 
(1967) for a more exhaustive treatment. 

Continuous-Time Markov Chains 
(CTMCs) 

Such models allow for status jumps at any time, with 
the destination status determined by a Markov chain, 
and are described in terms of  the instantaneous rates of  
transition at a given time from the current status to each 
of  the possible destination statuses. The force of  mor- 
tality from life contingencies is an example of  such a 
transition rate in a model having only two statuses, 
living and dead. A common special case is the time- 
homogeneous CTMC in which the transition rates are 
assumed to be constant over time. Time-homogeneous 
CTMCs exhibit exponential interjump intervals. Chap- 
ter 8 of  Heyman and Sobel (1982) and part 2 of  Chung 
(1967) serve as useful references. 

Semi-Markov Processes 

These models are extensions of  CTMCs that allow 
the instantaneous transition rates to vary with current 
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status and duration in current status. The unconstrained 
CTMC and the semi-Markov process both allow for 
transition rates that vary over time. The CTMC indexes 
time relative to a fixed calendar date or a fixed initial 
age, whereas the semi-Markov process reinitializes 
time at each status change. Compared to the time- 
homogeneous CTMC, the semi-Markov process allows 
for interjump intervals with nonexponential distribu- 
tions. Chapter 9 of  Heyman and Sobel (1982) is an 
introduction to these processes. 

Further extensions of  these models are possible by 
allowing the transition rates to depend upon additional 
aspects of  the individual's status history beyond the 
current status and the duration in the current status. 
However, such extensions present two challenges. First, 
the derivation and computation of  process probabilities 
from transition rates become more complicated. Sec- 
ond, the number of  model parameters required to rep- 
resent the process greatly increases, making estimation 
more difficult. 

LTC Status Transition Model 
The LTC transition model in this paper is a CTMC 

that allows the transition rates to vary with the sex and 
attained age of  the individual. This structure is selected 
to balance model complexity and flexibility with con- 
sideration for the nature of  the available data. Exten- 
sions to the model would produce parameter identifia- 
bility issues. To simplify the analysis further, it is 
assumed that the model transition rates are constant 
over short age intervals of  that they can be adequately 
approximated by constant rates over short age intervals. 

I adopt the following notation to describe the model 
characteristics: 

rij (s, x) = annual rate of  transition from status i 
to status j for an individual aged x of  
sex s. (Note: s = 0 for males and s = 
1 for females.) 

probability that an individual of  sex s 
is in status j at age y given status i at 
age x. 

I f  we know the transition rates, r(.), we can find the 
transition probabilities, p(.), as solutions to the follow- 
ing system of  differential equations: 

p , / (s ,  x, y)  = 

dpi+ (s, x, y)  
- Ek Pik (s, x, y)  rkj (s, y)  dy 

for y > x, with initial conditions, 

p ~ j ( s , x , y )  = 0 f o r i C j a n d  1 f o r i  = j ,  

rjj (s, y)  = - Y'm*j rj~ (S, y) .  

These equations are more conveniently expressed in 
matrix notation: 

dP (s, x, y )  
- P ( s , x , y )  R ( s , y )  for y > x, 

dy 
P ( s , x , x )  = 1. 

The third condition sets the diagonal element of  R(.) 
so that each row sums to zero. 

I f  we temporarily treat P(.) and R(.) as scalar func- 
tions of  y, we might speculate that a solution to the 
system would be. 

P (s, x, y)  = exp [fy R (s, z) dz]. (*) 

This represents a valid solution under the following 
conditions: 
1. The integral of  a matrix is defined as the matrix o f  

the integrals of  each element. 
2. Exp(A) for a square matrix A is defined to be the 

matrix summation, Zk Ak/k!, where the sum over k 
runs from zero to infinity 

3. R(s, Zo) R(s, zO=R(s, zO R(s, Zo) for all Zo and z, in 
the interval [x, y]. 

Condition (3) is satisfied when R(s, z) is constant on 
[x, y], that is, the process is time homogeneous on the 
interval. In this case, the transition probability in (*) 
simplifies to 

P (s, x , y )  = exp [(y - x) R (s, x)] 

R (s, x) k 
= x~ (v - x) ~ - -  

k~ 

Probabilities extending over longer age intervals can 
be approximated by assuming constant transition rates 
within subintervals; that is, 

P (s, x, y,)  = P (s, x, y , )  P (s, y,, y2) 

. . .  P (s, Y,-I ,  Y,),  
where R(s, z) is constant for z within each interval 

[x, y,], (y,, Y2) . . . . .  (Y,-,, Y,). 

Data: the National LTC Surveys 
The 1982/84/89 National LTC Surveys (NLTCSs) 

consist of  an ongoing longitudinal study o f  elderly 
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Medicare enrollee levels of disability and care utiliza- 
tion (Rudberg [1996] analyzes transition rates using an- 
other longitudinal survey, the Longitudinal Study of 
Aging). The initial sample in 1982 screened over 
34,000 enrollees. Of these, approximately 26,000 were 
unimpaired, 2,000 were institutionalized, and 6,000 
were chronically disabled community residents. The 
disabled community residents were interviewed in 
greater detail about their medical, functional, and cog- 
nitive health statuses as well as their family and eco- 
nomic situations. The 1984 interviews revisited all 
enrollees given detailed interviews in 1982, all enroll- 
ees institutionalized in 1982, a sample of 12,000 un- 
impaired enrollees in 1982, and a sample of 5,000 
enrollees new to Medicare since 1982. Those found to 
be chronically disabled in 1984 were interviewed in 
greater detail, including those in institutions. A similar 
follow-up survey was conducted in 1989. (Data tapes 
containing questionnaire responses for the surveys are 
available from the Inter-University Consortium for 
Political and Social Research at the University of 
Michigan.) 

The detailed questionnaires included several ques- 
tions on the enrollee's functional and cognitive health 
status. Questions relating to difficulties with "activities 
of daily living" (ADLs), such as eating, bathing, dress- 
ing, toileting, transferring, and continence, were part of 
the functional assessment. Additional questions on "in- 
strumental activities of  daily living" (IADLs), such as 
shopping and food preparation, were also included. En- 
rollees were scored on cognitive skills using the "Short 
Portable Mental Status Questionnaire" (SPMSQ), a se- 
quence of ten questions included in the detail survey 
form. For the purpose of fitting the LTC transition 
model, these following questions were summarized for 
each respondent into the following health statuses: 

Status 
Code Description 

1 
2 
3 
4 
5 
6 
7 
8 

Well (no impairments) 
IADL only; no ADL/cognitive impairments 
1 ADL impaired; no cognitive impairment 
2 ADLs impaired; no cognitive impairment 
3 + ADLs impaired; no cognitive impairment 
< 2 ADLs impaired; cognitive impairment 
2+ ADLs impaired; cognitive impairment 
Dead 

Respondents were considered to be impaired in an 
ADL if they were unable to perform the activity with- 
out continuous human assistance. Respondents were 
classified as cognitively impaired if they had five or 
more incorrect answers on the SPMSQ or if they were 
unable to participate in the interview and were de- 
scribed as senile by the proxy. 

A typical LTC insurance policy requires the insured 
to be in statuses 5-7 to be eligible for health care ben- 
efits. (Some policies may provide benefits to those in 
status 4 as well.) Consequently, LTC insurance pricing 
actuaries should be very interested in the movement of 
insureds between these health statuses. 

Respondents have been grouped by sex (male and 
female), health status (status 1 to status 7), and age 
group (65-74, 75-84, and 85+) at the start of each of  
the two observation periods (1982-84 and 1984-89). 
Twelve observed transition matrices summarize the 
distribution of  ending health statuses for each such co- 
hort. Each matrix corresponds to a sex/age-group/ 
observation-period combination. The rows and col- 
umns of each matrix relate to the starting and ending 
health status, respectively, of each individual in the 
cohort. 

Each row of the observed transition matrices can be 
thought of  as an independent trial from a multinomial 
process, M(n, p), with n equal to the sum of the values 
in the row and p equal to a vector of  two- or five-year 
health status transition probabilities, as appropriate. 

Table 1 shows the contents of  one of the 12 observed 
transition matrices, females aged 75 to 84 in 1982, 
observed from 1982 to 1984. 

The diagonal shows the percentage of  enrollees with 
unchanged health status. The last column displays the 
percent of  each group dying during the two-year pe- 
riod. Cells above the diagonal generally relate to in- 
creased impairment; cells below the diagonal relate to 
recovery from impairment. 

The NLTCS provides information on health status 
migration over two and five years. I adopt the LTC 
transition model in an effort to "fill in the gaps" be- 
tween the beginning and end of these two observation 
periods. Just as I might adopt the constant-force-of- 
mortality assumption to interpolate to fractional ages 
in a life table, I assume constant-health-status transition 
rates over short age intervals to interpolate the data 
from the NLTCS to shorter transition periods. 
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TABLE 1 
N L T C S  OBSERVED HE A LTH  STATUS TRANSITION MATRIX 

FEMALES AGED 75-84, 1 9 8 2 - 8 4  

(AVERAGE AGE:  78.7) 
1984 Health Status 

1982 Health Status Count 1 2 5 6 7 8 

Well 2,122 11.0% 1.2% 2.2% 0.7% 5.7% 77.4% 

8.5 IADL Only 804 54.7 3.2 6.5 2.2 15.7 

1 ADL 303 6.8 43.3 5.1 6.2 4.6 20.8 

2 ADLs 72 0.0 22.4 17.4 3.1 3.9 31.7 

3+ ADLs 53 0.0 11.0 2.0 15.0 32.5 24.4 

< 2 ADLs, CI 168 2.7 19.1 11.0 

2+ ADLs, CI 85 0.9 1.5 21.2 

3 4 

1.4% 0.4% 

7.1 2.1 

11.1 2.1 

13.3 8.2 

4.0 11.1 

3.9 4.0 

2.5 0.0 

28.2 

3.3 

12.8 18.3 

32.6 

Model Parameter Estimation 
In the analysis of  mortality under the constant-force- 

of-mortality assumption, we can always extract a 
unique annual force of  mortality that relates a starting 
population to the surviving population, so long as some 
survivors remain. One simply negates the log of  the 
observed survival rate and divides by the length of  the 
observation period in years. Unfortunately, the matrix 
counterpart of  the log in the multistatus LTC analysis 
might not exit as a valid transition rate matrix (non- 
negative off-diagonal elements and zero row sums), 
and, i f  it does exist, it may not be unique. Singer and 
Spilerman (1976) provide an excellent treatment of  the 
problems encountered when we attempt to solve the 
equation P = e ~y-x)R, for R in terms of  P. The following 
comments relate to this inversion problem: 
1. The natural extension of  the log function to matrix 

arguments is to use the Taylor expansion (about the 
identity) as we did to define the exponential function 
of  a matrix. Just as with the scalar log series expan- 
sion, i f  the matrix log argument is too far removed 
from the expansion point, the series will not con- 
verge. And, just as with the scalar log function, this 
does not imply that the matrix log cannot be well- 
defined. Singer and Spilerman (1976, pp. 21-22) 
provide a detailed description of  the construction of  
the matrix log function. 

2. The log of  a matrix is not single-valued. Some, 
none, or all of  the "branches" of  the log function 
might yield valid transition rate matrices. It is 

possible for more than one branch to produce a valid 
transition rate matrix. 

3. Small changes in P can generate large changes in 
the corresponding value(s) of  R. Thus, sampling er- 
ror in estimating P can make estimation of  R very 
unreliable. 

4. As y - x  increases (that is, the length of  the obser- 
vation period) the number of  alternate values of  
valid R matrices leading to the same P matrix in- 
creases. In some cases, the number of  R matrices 
leading to the same P matrix may become infinite 
for observation periods beyond a certain threshold. 

Therefore, estimation of  annual transition rates using 
the formula R=log(P) / (y -x) ,  where P is replaced with 
the observed transition probabilities, is more challeng- 
ing than the simple form of  the expression might sug- 
gest. Even when the true value of  P leads to a valid R 
matrix, when the rows of  P are estimated from a small 
number of  observed individuals, the resulting sampling 
error might prevent extraction of  reasonable estimates 
of  R. Consequently, I do not attempt to estimate sep- 
arately the annual transition rates for each of  the 12 
observed transition matrices. Rather, I employ maxi- 
mum likelihood estimation to fit a parametric model of  
the annual transition rates as a function of  the sex, age, 
starting status, and ending status of  the individual. The 
parametric structure is guided by step-by-step inspec- 
tion of  residuals, that is, the observed minus the fitted 
transition probabilities across all 12 observation matri- 
ces. After some trial and error, the following parametric 
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function captures most of  the key characteristics of the 
data: 

r~j (s, x) = exp [a,j + bij (s - 0.5) 
L .  

c u (x - 80)1 + i ~  f o r i <  8 a n d i  4:j .  

Of  course, rsj is zero for all j since status 8 (death) is 
absorbing. No constraints are placed on the 49 values 
of  a~j. The sex-adjustment parameter bo, values are con- 
strained to three values, one value for i > j (recovery), 
one value for j = 8  (mortality), and one value for other 
combinations of i and j (impairment). The age slope 
parameters, c,,, are constrained to five values, the same 
structure used for sex adjustment with distinct values 
provided when i = 1 (well). The resulting model con- 
tains 57 parameters. 

The likelihood function for the observed data cor- 
responds to 84 independent multinomial processes (12 
matrices each with 7 starting health statuses). The prob- 
ability vectors for each multinomial depend upon the 
model parameters. Numerical optimization techniques 
are employed to extract the maximum likelihood 
parameter estimates. For each set of  candidate param- 
eter values, R matrices are computed for each of the 
12 observation cohorts using the sex and average age 
of  the cohort over the observation period. The corre- 
sponding transition probability matrices are obtained 
by matrix exponentiation. Log-likelihood values are 
computed from the row probabilities and the observed 
distribution of  ending health statuses for each of  the 84 
multinomial processes and are summed. Numerical es- 
timates of  the derivatives of the log-likelihood function 
with respect to variations in each of  the 57 parameters 
are used to obtain the next set of  candidate parameter 
values. The process is repeated to convergence. 

Initial parameter estimates are obtained by combin- 
ing the 12 observation matrices into a single matrix, 
ignoring the sex and age differences. The b and c 
parameters are set to zero. Initial values of the a param- 
eters are set arbitrarily to 0.1. Maximum likelihood es- 
timates of  the a parameters for this constrained model 
are obtained using the procedure of  the previous par- 
agraph applied to the seven collapsed multinomial co- 
horts. The resulting a values, along with zero b and c 
values, are used as the initial parameter estimates for 
the full-model estimation routine. 

Table 2 shows the final parameter estimates. The 
likelihood ratio test for goodness of  fit (comparing this 

model with an unconstrained multinomial with 
12x49---588 parameters) indicates that the model dis- 
cards some statistically significant behavior exhibited 
by the data. Inspection of  the model residuals does not 
suggest any obvious adjustments to the model struc- 
ture, however, and I have elected to limit the model to 
the 57 parameters shown in Table 2. From a practical 
point of  view, the model produces fitted transition 
probabilities reasonably close to the observed values. 
Table 3 shows the fitted values corresponding to the 
observed transition probabilities in Table 1. The last 
section of Table 3 also shows the annual forces of tran- 
sition derived for this cohort from the parameter 
estimates. 

Applications of the Model 
In general terms, multistatus migration models have 

several possible actuarial applications. Such models 
might be used to explain life insurance policy lapsation, 
reinstatement, and mortality. Similarly, flexible pre- 
mium annuity or universal life premium payment stat- 
uses ranging from "actively paying" to "paying 
minimum" to "paid-up" could be modeled. The evo- 
lution of insurance claim statuses from incurred-but- 
not-reported through closure and reopening offers 
another application. Of  course, the most obvious ap- 
plications are associated with private and public insur- 
ance programs in which benefit levels are tied to 
insured health status, such as disability income and 
LTC insurance policies. 

A general multistatus insurance policy might pay a 
prescribed benefit while the insured is in a certain 
status, that is, a status-based annuity benefit or a benefit 
on entry to a new status, for example, death benefits 
and cash surrender values. If the benefit structure is 
simple, we can express actuarial present values for 
these benefits using the matrix notation of this paper. 

Let uj(z) be the annual payment rate for an annuity 
payable if the insured is in status j at age z. Let u(z) 
denote the vector of  status-based payment rates at 
age z. 

Let ~(z) be the benefit paid if the insured jumps to 
status j at age z. Let w(z) denote the vector of benefit 
amounts at age z for each destination status. 

Let v(z) be the multiplicative scalar factor used to 
discount a payment at age z back to issue age x. 

If  the insured's status migration is described by a 
CTMC, we can compute the present value at issue of  
benefits from age x to age y as 
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T A B L E  2 

LTC TRANSITION R A T E  P A R A M E T E R  E S T I M A T E S  

Ending Status, j 

Starting Status, i I 2 3 ] 4 5 

a i j  

-2.98 
-3.87 
-9.23 
-9.32 
-5.37 
- 7.07 

-2.53 

-0.40 
-3.28 
-5.05 
-2.24 
-9.23 

-5.49 
-1.88 

- 1 . 0 0  

-4.23 
- 1.95 
-4.67 

-9.17 
-3.75 
-2.11 

-2.40 
-3.11 
- 9 . 2 1  

-5.18 
-4.99 
- 1.92 
-1.12 

-3.51 
-1.11 

-4.45 
-2.72 
-2.33 
-3.42 
-9.22 

-3.02 

-9.12 
-3.99 
-9.21 
- 1.97 
- 1.92 
-1.34 

-3.56 
-2.21 
- 1.66 
-2.03 
-1.19 
-2.78 
-1.10 

b,j (sex adjustment factors) 

-0.041 
-0.041 
-0.041 
-0.041 
-0.041 
-0.041 

-0.062 

-0.041 
-0.041 
-0.041 
-0.041 
-0.041 

-0.062 
-0.062 

-0.041 
-0.041 
-0.041 
-0.041 

-0.062 
-0.062 
-0.062 

-0.041 
-0.041 
-0.041 

-0.062 
-0.062 
-0.062 
-0.062 

-0.041 
-0.041 

-0.062 
-0.062 
-0.062 
-0.062 
-0.062 

-0.041 

-0.062 
-0.062 
-0.062 
-0.062 
-0.062 
-0.062 

-0.570 
-0.570 
-0.570 
-0.570 
-0.570 
-0.570 
-0.570 

c,j (age slopes) 

-4.73 
-4.73 
-4.73 
-4.73 
-4.73 
-4.73 

9.5l 

-4.73 
-4.73 
-4.73 
-4.73 
-4.73 

9.51 
3.11 

-4.73 
-4.73 
-4.73 
-4.73 

9.51 
3.11 
3.11 

-4.73 
-4.73 
-4.73 

9.51 
3.11 
3.11 
3.11 

-4.73 
-4.73 

9.51 
3.tl 
3.11 
3.11 
3.11 

-4.73 

9.5 
3.1 
3.1 
3.1 
3.1 
3.1 

5.23 
3.35 
3.35 
3.35 
3.35 
3.35 
3.35 

Note: T,j(s, x) = exp[a,, + b,j(s - 0.5) + c,j (x - 80)/100] 

f Y 
P V  = v(z) (P(s,  x, z)  u(z)  

+ P(s, x, z) R*(s, z) w(z)) dz. 

The matrix R*(s, z) is equal to the matrix R(s, z) with 
the diagonal elements replaced by zeros. Note that PV 
is a vector with rows corresponding to the starting 
status o f  the insured at age x. If  we set v(z)= 1, w(z)=0,  
and u (z )=  1 for status j and zero otherwise, then PV is 
the expected holding time in status j between ages x 
and y. I f  we set v(z)= 1, u (z )=0 ,  and w(z) = 1 for status 
j and zero otherwise, then PV becomes the expected 
number  o f  visits to status j between ages x and y. 

I f  the C T M C  and the vectors u(z) and w(z) are time 
homogeneous  on the age interval [x, y]  and the force 
o f  interest is constant and greater than zero, then there 
is a closed form expression for PV. Let the annual force 
o f  interest be denoted as 8. The conditions on R(s, z) 
as a valid transition matrix (nonnegative off-diagonal 
elements and rows that sum to zero) ensure that the 

eigenvalues o f  R(s, z) are all negative or zero. It can 
be demonstrated that 

t ' v  = JR(s, x) - ~I] , [v~y)P(s, x, y )  - 1] 
× [u(x) + R*(s, x)w(x)] .  

The inverse on the right-hand side is well defined be- 
cause 6 > 0 and the eigenvalues o f  R(s, x) are not 
positive. 

Although these expressions are interesting, they are 
not particularly useful in practice because of the strong 
constraints on u(z)  and w(z).  Most insurance policies 
contain benefit limitations that truncate benefits after 
an episodic or lifetime limit is reached. Other policy 
features such as elimination periods (episodic and life- 
time) further complicate the benefit structure. So even 
when the status transition process can be adequately 
represented by CTMC,  the complexi ty  o f  the benefit 
structure will prevent us from obtaining a simple ex- 
pression for the actuarial present value o f  benefits. 
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T A B L E  3 

N L T C S  O B S E R V E D  AND F I T T E D  H E A L T H  STATUS T R A N S I T I O N  M A T R I C E S  

FEMALES 75--84, 1982--84 
(AVERAGE AGE: 78.7) 

1984 Health Status 

1982 Health Status Count 1 1 2 1 3 1 4 1 5  6 ] 7  8 

Observed Values 

Well 2,122 7 7 . 4 %  5.7% 
t 

804 8.5 15.7 [ADL Only 

20.8 

11.0% 1.4% 0.4% 1.2% 

, 54.7 .... ~. 7.1 2.1 3.2 

43.3 i l ! . l ,  2.1 5.1 

22.4 13.3 ..... 8 , 2 ,  17.4 

11.0 4.0 11.1 : :  24.4 

19.1 3.9 4.0 11.0 

2.2% 0.7% 

6.5 2.2 

6.2 4.6 

3.1 3.9 

2.0 15.0 

28.2 12.8 

2.5 0.0 21.2 3.3 

1 ADL 303 6.8 

2 ADLs 72 0.0 31.7 

3+ ADLs 53 0.0 32.5 

< 2 ADLs, CI 168 2.7 18.3 

32.6 2+ ADLs, CI 85 0.9 1.5 

Fitted Values 

Well . 79.8% 10.0% 1.3% 0.3% 1.0% 1.7% 0.6% 5.3% 

6.7 8.3 2.4 3.6 6.1 3.2 16.2 [ADL Only 

1 ADL 

2 ADLs 

3+ ADLs 

4.0 

1.1 

0.2 

53,5  
34.8 

13.0 

2.2 

14.7 ~ 4.5 9.5 6.9 4.1 21.5 

10.6 17.0 21.3 3.9 9.4 23.8 

2.2 4.9 0.9 

< 2 ADLs, CI 1.5 13.9 7.2 3.3 9.8 31.!  

2+ ADLs, CI 0.2 1.3 1.3 1.8 23.2 3.1 

Annual Transition Rates 

10.5 

16.1 

35.4 

17.1 

37.3 

Well 7.5% 0.4% 0.0% 0.5% 1.1% 0.0% 2.1% 

IADL Only 5.0 14.6 2.3 0.7 6.3 1.8 8.2 

1 ADL 2.1 66.5 11.6 14.0 11.4 0.0 14.2 

2 ADLs 0.0 3.8 36.4 31.4 3.1 13.4 9.8 

3+ ADLs 0.0 0.6 1.4 9.1 0.0 14.0 22.8 

< 2 ADLs, CI 4.6 10.6 14.2 4.4 3.0 25.0 4.6 

0.1 0.0 0.9 0.0 32.8 4.9 24.9 2+ ADLs, CI 

The LTC status transition model  discussed in this 
paper was used to simulate monthly  insured health 
status histories. A second-stage model  was then applied 
that simulated LTC service utilization and pol icy ben- 
efit payments  for each health status simulant. The ap- 
proach allows for a very flexible benefit structure. 
Claim episodes are summarized to provide simulated 
claim costs, incidence rates, and claim termination 
rates. These values are graduated to provide input to 
pricing and valuation formulas. 

Summary 
Status transition models provide a means o f  extend- 

ing traditional actuarial models  to a much  richer and 
more  complicated class o f  processes, such as the evo- 
lution o f  an individual 's  health profile. The properties 
o f  such processes as the t ime-homogeneous  continu- 
ous-t ime Markov  chain examined in this paper have 
been studied extensively in the literature, but this 
wealth o f  information has been applied only sparingly 
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to date by the actuarial profession. This paper dem- 
onstrates one application of these models that the au- 
thor has found very helpful in analyzing private and 
public LTC benefit programs. Much remains to be stud- 
ied and explored in this and other applications. 

REFERENCES 

Chung, Kai Lai. 1967. Markov Chains with Stationary 
Transition Probabilities. New York: Springer- 
Verlag. 

Heyman, Daniel P., and Sobel, M. J. 1982. Stochastic 
Models in Operations Research. Vol. 1. New 
York: McGraw-Hill. 

Rudberg, Mark A., Parzen, M. I., Leonard, L. A., and 
Cassel, C. K. 1996. "Functional Limitation Path- 
ways and Transitions in Community-Dwelling 
Older Persons," The Gerontologist 36, no. 4:430- 
440. 

Singer, Burton, and Spilerman, S. 1976. "The Repre- 
sentation of Social Processes by Markov Models," 
American Journal of  Sociology 82, no. 1:1-54. 

VIII. A Long-Term-Care Status Transition Model 79 


