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Quasi-Monte Carlo Methods in 
Numerical Finance 

Corwin Joy, Phelim P. Boyle, and Ken Seng Tan 

Abstract 1. Introduction 
This paper introduces and illustrates a new version 

of the Monte Carlo method that has attractive properties 
for the numerical valuation of derivatives. The tradi- 
tional Monte Carlo method has proven to be a powerful 
and flexible tool for many types of derivatives calcula- 
tions. Under the conventional approach pseudo-random 
numbers are used to evaluate the expression of interest. 
Unfortunately, the use of pseudo-random numbers 
yields an error bound that is probabilistic which can be 
a disadvantage. Another drawback of the standard 
approach is that many simulations may be required to 
obtain a high level of accuracy. There are several ways 
to improve the convergence of the standard method. 
This paper suggests a new approach which promises to 
be very useful for applications in finance. Quasi-Monte 
Carlo methods use sequences that are deterministic 
instead of random. These sequences improve conver- 
gence and give rise to deterministic error bounds. The 
method is explained and illustrated with several exam- 
ples. These examples include complex derivatives such 
as basket options, Asian options, and energy swaps. 
(Monte Carlo Simulation; Quasi-random Sequences; 
Faure Sequences; Numerical Finance; Derivative Valu- 
ation) 
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Numerical methods have come to play an increas- 
ingly important role in modem quantitative finance. 
This is due to the fact that most finance models have 
analytical solutions in only a few special cases. In many 
cases the price of a given financial instrument can be 
assumed to evolve according to a second order partial 
differential equation. Different techniques are used to 
solve this equation and compute the sensitivities of the 
price to different .variables. One approach is to dis- 
cretize the differential equation and solve the resulting 
set of difference equations. Another popular technique 
is to use a lattice or tree approximation. Monte Carlo 
methods are often used when these methods are difficult 
to implement due to the complexity of the problem. 

In recent years there has been renewed interest in 
Monte Carlo methods. This is due to the flexibility of 
the method in handling increasingly complex ~ finan- 
cial instruments and the advent of the powerful work- 
stations has significantly reduced the execution time 
required for the simulation. For example, Monte Carlo 
algorithms are normally more efficient than competing 
procedures if there are several state variables or other 
complexities. In addition the relevant algorithms are 
often fairly straightforward to design. Boyle (1977) 
provides an early discussion of the use of Monte Carlo 
methods in pricing options. The disadvantages 2 of 
Monte Carlo methods are that the error term is proba- 
bilistic and that it can be computationally burdensome 
to achieve a high level of accuracy. To reduce the 
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computational burden of standard (or crude) Monte 
Carlo methods a variety of variance reduction methods 
have been proposed. There are many such techniques 
and they include control variates, antithetic variates, 
stratified sampling and importance sampling. 

The purpose of this paper is to introduce another 
technique for improving the efficiency of the Monte 
Carlo method. This method known as the quasi-Monte 
Carlo method and was pioneered in computational 
physics where large scale Monte Carlo calculations are 
common. The basic idea is to use numbers that are 
deterministic rather than random. These deterministic 
sequences can be used in place of the usual random (or 
pseudo-random) numbers to obtain faster convergence 
with known error bounds. The use of quasi-Monte 
Carlo methods leads to more efficient numerical proce- 
dures with the added benefit of deterministic error 
bounds. The monograph by Niederreiter (1992) gives a 
good survey of quasi-Monte Carlo methods. 

In this paper we introduce quasi-Monte Carlo meth- 
ods and discuss different applications in numerical 
finance. In §2 we introduce the problem and motivate 
the method by analyzing a simple European call. The 
price of this call can be expressed in terms of an integral 
and we discuss the connection between numerical inte- 
gration and standard Monte Carlo approaches. In §3 we 
discuss the procedure for valuing complex derivative 
securities such as Asian options using the Monte Carlo 
approach and we examine ways to improve the conver- 
gence. In §4 we introduce a particular type of quasi ran- 
dom sequences known as Faure sequences. These 
sequences have attractive properties for many applica- 
tions in finance. We show that they provide swifter con- 
vergence and better error bounds than standard Monte 
Carlo methods in several practical settings. In later sec- 
tions we use Faure sequences to value a range of com- 
plex derivative securities. We demonstrate that quasi- 
Monte Carlo methods are more efficient for obtaining 
prices and price sensitivities than standard Monte Carlo 
methods. 

2. Use of Deterministic Sequences 
to Value Standard Options 

We begin by illustrating the use of deterministic 
sequences to value a standard European option. The 
option price is written as a discounted expectation over 

the terminal price distribution. We discuss the numeri- 
cal valuation of this integral and its relationship to the 
standard Monte Carlo procedure. Then we show how a 
judicious choice of the "random" numbers can improve 
the accuracy of the procedure. The main idea is that 
since the use of random numbers introduces error we 
can do better by preselecting the numbers in a deter- 
ministic fashion. 

The current price of a European derivative security 
can be written as its discounted expectation under the 
equivalent martingale (or Q measure) 

Price = e-rrEQ[g(A(T))] (1) 

where T is the time until maturity, A(T) is the asset price 
at time T, g(.) is the payoff function, and r is the riskless 
rate. 

Assume that the asset price dynamics follow geo- 
metric Brownian motion with constant drift, bt and vola- 
tility, tr. The current price of the derivative security is 
obtained by integrating the terminal payoff under the 
risk neutral measure. Hence we have 

Price -- 

e_rr¢* [A(O)e((r-~/2))r+~,~)] 1 e_~2/2de 
J--g -~n 

1 -(e2/2)A~ = [ .  h(e)--~e ,,~ 

1 - I  
= ~'oh(~ (x))dx 

= ~tof(x)dx. (2) 

In the first line of the above equations the argument 
of g (the term in square brackets) denotes the terminal 
distribution of the underlying asset. Under our assump- 
tions this asset has a lognormal distribution which we 
can write in terms of the exponential of an appropriate 
normal distribution. Thus the variable e has a normal 
distribution and so the final term is the standard normal 
density function. In the second line we have used the 
function h to make the expression more compact. The 
critical step is in the third line where we map the nor- 
real variate e into the interval [0, 1 ] through the inverse 
transformation. 
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We transform the integral of h from minus infinity to 
plus infinity to the integral off(x) over the uniform dis- 
tribution with range [0, 1]. This simplification permits 
us to obtain efficient approximations to the integral by 
carefully selecting sample points in [0, 1]. This tech- 
nique leads to more efficient approximations of the 
original integral. 

We illustrate the standard Monte Carlo method using 
the same example. First we generate n unit normal vari- 
ates; el, e2 . . . . .  eu. The crude Monte Carlo estimate of 
the option price is: 

~ h ( e , )  where e a~N(0, 1). (3) 
i = 1  

This estimate has an error of O(N-lt2). However, if we 
were to use a more uniformly spaced grid by choosing 
the N evenly spaced quantiles of N(0, 1), we would 
obtain the N panel method (or midpoint rule) for evalu- 
ating 

IIof(x)dx. (4) 

This has an error of O(N-l). For example, if N = 4 and 
we wish to use the four panel method we split the inter- 
val [0, 1] into four equal subintervals 

[0, xA], [1,4, 2A], [2A, a,4], [3,4, 1] 

and then use the middpoint of each subinterval to evalu- 
ate the integral. This would be equivalent to using the 
following values of e in the Monte Carlo routine 

= 1~-'[1/8], ~-~[V4 + V8], ~-'[2/4 + Vs], ~-'[a/4, + Vs]) 

= [-1.15035, -0.31864, 0.31864, 1.15035]. 

One difficulty with the panel method is that we may 
not know in advance how many simulations will be 
needed to obtain the desired level of accuracy. In fact, 
in actual applications we may want to continue a sim- 
ulation until we reach a given level of precision. In 
this situation we need a sequence of numbers that is 
evenly spaced and that somehow "knows how" to fill 
in the gaps that have been left by previous elements in 
the sequence. Sequences with this property are known 
as low discrepancy 3 sequences. We can think of the 
discrepancy as a quantitative measure of the deviation 
of the set of numbers from a uniform distribution. As a 
crude example of such a sequence, suppose we bisect 
the initial interval [0, 1], and then go on to bisect 
recursively the resulting subintervals. We would then 
obtain the following sequence of nested N panel methods 

for any N = 2 k - 1, k __ 1, by taking the midpoints of 
these intervals: 

g:={~-,~/~],~-l~], ,~-l[~'4], ~-l[Vs] ' ~-i[a/s], ~-lp~],  ~-,[7/~]} 

N = I  

N ~ 3  

N = 7  
i 

(5) 

3. Valuation of Complex Derivatives 
Our discussion of European options on a single asset 

shows that by a judicious choice of the "random" points 
we can improve the accuracy of the estimate. We saw 
that the trick is not to have any randomness at all but to 
select deterministic sequences. In the case of path 
dependent options or options involving several assets 
where there are no analytical solutions, we are more 
likely to require Monte Carlo approaches. For these 
cases we require s dimensional sedluences of "random" 
numbers. We discuss this below and later show how to 
generate such sequences. 

Consider an Asian option where the payoff is based 
on the arithmetic average of the asset prices taken at 
certain dates known as reset points. We restrict attention 
to European contracts. Standard or (crude) Monte Carlo 
methods can be used to value such contracts. The con- 
tinuous distribution is sampled at discrete time steps. 
Duffle (1992, p. 200) points out that if we replace the 
continuous time process with a discrete time process 
using s evenly spaced time steps then the error for the 
usual Euler discretization is O(s-l). This error should be 
added to whatever error is incurred in evaluating the 
discrete time version of the integral. So, unless the 
security has a set of natural discrete times on which its 
value depends, the number of time steps should be cho- 
sen with care. Ideally one ought to choose a time step 
that has an error which matches the error introduced by 
estimating the discrete integral. 

Suppose that the time step has already been chosen 
to obtain the discrete time version of the continuous 
time model. Assume that the path dependent security's 
terminal value at time T depends only on the prices A~, 
A 2 . . . . .  A s at s intermediate times 

O<_tz, t ~ ..... t,<_T. 
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We assume the price increments are independent, take 
the expected discounted payoff under the risk neutral 
measure, and transform the integral as before to obtain 

Price = S r f ( x ) d x  (6) 

where I s = [0, 1) ~. 
We might be tempted to use the multidimensional 

version of the trapezoidal 4 rule to evaluate this integral. 
Unfortunately the trapezoidal rule does not work well 
for a large number of time steps because the error 
bound is O(N-2~s). Niederreiter (1992) gives a clear dis- 
cussion of the issue of error bounds. If we use standard 
Monte Carlo methods using pseudo-random numbers 
the error bound is O(N-I/2). QuasirMonte Carlo methods 
which use deterministic sequences provide determinis- 
tic error bounds O(N-l(log NT) for suitably chosen 
points. Such sequences are known as quasi-random 
sequences. There are several types of quasi-random 
sequences such as Halton sequences, Sobol' sequences 
and Faure sequences. Fox (1986, p. 374) explains the 
advantages of Faure sequences. In the next section we 
show how Faure sequences are generated. 

4. Quasi-random Numbers: Faure 
Sequences 

The basic idea of quasi-Monte Carlo is to use a set of 
points that are carefully selected in a deterministic fash- 
ion. We call these numbers quasi-random even though 
they are perfectly deterministic and have no random 
component. In this section we describe how to generate 
quasi-random sequences and describe a particular class 
of quasi-random sequences known as Faure sequences. 
Faure sequences have certain advantages for the valua- 
tion of high dimensional integrals. This leads to effi- 
cient algorithms for the computation of prices and price 
sensitivities for complex derivative securities. 

We first consider the case of a one-dimensional 
sequence of quasi-random numbers. Let r be any prime 
number (_>2). Any integer n has a unique expansion in 
terms of base r. We can generate a number in the inter- 
val [0, 1) by reflecting the expansion in base r about the 

"decimal point." An example will clarify the procedure. 
Suppose r = 3 and n = 7. We can write 7 in base 3 as 

7 = 2(3') + 1(3 °) = 21. 

When we reflect 21 (in base 3) about the "decimal 
point" we obtain 

03(7 ) = 1/~ + % = % .  

This is clearly a number in the interval [0, 1). The next 
number in the sequence is 03(8) = s~ and the first 9 
numbers in this sequence are 

9//2"/, 18//2"/, $//2"/, 12)/27, 21/2"/, 6//27, 15//2"/, 24//27, 1/2"/. 

Notice how the new numbers that are added tend to fill 
in the gaps in the existing sequence. The general 
expression for n in terms of the base r is 

ra 
n = ~ ,  aj(n)r i . (7) 

j=0  

Only a finite number of these aj(n) will be non-zero. 
The corresponding quasi-random number according to 
this procedure is 

¢pr(n) = ~ aj(n)r -j-j • (8) 
j=0  

Note that if we have a sequence of integers running 
from r k to r TM - 1 then the maximum distance between 
any two points in the corresponding quasi-random 
sequence must be given by r -*. This happens because 
the most significant digit in the representation of n in 
base r becomes the least significant digit when we 
reflect about the decimal point. This means that as 
points are added they "know" how to fill the gaps 
evenly. One-dimensional quasi-random sequences of 
this type are known as van der Corput sequences and 
are described by Niederreiter (1992) and Faure (1982). 

There are different ways to generalize the one- 
dimensional quasi-random numbers described above to 
s-dimensional quasi-random sequences. For our pur- 
poses Faure sequences have considerable advantages. 
The original discussion of these sequences by Faure 
(1982) is somewhat terse. Fox (1986) and Niederreiter 
(1992) give more detailed discussions. 
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TABLE 1 

THREE DIMENSIONAL FAURE SEQUENCES 

n ao(n) a,(n) a2(n) I O~ 

1 1 0 0 1/3 
2 2 0 0 2/3 
3 0 1 0 1/9 
4 1 1 0 4/9 
5 2 1 0 7/9 
6 0 2 0 2/9 
7 1 2 0 5/9 
8 2 2 0 8/9 
9 0 0 1 1/27 
10 1 0 1 10/27 
11 2 0 1 19/27 

1/3 
2/3 
4/9 
7/9 
1/9 
8/9 
2/9 
5/9 

16/27 
25/27 

7/27 

1/3 
2/3 
7/9 
1/9 
4/9 
5/9 
8/9 
2/9 

13/27 
22/27 

4/27 

We now describe how to generate an s-dimensional 
Faure sequence. Let r be the smallest prime number that 
is ~.s and 22. We start as before by representing any 
integer n in terms of base r as 

m 
n = ~_~ aJ(n)r  j .  (9) 

j = 0  

The first Faure number is given by reflecting about the 
"decimal point" as before. 

m 
Olr(n)-- ~ a J ( n ) r  -s-1 (10) 

)=0 

The remaining elements of  the sequence are found 
recursively. First assume we know all the a]- t (n) .  The 
a~(n) are generated as follows: 

m 
a~(n) , k-I = ]~C~az (n )modr ,  (11) 

where 5 ~C 1. = itlfi(i - j ) ! .  Thus the next level of  coeffi- 
cients is obtained by multiplying by an upper triangular 
matrix with elements 

°c0 'Co 'c0 3Co .... 
0 IC  I 2C I 3C I 

0 0 , 2C 2 3C 2 

0 0 O 3C 3 

The successive points in the Faure 
obtained via 

¢*,(n) ~ * -;-' = a j (n ) r  , 2 < k < s ,  
j=0  

sequence are 

(12) 

that is, we reflect a*(n) about the decimal point to obtain 
¢~(n). 

This recursive procedure permits us to generate the s 
points corresponding to the integer n in the Faure 
sequence based on r (~.s). 

As an example, suppose that s = 3. In this case we 
take r = 3. The first few elements of  the three-dimen- 
sional Faure sequence in this case are given in Table 1. 
To get a visual feel for how Faure sequences fill up the 
unit square, we have prepared Figures 1 and 2. In this 
case we selected r = 2 = s. We denote the nth element of  
the series by 

¢, = (¢', ..... ¢~). 

FlOIn I Pobt~t 1 tO 128 

+ + +  ,<~ , ,, % e , 
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O O ~ 0 ~  
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O O O 0 O 0 O  
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O 0  lO0 0 ~ O 0 6 
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To apply these results to a Monte Carlo simulation 
based on normal random variables, we map the point in 
the s-dimensional cube by applying the inverse normal 
function to the sequence 6 

e. = O-](0.) = {~-'(Ov.) . . . . .  ~-'(¢~.)}. (13) 

These Faure values may be substituted for the normal 
vectors that would be returned by a pseudo-random 
number generator. This makes the implementation sim- 
ple since very little effort is needed to upgrade from 
pseudo-random numbers to quasi-Monte Carlo num- 
bers. Code to implement the above algorithm is avail- 
able in Fox (1986). We can also use this procedure to 
generate correlated random variables using appropriate 
combinations of uncorrelated random variables. This is 
useful when we are dealing with an instrument whose 
payoff depends on the values of several assets. 

5. Applications: Use of 
Quasi-Monte Carlo for Standard 
European Options 

In this section we illustrate the implementation of 
quasi-Monte Carlo methods in the case of plain vanilla 
European options. The exact values for the prices and 
sensitivities are available in these cases and we use 
these as benchmarks when examining convergence. We 
use graphs to compare the convergence properties of 
crude Monte Carlo with quasi-Monte Carlo. The graphs 
illustrate vividly the improvement in convergence when 
quasi-Monte Carlo methods are used. 

Our base ease contracts are standard European calls 
and puts with the following parameters: 

Current price, S 100 

Strike price, K 100 

Riskless rate, r 10% 

Time to maturity, T 1 year 

Volatility, cr 30% 

The Black Scholes option values for the standard call 
and put are 

Call Value 16.734 Put Value 7.218 

In Figure 3 we illustrate the convergence of the call 
option values under both the standard Monte Carlo 
approach and the quasi-Monte Carlo approach. The 
quasi-Monte Carlo numbers have been computed using 
Faure sequences (with r = 2). The numbers plotted rep- 
resent the relative error in percentage between the esti- 
mated value and the true Black Scholes value. Observe 
that the quasi-Monte Carlo estimates display better con- 
vergence and that the deviations from the true prices are 
much less erratic. In these applications we generally 
start the simulations at n = r 4 as recommended by Fox 
(1986). 

Figure 3 
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Figure 4 shows the same information for a standard 
put option. The quasi-Monte Carlo approach is clearly 
superior here as well. In many applications one is inter- 
ested in the computation of the Greeks as well as the 
computation of the price. Broadie and Glasserman 
(1993) have recently discussed the different approaches 
to the computation of price sensitivities in the context 
of standard Monte Carlo methods. These different 
approaches can also be used with quasi-Monte Carlo 
methods but in each case the quasi-Monte Carlo 
approach displays better convergence than the standard 
Monte Carlo approach. This is illustrated in Figures 5 
and 6. Figure 5 shows the convergence of delta for the 
European call option and Figure 6 provides the same 
information for the gamma of the call option. These 
graphs demonstrate that the quasi-Monte Carlo 
approach outperforms the standard method. 
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. Applications of  Quasi-Monte 
Carlo to Value Complex 

Securities 

In practice the most likely applications of the Monte 
Carlo approach concern situations where there is no 
known analytic solution or when the analytical solution 
involves prohibitive computation to produce the answer. 
Many contracts of current interest fall into this category. 
In this section we analyze several types of complex 

derivatives. These include basket options, Asian 
options, and options that require an HJM simulation 
framework. We start with a complex option for which 
there is a simple closed-form solution. 

6.1. Options on the Geometric Means of  a 
Portfolio 

Our first example involves a European option on the 
geometric mean of several assets. Under the Black 
Scholes assumptions there is a simple expression for 
the value of this contract. The detailed formula is given 
in Boyle (1993). The parameters used for this example 
a r e  

Number of assets 3 

Initial asset prices, S,(0) 100, i = 1, 2, 3 

Volatilities, ~ 0.3, i = 1, 2, 3 

Correlations, Pij 0.5, i = 1, 2, j > i 

Strike price, K 100 

Riskless rate, r 10% 

Time to maturity, T 1 year 

With these parameters the value of a European call 
on the geometric mean of the three assets is 13.771. We 
can also estimate the value of this option using Monte 
Carlo simulation methods. Figure 7 illustrates the con- 
vergence properties of standard Monte Carlo and quasi- 
Monte Carlo in this case. The quasi-Monte Carlo num- 
bers were produced using a three-dimensional Faure 
sequence. The graph shows the superiority of the quasi- 
Monte Carlo approach in terms of convergence and 
error bounds. We now turn to an analysis of other types 
of complex derivatives. 

Figure 7 European Call Option on Geometric Mean of 3 Stock Prices 
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6.2. Basket Options 
Table 2 shows the results of applying Faure 

sequences to basket options, which are options on a 
basket of different assets in pre-specified quantities (see 
Gentle (1993) for a description). The spot price of a 
basket is the sum of these assets' prices multiplied by 
their respective quantities. The resulting distribution is 
thus a convolution of the individual assets' distribution. 
Because the resulting convolution is not easy to work 
with, these options have proved analytically inlractable 
and hence numerical methods are used to value them. 
For the purposes of this study, a basket of 60% Light 
Sweet Crude and 40% Natural Gas was chosen. In other 
words, the spot price of the basket was given by 

Basket Spot 
= 60% * Price of NYMEX Light Sweet' Crude/MMBTU 7 

+ 40%* Price of NYMEX Natural Gas/MMBTU. 

TABLE 2 

BASKET CALL OPTION VALUATION 

Initial Price for LSC: 3.09/MMBTU 
Initial Price for NG: 2.20/MMBTU 
Volatility of LSC: 20% NG: 30% 
Correlation of both Commodities: 20% 
Strike Price: 2.80/MMBTU Riskless Rate: 9% 

Iterations Crude Monte Carlo Quasi-Monte Carlo 

100 
200 
5O0 

1,000 
5,0O0 

10,000 
25,000 
50,000 

100,000 
500,000 

0.1386 
0.1562 
0.1621 
0.1455 
0.1545 
0.1493 
0.1553 
0.1569 
0.1552 
0.1544 

0.1445 
0.1489 
0.1524 
0.1526 
0.1543 
0.1545 
0.1547 
0.1548 
0.1548 
0.1548 

TABLE 3 

PRICING OF 52-WEEK ASIAN OPTIONS 

52-Week Arithmetic Average Option with 53 Reset Points 
Spot Price: 100 Riskless Rate: 9% Volatility: 50% 

Strike Price = 110 Strike Price = 100 Strike Price = 90 
Iterations 

Crude Crude Crude 

100 
200 
400 
8oo 

1,600 
3,200 
4,800 
9,600 

19,200 
38,400 
76,800 

153,600 
307,200 
614,400 

1,228,800 
2,457,600 
TumbulP 

9.207 
11.778 
10.156 
8.761 
9.706 
9.280 
9.191 
9.009 
9.195 
9.152 
8.987 
8.999 
9.026 
9.002 
9.030 
9.040 
9.10(0.03) 

Quasi 

13.131 
10.224 
9.180 

10.965 
8.953 
8.820 
8.747 
8.894 
9.101 
9.057 
9.052 
9.062 
9.063 
9.065 
9.063 
9.062 

a These results are given by Tumbull (1992), with the 

10.206 
15.405 
11.818 
12.593 
13.206 
12.934 
12.965 
12.684 
12.754 
13.033 
13.039 
12.948 
12.914 
12.922 
12.885 
12.906 
12.98 (0.03) 

Quasi 

17.043 
14.219 
13.327 
14.991 
12.928 
12.801 
12.673 
12.804 
12.993 
12.949 
12.948 
12.962 
12.963 
12.965 
12.963 
12.962 

"standard error" bounds reported 

19.493 
18.902 
16.854 
17.140 
17.873 
18.135 
18.326 
18.121 
18.018 
18.147 
18.214 
18.110 
18.106 
18.085 
18.064 
18.100 
18.14(0.03) 

in brackets. 

Quasi 

21.942 
19.298 
18.642 
20.118 
18.171 
18.074 
17.919 
17.990 
18.164 
18.116 
18.114 
18.128 
18.128 
18.131 
18.128 
18.128 
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TABLE 4 

PRICING OF 5-WEEK ASIAN OPTIONS 

5-Week Asian Option with 6 Reset Points 
Spot Price: 100 Riskless Rate: 9% 
Strike Price: 100 Volatility: 50% 

Iterations Crude Monte Carlo Quasi-Monte Carlo 

100 
200 
400 
800 

1,600 
3,200 
4,800 
9,600 

19,200 
38,400 
76,800 

153,600 
307,200 
614,400 

2.869 
3.899 
3.706 
3.435 
3.512 
3.559 
3.484 
3.584 
3.625 
3.645 
3.590 
3.592 
3.618 
3.617 

3.876 
3.878 
3.590 
3.612 
3.618 
3.605 
3.607 
3.605 
3.612 
3.611 
3.611 
3.612 
3.612 
3.612 

It was further assumed that the correlation between 
these two commodities was 20%. A call option on this 
basket was then priced by using both Monte Carlo sim- 
ulation and Faure sequences. As expected, Faure 
sequences proved markedly superior in both speed and 
accuracy for pricing this option. This also provides a 
demonstration of the applicability of Faure sequences 
to correlated random variables. 

6.3. Asian Options 
The next type of option to be examined was a set of 

Asian options drawn from a comparative study by Stu- 
art Turnbull in Risk magazine (Tumbull (1992)). The 
averaging period was quite long for these options (52 
weekly prices) and as a result the dimension of the 
problem was much higher than in the previous example 
(53 time steps versus 2 random variables for the basket 
option). This caused slower convergence for both meth- 
ods but Faure sequences were still an improvement as 
shown in Table 3. To show that this slow convergence is 
due to high dimensionality, an example is given in 
Table 4 of a similar Asian option with an averaging 
period of 5 weeks. For the 5-week option, convergence 
of the Faure sequence is very fast. 

6.4. HJM Factor Models 
The final type of option to be priced was the option 

to enter into a natural gas swap. Because swap prices 
are highly sensitive to the shape of the forward price 
curve, it is extremely important to use a model which 
can correctly capture price curve reshaping. One way to 
do this is through the use of a three factor HJM model 
along the lines of Cortazar and Schwartz (1992). The 
factor loadings are estimated through historical data 
and then scaled to match historical volatilities (if this 
were being used for an actual trade, the factors would 
be scaled to match implied volatilities). In Table 5 we 
price a six month option to enter into a one year swap 
with a constant daily volume of 10,000 MMBTUs per 
day. Once again, Faure sequences are more accurate 
than plain Monte Carlo even though the dimensionality 
of the problem is fairly high ((5 months + 1 partial 
month) × 3 factors = 18). As a benchmark the last row 
compares the results to the price obtained by using 
Black's model for options on commodities. The volatil- 
ity of 14% that is used here represents historical swap 
volatility for the last year and is well within the range of 
recent implied volatilities. 

6.5. Portfolio Risk and Scientific Stress 
Tests 

One final application that Faure sequences are partic- 
ularly well suited for is the simulation of risks in large 
portfolios. The first reason for this is that, since each 
simulation pass can take quite a long time, using Faure 
sequences to simulate prices is an excellent way to 
decrease the time needed to obtain good accuracy. The 
second reason for using Faure sequences is that they can 
be directly compared to a systematic set of stress tests 
based upon the simulation model. This analogy comes 
from the fact that Faure sequences are generated so as to 
form very evenly spaced points in the probability space. 
The result is that if one uses Faure sequences in con- 
junction with one's simulation module, one can be sure 
that every possibility has been "tried out" and that there 
is not some kind of disaster scenario that has not been 
simulated due to an uneven set of random numbers. In 
other words, what Faure sequences do in this context is 
to systematically try out different combinations of prices 
under the model being used and test each and every one 
of these combinations to determine the effect on the 
portfolio. This ensures that all reasonable combinations 
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will be tried, and eliminates the possibility that a poor 
set of random numbers might fail to uncover a crucial 
weakness or a potential portfolio collapse. This realiza- 
tion ends the dichotomy between ordinary stress tests 
and Monte Carlo simulation and helps one to understand 
how they relate to each other. Naturally, even Faure 
sequences cannot eliminate the risk that the model may 
fail, so ordinary stress tests are still very important. 

TABLE 5 

PRICING OF SWAPTIONS UNDER A 

3 FACTOR H J M  MODEL 

Cost to Enter into an At The Money Natural Gas Swap Option 
Valuation Date: Sept. 20, 1994 
Inception of the Swap: March 1, 1995 
Maturity of the Swap: Feb 28, 1996 
Maturity of the Swaption: Feb 28, 1995 
Volume: 10,000 MMBTUs per day 
Fixed Price of the Swap: Current Mid-Market Price for a 

Swap of the above Duration and 
Volume 

Iterations Crude Monte Carlo Quasi-Monte Carlo 
(in $) (in $) 

100 
200 
400 
800 

1,600 
3,200 
4,800 
9,600 

19,200 
38A00 
76,800 

153,600 

231 593 
236 071 
271 236 
267 513 
271 635 
258 667 
265 364 
267 193 
265 433 
266 137 
263 069 
265 279 

268,027 
288,062 
300,659 
270,850 
268,295 
268,025 
266,580 
267,198 
267,094 
266,910 
267,538 
267,302 

Black-Scholes at 15% Volatility 260,930 

7. Summary and Conclusion 
Quasi-Monte Carlo methods provide a way to 

improve the accuracy and reliability of Monte Carlo 
simulation. The key idea is to use deterministic 
sequences known as quasi-random sequences. This 
results in better convergence and deterministic error 
bounds. In this paper we used the quasi-Monte Carlo 
approach to value a range of complex derivative securi- 
ties that are of practical interest. This was done through 
the use of Faure sequences which have in general good 

convergence properties even when a la(.ge number of 
time steps are needed. 

We illustrated the properties of the quasi-Monte 
Carlo approach in our numerical examples. It is evident 
from our graphs that the quasi-Monte Carlo approach 
leads to improved convergence and lower error bounds. 
The theoretical error bounds for the quasi-Monte Carlo 
approach are given in Appendix B. It turns out that 
these bounds are loose. In practice any option that has a 
reasonably regular payoff function will give far higher 
convergence than these loose bounds indicate. 

Wozniakowski (1991) has derived average case error 
bounds for real continuous functions on the unit cube. 
He shows that the average difference between the exact 
value of a multivariate integral and its Monte Carlo esti- 
mate is closely related to the discrepancy of the sample 
points that are used in the Monte Carlo approximation. 
This means that low discrepancy sequences lead to low 
average case error as well as low worse case error. 
Paskov (1994) gives further discussion of these bounds. 

We can also improve the performance of 
quasi-Monte Carlo methods by using traditional vari- 
ance reduction techniques, a In addition we can apply 
Richardson extrapolation in conjunction with quasi- 
Monte Carlo methods to further enhance the accuracy. 
The above Faure sequences can be generated about as 
quickly as normally distributed random numbers. Fur- 
thermore, the theory shows that these sequences are 
robust in the sense that any subsequence of Faure num- 
bers will give good convergence. Thus these sequences 
can be used much like pseudo-random number genera- 
tors. Our conclusion is that this technique will prove to 
be a very powerful tool for many types of problems in 
computational finance. 9 

Although the present paper has concentrated on 
Faure sequences other low discrepancy sequences may 
have advantages over Faure sequences. In particular 
Boyle, Broadie, and Glasserman (1996) show that 

• Sobol' sequences outperform Faure sequences in many 
instances. Sobol' sequences also have advantages in 
that they tend to be more evenly dispersed I° throughout 
the unit hypercube than Faure sequences. The applica- 
tion of low discrepancy series to problems in finance is 
a topic of current interest. Some of the issues include 
the selection of appropriate termination criteria, how to 
exploit the regularity properties of the integrand and the 
performance of various low dimensional sequences 
with each other and with standard Monte Carlo at very 
high dimensions for a range of situations. 
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A p p e n d i x  A: Comput ing  the Normal  

Inverse Funct ion  

The authors are indebted to B. Moro for his generos- 
ity in providing the following algorithm. 

This Appendix explains one procedure for inverting the 
cumulative normal density function. The inverse, ~-~(x), 
of cumulative normal density function 

alP(x) = 1 [ x e-~,2/2)dt (14) 

can generally be computed using the Newton-Raphson 
iterative method. However, this is too slow to be useful in 
practice. The procedure illustrated below has high accu- 
racy for all values of ~ x  in the interval [ 10 a°, 1 - 10 q°] 
while retaining speed of simple rational approximation. 

If lyl < 0.42, where y = ~ x  - 0.5, ~-~(x) is computed 
using a rational approximation as given by Beasley and 
Springer (1977), 

3 
any n 

• -'(X) = y  "40 (15) 
bnY 2~ 

n=O 

where a n and b n are suitably chosen coefficients. For 
lYl <0.42,  we approximate ~-~(x) by a truncated 
Chebyshev series as 

8 
Cnrn(Z) - c0 i f y > 0  

~_l(x ) = n=o • (16) 
8 

Co ~ cnTn(z) otherwise, 
n = O  

Here z = k I * [2 * log(-log(0.5 - l y l  ) )  - k2] and the 
constants k I and k 2 are chosen such that z = -1 when 
• (x) -- 0.92 and z = 1 when ~(x) = 1 - 10 -12 . The 
upper limit was set rather arbitrarily. One can easily 
derive Chebyshev approximations which will be valid 
for @(x) up to 1 - 10 -~5, but that would come with 
increased computational cost. Once the coefficients c n 
are computed (see Press and Teukolsky (1992), Eq. 
(5.8.7)), Eq. (16) can be efficiently evaluated using 
Clenshaw's formula (see Press and Teukolsky (1992), 
Eq. (5.8.11)). The required constants a n, b n, c n, k I and 
k 2 are reproduced in Table 6. 

The rational approximation using Eq. (15) has the 
largest absolute error of 3.0 x 10 -9 in the interval [0.5, 
0.92). In the tails of distribution, Eq. (16) retains this 
accuracy for up to 6 standard deviations. 

TABLE 6 

CONSTANTS FOR INVERTING NORMAL VARIATES 

n a, b, n c, 

2.50662823884 
-18.61500062529 

41.39119773534 
-25.44106049637 

k 1 

0.4179886424926431 

1.00 
-8.47351093090 
23.08336743743 

-21.06224101826 
3.13082909833 

4.2454686881376569 

7.7108870705487895 
2.7772013533685169 
0.3614964129261002 
0.0373418233434554 
0.0028297143036967 
0.0001625716917922 
0.0000080173304740 
0.0000003840919865 
0.0000000129707170 
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Appendix B" Error Bounds for Faure 
Sequences 

This Appendix discusses the error bounds for Faure 
sequences. We compare the error bounds for 
quasi-Monte Carlo based on Faure sequences with the 
error bounds from crude Monte Carlo. We begin with 
three definitions and an important theorem. First we 
define the counting function of a subset of a set of 
points. 

DEFINITION 1. Let P be a point set consisting of 
points Xl, x 2 . . . . .  x N. For any subset B of is define 

N 

A ( B ; P )  = ~ c B ( x , ) ,  
n = l  

where c n is the characteristic function of B. Thus A(B; 
P) is the counting function that indicates the number of 
n with 1 _<n _<Nfor which x, ~ B. 

Next we define discrepancy. 
DEFINITION 2. Let • be a family of Lebesgue mea- 

surable subsets of ] s. The discrepancy DN(~3; P) of a 
point set P is defined as 

D~(~; P) = sup A(~TP) ~.,(B) 9 
B e ~  / V  

where A~(B) is the Lebesgue measure of ~. 
DEFINITION 3: Star Discrepancy. The star discrep- 

ancy D'u (P) = D'u (x~ . . . . .  XN) of the point set P is 

defined by D~ (P) = DN(9*; Y) where 9" is the family of 
all subintervals of P of the form s l'-Ii= 1[0, u,). 

Now comes the key theorem. 
THEOREM (Koksma-Hlawka). Let I ' = [0, l y  and 

let f have bounded variation V(f) on 1 ~ in the sense of  
Hardy and Krause. Then, for  any x~ . . . . .  x,  ~ I ~ we have 

1 N 
~, f ( x . ) - ~ f ( u ) d u  ~ V(f)D'~ (x~ ..... x~). 

n = l  / 

Intuitively, the D star discrepancy D~ (x~ . . . . .  xN) rep- 
resents how "evenly" x~ . . . . .  x u are distributed within is. 
It turns out that in the one-dimensional case, the best 
choice for x~ . . . . .  x N are the evenly spaced points x~ -- (2i 
- 1)/2N for 1 _<n _<N ~ [0, 1]. This gives the minimum 
possible discrepancy of D'u(x~ . . . . .  xu) = l12N 
(Nieder-reiter 1992, p. 23). However, this set has the 
drawback that in order to obtain this minimal discrep- 
ancy N must be specified in advance. For Faure 
sequences, the resulting has low discrepancy for  all N 

which allows the simulation to be easily extended until 
the desired accuracy is obtained. Furthermore, the pro- 
jection of Faure sequences onto lower dimensional 
hypercubes I d, d < s, will still have discrepancy O(N -~ 
(log Nil). This means that the first d terms from a higher 
order Faure sequence of order s can be used for an inte- 
gral of lower dimension d. 

For the Faure sequences under consideration, we 
have the following result from Faure (1982): 

Given the Faure sequence x~ . . . . .  x u of  dimension s 

• a (l°gN) s ( ( log~)  '-~ ) 
D~ (Xl . . . .  XN) <--~ ~ ~ 0 where 

l ( q , - 1 y ,  
As = s!k.21ogqs) 

with qs as the smallest prime number that is greater 
than or equal to s. 

This series has nearly" the smallest known set of 
constants, A s. When working with a fixed number of 
simulations N, Niederreiter (1992, p. 97) suggests using 
the set (n/N, x,) ~ I s, where n = 0, 1 . . . . .  N -  1, which 
has D* < O((log N)S-lN-I). Furthermore, in the s dimen- 
sional case it is widely believed lz that for any N element 
point set (x~ . . . . .  x u) we must have 

D*(x I . . . . .  xu) > O(N-l(log N)S-I). 

This suggests that O(N-~(log Ny -j) is the best order of 
convergence that we can expect from any deterministic 
set. 

ff  we compare the Faure error bound with theoretical 
Monte Carlo it may not seem that quasi-Monte Carlo 
methods are a significant improvement (see Table 7). 

TABLE 7 

COMPARISON OF THE THEORETICAL ERROR 

BOUND FOR BOTH CRUDE AND QUASI-MONTE 

CARLO METHODS 

s N 

5 104 

10 l0 s 

N -lrz A~V -I (log N) s 

0.01 0.163 

0.0001 19.262 

In practice, this table is deceptive because Faure 
sequences perform much better than this indicates. This 
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is due to the fact that quasi-random Faure points are 
very evenly spaced while most crude Monte Carlo sim- 
ulations are run using pseudo-random number genera- 
tors whose D* discrepancies are higher than the D* 
discrepancies of Faure sequences (see Niederreiter 
(1992) for a discussion of the discrepancies of pseudo- 
random number generators). 
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End Notes 
1. Many of the new "exotic" securities involve several 

underlying assets, different currencies and path 
dependency. 

2. Another disadvantage is that the method still has 
difficulties in handling the early exercise feature of 
American options despite notable progress by 
Tilley (1993) and Grant, Vora and Weeks (1993). 

3. We give a more technical definition of discrepancy 
in Appendix B. 

4. See Press et al. (1992) for a discussion of the trape- 
zoidal rule. 

5. Note that for numerical accuracy, icj mod r is usu- 
ally calculated via iCj rood r = (i-lCj mod r + i-lCj_ t 
mod r) mod r. 

6. Note that it is incorrect to use the standard 
Box-Muller transform (Press (1992), p. 289) to 
map e n to the unit interval. This is because the Box- 
Muller transform does not preserve the matrix on 7 s 
and thus fails to preserve the low discrepancy of the 
original Faure sequence. In other words, if we use 
the Box-Muller transform, then the even spacing of 
the Faure sequence will be scrambled, resulting in 
the loss of our low error bound. 

7. MMBTU stands for million British Thermal Units 
and is the standard unit of measurement on the 
NYMEX for natural gas. Light Sweet Crude and 
Natural Gas, however, are usually quoted in barrels 
and hence need to be converted to MMBTUs to 
make the two prices compatible in terms of units. 

8. Quasi-Monte Carlo methods perform even better 
when combined with variance reduction tech- 
niques. For example, to apply the control variate 
method the original integral f(x)dx is replaced with 
an integral of the form If(x) - g(x)]dx where g(x) 
has the same type of behavior as fix). Clearly if 
crude Monte Carlo can be used to value f(x) - g(x) 

then quasi-Monte Carlo can value this difference 
even more accurately. Two common variance 
reduction techniques that do not improve upon 
standard quasi-Monte Carlo methods are antithetic 
variables and stratified sampling. Quasi-Monte 
Carlo methods are intrinsically designed to keep on 
subdividing the integration region into uniformly 
spaced parts with every additional simulation point. 
Quasi-Monte Carlo methods already incorporate 
the advantages associated with these two variance 
reduction techniques. 

9. The authors are grateful to the referees and Robert 
Heinkel for constructive comments. 

10. As we move to higher dimensions the Faure points 
are not evenly dispersed throughout the hypercube. 
ff  we project the 50th and 51 st dimensions we find 
strong patterns and large gaps. This point is dis- 
cussed in Boyle, Broadie, and Glasserman (1996). 
We are also grateful to Alan Jung for discussions on 
this issue. 

11. A slight improvement on the Faure sequence has 
been made by Niederreiter (1987) but we prefer to 
stay with Faure sequences since their calculation is 
simpler. Sobol" (1967) sequences also have this 
same order of convergence but their constants are 
never better than Faure sequences and are in fact 
worse for all s > 8 (Niederreiter (1992), p. 96). 
However, Sobol" sequences are at least better than 
Halton (1960) sequences which have the same 
order of convergence but display super exponential 
growth in their constants as the dimension s 
increases. 

12. This can be shown for dimensions s = 1 and 2 but 
the best general result that has been proved for s > 3 
is D* (x I . . . . .  x~) -> O(N-I(Iog N) ~s-l)/2) (Niederreiter 
1992, p. 32). 
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