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Valuing American Options 
in a Path Simulation Model 

James A. Tilley 

Abstract 
The goal of this paper is to dispel the prevailing 

belief that American-style options cannot be valued 
efficiently in a simulation model, and thus remove what 
has been considered a major impediment to the use of 
simulation models for valuing financial instruments. We 
present a general algorithm for estimating the value of 
American options on an underlying instrument or index 
for which the arbitrage-free probability distribution of 
paths through time can be simulated. The general algo- 
rithm is tested by an example for which the exact option 
premium can be determined. 

1. Introduction 
Mathematicians seem to resort to simulation models 

to analyze a problem only when all other methods fail 
to yield a solution. In financial economics, evidence of 
this tendency to avoid simulation models is found in the 
proliferation of published binomial and multinomial 
lattice solutions (or their equivalent) to the problem of 
valuing instruments with cash flows or payoffs contin- 
gent on interest rates or stock prices [1], [2], [4], [5], 
[8], [9], [10], [12], [13], [14], [15], [16], [17], [18], 
[19], [20], [21], [22], and [23]. The standard approach 
to valuing an American option is to utilize a one-factor 
(continuous) model of the stochastic price behavior of 
the option's underlying asset, then create a binomial or 
multinomial (discrete) connected lattice representation of 
that stochastic process, and finally solve the valuation 
problem by backward induction on the lattice. Market- 
makers who deal in today's complicated financial 
instruments and investors who buy and sell them are 

beginning to sense a need for more realistic multifactor 
models of the stochastic dynamics of interest rates, for- 
eign exchange rates, stock prices, and commodity 
prices. These more complex models demand analysis 
by simulation, because constructing approximate solu- 
tions (whether by means of lattices or otherwise) to the 
nonlinear differential and integral equations to which 
they give rise is extremely difficult. 

In general, the use of simulation models for valuing 
financial instruments has been restricted to assets that 
have path-dependent cash flows or payoffs, for exam- 
ple, mortgage-backed securities, including collateral- 
ized mortgage obligations (CMOs), and esoteric 
derivative instruments, such as "look-back" options [7], 
[11]. (An exception, at least in the academic literature if 
not in practice, is the paper by Boyle [3], which exam- 
ines how Monte Carlo simulation can be used to value 
European-style options.) Indeed, it has been thought 
that simulation models could not be used to value 
American-style options efficiently, if at all ([7], [8], and 
Pedersen's discussion of [24]). Ideally, a broker-dealer 
would like to be able to use a single method to value its 
entire book, and a financial intermediary would like to 
be able to use a single method to analyze its entire 
asset-liability condition. I believe that simulation mod- 
els offer that possibility. 

Simulation models consume large amounts of com- 
puter processing time, and some problems have hereto- 
fore required too much execution time to be handled 
practically by simulation. However, the arrival of pow- 
erful workstations, servers, and parallel-processors has 
rendered simulation feasible in many situations where it 
previously was not, a condition that can only improve 
with time as the pace of major technological advances 
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accelerates. In many situations, a single sample of paths 
can be generated and then used repeatedly to value 
many different instruments, for example, a dealer's 
entire book of interest rate swaps, caps, floors, and 
swaptions; a dealer's entire book of stock index deriva- 
tives or of currency swaps and options; or a financial 
intermediary's entire portfolio of fixed-income securi- 
ties. Simulation may not be the best method when each 
financial instrument must be valued on the basis of its 
own random sample of paths, but this situation can 
often be avoided by designing the Simulation properly. 

The algorithm for valuing American options is 
described in Section 2 and tested by an example in Sec- 
tion 3. The issue of bias in the estimator of the option 
premium is examined in Section 4, after which the 
example is revisited in Section 5. Finally, Section 6 
summarizes the paper. 

2. The Valuation Algorithm 
A textbook by Cox and Rubinstein [6] provides a 

comprehensive treatment of the subject of options. We 
assume that the reader is familiar with the general sub- 
ject area, including various models for pricing options. 
For convenience, the option's underlying asset is 
referred to as a "stock," but the entire development in 
this section applies to any type of asset or index for 
which the arbitrage-free probability distribution of 
paths through time can be simulated. In my earlier 

paper [24] we discuss what is meant by "arbitrage-free" 
and show how arbitrage-free paths of interest rates can 
be sampled stochastically. The example in Section 3 of 
this paper utilizes paths of stock prices that are sampled 
from a probability distribution that is arbitrage-free 
because its mean has been adjusted appropriately. 

We consider how to evaluate put and call options on 
a stock. The options are exercisable only at specified 
epochs h, t2 ... . .  tu, which are indexed 1, 2 ... . .  N for 
convenience. The origin of time is t = 0, which is 
indexed as epoch 0. The options can be considered to be 
first exercisable at epoch 0 or at epoch 1, as appropriate. 
A path of stock prices is a sequence S(0), S(1), S(2) ..... 
S(N), in which the arguments of S refer to the epoch 
indexes at which the stock prices occur. All paths of 
stock prices emanate from the initial stock price S(0). 
The simulation procedure involves the random genera- 
tion of a finite sample of R such paths and the estima- 
tion of option prices from that sample. The k-th path in 
the sample is represented by the seque.nce S(0), S(k,l), 
S(k,2) ..... S(k,N), in which the first index refers to the 
path and the second index refers to the epoch. Two 
paths of stock prices are represented in Figure 1. Let 
d(k,t) be the present value at epoch t on path k of a $1 
payment occurring at epoch t + 1 on path k. Let D(k,t) 
be the present value at epoch 0 of a $1 payment occur- 
ring at epoch t on path k, computed as the product of the 
discount factors d(k,s) from s=0 to s=t- l .  

FIGURE 1 

TWO ILLUSTRATIVE PATHS OF STOCK PRICES SAMPLED FROM A 
DISCRETE-TIME CONTINUOUS-STATE MODEL OF STOCK PRICE MOVEMENTS 

S(j,t)" . '~ , / " ~ ~ ~ a t h j  

Path k 
S(k,t) 

Epoch t 
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Assume that the option has strike prices that can 
depend on the date of exercise but not on the stock price 
at the time of exercise. Let X(1), X(2) ..... X(N) denote 
the sequence of exercise prices at epochs 1, 2 .. . . .  N, 
respectively. Typical stock options have a constant 
strike price X independent of date of exercise, but typi- 
cal call options in private placement bonds do not. The 
intrinsic value I(k,t) of the option on path k at epoch t 
can now be defined as: 

maximum [0, S(k,t) - X(t)] for a call option 
l(k,t) = 

maximum [0, X(t) - S(k,t)] for a put option. 

Finally, let z(k,t) be the "exercise-or-hold" indicator 
variable, which takes the value 0 if the option is not 
exercised at epoch t on path k and which takes the value 
1 if the option is exercised at epoch t on path k. Clearly, 
either z(k,t)=O at all epochs t along path k or z(k,t.)= 1 at 
one and only one epoch t° along path k. If such a t. 
exists, it is the date at which the option is exercised on 
path k. 

The price of any asset is known at epoch 0 if its cash 
flows are known at all epochs along all possible paths. 
That price is calculated in two steps: first, compute for 
each path k the present value at epoch 0 of the asset's 
cash flows along that path using the path-specific dis- 
count factors D(k,t), and second, average across all 
paths the present values computed in the first step. The 
paths must be drawn from the appropriate arbitrage-free 
distribution. More details on this general valuation pro- 
cedure can be found in my paper [24]. On a given stock 
price path, the "cash flow" for an option is 0 at every 
epoch other than the one at which the option is exer- 
cised. At exercise, the option's "cash flow" is equal to 
its payoff, which is its intrinsic value. Assuming the 
usual situation that all randomly sampled stock price 
paths are equally likely with probability weight R-', we 
can express the option premium estimator by the fol- 
lowing equation: 

Premium Estimator = R -I Y~ ~, z(k,t)D(k,t)l(k,O. 
p~ ~I 

Thus, to estimate the price of the option, we need to 
estimate the exercise-or-hold indicator function z(k,O, 
given a finite sample of R paths drawn from an arbi- 
trage-free distribution of paths. The algorithm pre- 
sented in this section for estimating z(k,t) mimics the 
standard backward induction algorithm implemented 
on a connected lattice for estimating the value of an 

American option. A discussion of this standard technique 
can be found in the textbook by Cox and Rubinstein [6]. 

The backward induction is begun at the latest epoch 
at which the option can be exercised, that is, at its expi- 
ration date. On that date, represented by epoch N, the 
option, if it is still "alive" on path k (that is, not previ- 
ously exercised), will be exercised if and only if 
l(k,N)>0. The general step of the backward induction 
performed at an arbitrary epoch t involves determining 
whether it is optimal to hold the option for possible 
exercise beyond epoch t or to exercise the option imme- 
diately at epoch t. This decision is made by comparing 
the option's "holding value" to its "exercise value" The 
option's exercise value is equal to its intrinsic value and 
can be directly calculated for each path, because the 
price of the underlying stock is known at each epoch on 
each path. The option's holding value on any path is 
calculated as the present value of the expected 
one-period-ahead option value. 

Many believe that utilizing the path structure illus- 
trated in Figure 1 precludes estimation of an option's 
holding values, because the only point from which 
many paths emerge is epoch 0. On any particular path, 
at any epoch t>0, only a single path is simulated. One 
might think that many paths would need to be simulated 
from each such point to estimate closely the mathemati- 
cal expectation of the one-period-ahead option value. 
Unfortunately, such an approach would lead to a multi- 
nomial "tree" in which the number of paths grows 
exponentially with the number of epochs--a computa- 
tional infeasibility. Instead, computational feasibility 
can be achieved by utilizing the path structure illus- 
trated in Figure 1 and then estimating the option's hold- 
ing value by means of a distinct partitioning at each 
epoch of the R paths into Q bundles of P paths each. 
The hope is that the paths within a given bundle are suf- 
ficiently alike that they can be considered to have. the 
same expected one-period-ahead option value; in other 
words, Q must not be too small. The mathematical 
expectation of the one-period-ahead option value is 
estimated as an average over all the paths in the bundle. 
Thus, the estimate of the option holding value will be 
good only if there are sufficiently many paths in the 
bundle; in other words, P must not be too small. 

In general, there is at least one bundle in which the 
decision for some paths is to hold the option, while the 
decision for the rest of the paths in the bundle is to exer- 
cise the option. Such a bundle generally has a "transi- 
tion zone" in stock price from a decision to hold the 
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option to a decision to exercise the option. Specifically, 
for a call option, there exist stock prices S.(t) and Sv(O 
at epoch t, with SL(t)<Su(t), such that the decision is to 
hold for S-~S.(O and to exercise for S>_Sv( O. However, 
for SL(t)<S<Su(t), the decision is "inconsistent"; that is, 
there exist stock prices St(t) and S,(t) such that 
S~.(t)<S~(t)<S.(t)<Su(t), yet the decision is to exercise at 
S=S~t) and to hold at S=S,(O! The transition zone from 
an unambiguous hold decision to an unambiguous exer- 
cise decision often extends across several consecutive 
bundles. The algorithm can be refined to eliminate the 
transition zone by creating a "sharp boundary" at 
S=S.(t), such that the decision is to hold for S<S.(t) and 
to exercise for S>_S.(t). 

The general step that is performed at epoch t in the 
backward induction algorithm includes eight substeps, 
as follows: 
1. Reorder the stock price paths by stock price, from 

lowest price to highest price for a call option or 
from highest price to lowest price for a put option. 
Reindex the paths from 1 to R according to the 
reordering. 

2. For each path k, compute the intrinsic value l(k,t) of 
the option. 

3. Partition the set of R ordered paths into Q distinct 
bundles of P paths each. Assign the first P paths to 
the first bundle, the second P paths to the second 
bundle, and so on, and finally the last P paths to the 
Q-th bundle. We assume that P and Q are integer 
factors of R. 

4. For each path k, the option's holding value H(k,t) is 
computed as the following mathematical expecta- 
tion taken over all paths in the bundle containing 
the path k: 

H(k,t) = d(k,t)P-' E v(j, t + 1). 
~ j  

mlxmd~ 
eontga~g k 

The variable V(k,t) is fully defined in substep 8 
below. At epoch N, V(k,N) = l(kdV) for all k. 

5. For each path k, compare the holding value H(k,t) 
to the intrinsic value l(k,t), and decide "tentatively" 
whether to exercise the option or to hold it. Define 
an indicator variable x(k,t) as follows: 

x(k,t)= ~ 1 if l(k,t) > H(k,t) Exercise 

t 0 if H(k,t) > I(k,t) "Hold. 

6. Examine the sequence of 0's and l 's {x(k,t); k=-l, 2, 
.... R}. Determine a sharp boundary between the 
hold decision and the exercise decision as the start 

of the first string of 1 's, the length of which exceeds 
the length of every subsequent string of O's. Let 
k°(t) denote the path index (in the sample as 
ordered in substep 1 above) of the leading 1 in such 
a string. The transition zone between hold and 
exercise is defined as the sequence of O's and l 's 
that begins with the first 1 and ends with the last 0. 
An example is given below: 

Boundary 
$ 

0 0 . . . 0 1 1 0 0 0 1 1 1 1 1 0 0 1 . . .  11 
7. Define a new exercise-or-hold indicator variable 

y(k,t) that incorporates the sharp boundary as fol- 
lows: 

1 for k~_k.(t) 

y(k,t) = 0 for k < ko(t). 

8. For each path k, define the current value V(k,t) of 
the option as follows: 

V(k,t)= [~ I(k,t) if y(k,t)= 1 

L H(k,t) if y(k,t) -- O. 

After the algorithm has been processed backward 
from epoch N to epoch 1 (or epoch 0 if immediate exer- 
cise is permitted), the indicator variable z(k,t) for t<...N is 
estimated as follows: 

~ 1 ify(k,t) = 1 and y(k,s) = 0 for all s < t 

z(k,t) -- t 0 otherwise. 
k 

This completes the description of the algorithm for 
valuing an American option. 

The partition of R paths into Q bundles of P paths 
each can be characterized by defining a "bundling 
parameter" ec by means of the equation Q=R ~, and 
therefore, P--R I-~. It is clear that 0_<~<_1. The value o~=0 
corresponds to the partition into a single bundle of R 
paths, and the value ~ 1  corresponds to the partition 
into R bundles of one path each. A particular American 
option valuation algorithm can now be fully described 
by the sample size R, the technique used to sample 
paths, and the bundling parameter ~. If ~ is restricted to 
rational numbers, we can fix a and take sensible limits 
as R---~ to investigate the convergence properties of the 
option premium estimator. For example, with a--2/5, 
we can examine sample sizes equal to 2 5, 3 5, 4 5 . . . .  
paths for which we can study the estimator~ associated 
with the partitions Q--2 2, 3 2, 4 2 . . . .  bundles and P--2 3, 
3 3, 4 3 . . . .  paths per bundle, respectively. 
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For any exercise-hold decision algorithm with ct 
fixed and 0 < a < l ,  it can be proved that the option pre- 
mium estimate must converge to the proper result as 
R--->**. This follows from the observation that the algo- 
rithm for determining the exercise-hold decision vari- 
able is based on the standard backward induction 
algorithm for valuing American options and that all 
sources of error arise from P, Q, and R being finite. For 
finite R, imprecision in the premium estimates arises 
because: (1) the continuous distribution of stock prices 
at each epoch is not sampled finely enough and (2) the 
mathematical expectation in substep 4 above is approx- 
imated by an average over a finite number of paths. 
Imprecision of the first type can be reduced by increas- 
ing Q, the number of bundles. Imprecision of the sec- 
ond type can be reduced by increasing P, the number of 
paths per bundle. For fixed R, increasing Q means 
decreasing P, and vice versa, implying a tradeoff 
between the first and second types of imprecision. 
However, if oc is held constant at some value in the 
interval (0, 1), then both types of imprecision are elimi- 
nated simultaneously as R--~**, because then both 
Q--->** and p--->oo. 

The distinction between the variables y(k,t) and x(k,t) 
disappears as R--->,,o and oc is held constant at a value 
other than 0 or 1. As R-->o,, the boundary between a 
decision to exercise the option and a decision to hold 
the option becomes sharper and sharper; that is, at each 
epoch, the transition zone with alternating strings of l 's 
and O's occurs over a smaller and smaller interval of 
stock prices. Defining a sharp boundary by means of 
substep 6 above generally improves the convergence of 
the algorithm considerably for any cz in the interval (0,1) 
and also generally broadens considerably the interval of 
¢z over which the option premium estimates are good. In 
general, the option premium estimate based on a given 
sample size, sampling technique, and bundling parame- 
ter is more accurate when a sharp exercise-hold bound- 
ary is determined than when it is not. However, the 
ultimate convergence of the exercise-hold decision 
algorithm to the exact option premium does not depend 
at all on whether substeps 6 and 7 above are imple- 
mented. If substeps 6 and 7 were omitted from the algo- 
rithm, x(k,t) would be used in lieu of y(k,t), both in 
substep 8 and in the calculation of z(k,t). 

3. An Example 
To test the algorithm presented in the preceding sec- 

tion, we consider the situation of a non-dividend-paying 
stock. Let S(t) denote the price of the stock at time t. We 
assume that the random variable ln[S(t)lS(O)] is nor- 
really distributed with mean lat and variance oat. We 
further assume that the yield curve is flat and that inter- 
est rates are constant over time at an annual effective 
rate r. For the distribution of stock price movements to 
be arbitrage-free over time, it must be true that 
la=ln[l+r]-oa/2. Refer to the textbook by Cox and 
Rubinstein [6] for a proof of this statement. 

When a non-dividend-paying stock is the underlying 
asset, the price of an American call option must be 
exactly the same as the price of an otherwise identical 
European call option [6]. The price of an American put 
option must be no less than the price of an otherwise 
identical European put option, but the former will in 
general exceed the latter [6]. Therefore, we test the val- 
uation algorithm on a put option that is first exercisable 
in one quarter of a year and is exercisable every quarter 
of a year thereafter until its expiration in three years. 
The stock price has logarithmic volatility ¢s equal to 30 
percent. The initial price of the stock S(0) is 40; the 
strike price X of the option is 45 at all epochs; and the 
annual effective interest rate r is 7 percent. Paths of 
stock price movements are generated randomly by strat- 
ified sampling of the standard normal density as 
described in my paper [24]. Random samples of size 
7!=5,040 are used so that many different partitions can 
be examined. Table 1 lists the values of the bundling 
parameter ct that correspond to each of the 60 different 
partitions of 5,040 paths into equal bundles. 

The exact price of the three-year American put 
option with quarterly exercise intervals was determined 
to be 7.941 by using a binomial lattice with 1,200 time 
periods constructed according to the procedure 
described in Cox and Rubinstein [6]. This is approxi- 
mately 1.61 higher than the price of the corresponding 
three-year European put option. Using a single sample 
of 5,040 paths, the exercise-decision algorithm 
described in the preceding section was tested for all 
partitions having at least 12 bundles but no more than 
420 bundles. The results are displayed in Figure 2. 
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In Figure 2, the solid line connecting "diamonds" 
corresponds to application of the algorithm without 
substeps 6 and 7--that is, with a transition zone from 
hold to exercise, not a sharp boundary between hold 
and exercise. The broken line connecting "squares" cor- 
responds to application of the algorithm with substeps 6 
and 7 included--that is, with a sharp boundary between 
hold and exercise. The horizontal line across the graph 
at a vertical axis value of 7.941 marks the exact option 
premium. Figure 2 clearly demonstrates the importance 

of including substeps 6 and 7 in the algorithm. When a 
sharp boundary is determined, the option premium esti- 
mates are essentially flat across an interval from o~=0.29 
to ix=0.71 and cover a range of only 12 cents. However, 
when only a transition zone is utilized, the option pre- 
mium estimates rise more or less steadily as the bun- 
dling parameter is increased and cover a range of 
approximately 63 cents, more than five times the range 
obtained when a sharp boundary is utilized! 

TABLE 1 

BUNDLING PARAMETER ALPHA FOR VARIOUS PARTITIONS (IF 5,040 PATHS 

Number 
of Bundles 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
12 
14 
15 
16 
18 
20 
21 
24 
28 
3O 
35 
36 
40 
42 
45 
48 
56 
60 
63 
70 

Paths 
per Bundle 

Bundling 
Parameter 

Alpha 

Partition 

5040 
2520 
1680 
1260 
1008 
840 
720 
630 
560 
504 
420 
360 
336 
315 
280 
252 
240 
210 
180 
168 
144 
140 
126 
120 
112 
105 
90 
84 
80 
72 

0.00000 
0.08131 
0.12887 
0.16261 
0.18879 
0.21017 
0.22825 
0.24392 
0.25773 
0.27009 
0.29148 
0.30956 
0.31765 
0.32522 
0.33904 
0.35140 
0.35712 
0.37279 
0.39087 
0.39896 
0.41704 
0.42035 
0.43270 
0.43843 
0.44652 
0.45409 
0.47217 
0.48027 
0.48599 
0.49835 

Partition 

Number 
of Bundles 

72 
8O 
84 
9O 

105 
112 
120 
126 
140 
144 
168 
180 
210 
240 
252 
280 
315 
336 
360 
420 
504 
560 
630 
720 
840 

1008 
1260 
1680 
2520 
5040 

Paths 
per Bundle 

70 
63 
60 
56 
48 
45 
42 
40 

• 36 
35 
30 
28 
24 
21 
20 
18 
16 
15 
14 
12 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

Bundling 
Parameter 

Alpha 

0.50165 
0.51401 
0.51973 
0.52783 
0.54591 
0.55348 
0.56157 
0.56730 
0.57965 
0.58296 
0.60104 
0.60913 
0.62721 
0.64288 
0.64860 
0.66096 
0.67478 
0.68235 
0.69044 
0.70052 
0.72991 
0.74227 
0.75608 
0.77175 
0.78983 
0.81121 
0.83739 
0.87113 
0.91869 
1.00000 
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To study the efficiency of estimation, the "70 bundles 
by 72 paths per bundle" partition was used on 1,000 
independent samples of 5,040 paths each. Each sample 
gives rise to an estimate of the put option premium. The 
frequency histogram of these 1,000 estimates is plotted 
in Figure 3. The mean of the estimates is 7.971 and the 
standard deviation of the estimates is 0.053. The solid 
line graph superimposed on the frequency histogram is 
that of a normal density function with the same mean 

and standard deviation as the option premium estimator. 
We can see that the algorithm produces premium esti- 
mates that are normally distributed. What seems sur- 
prising is that the premium estimator is biased. The 
mean estimate of $7.971 is 3 cents higher than the exact 
premium of $7.941, which is about 17.9 times the stan- 
dard deviation of 5 . 3 / 1 ~  cents. Despite the bias, 
the algorithm can estimate the option premium quite 
tightly. 

FIGURE 2 
PREMIUM ESTIMATES FOR 3-YEAR AMERICAN PUT OPTION 

(5,040 PATHS PARTITIONED 40 WAYS INTO EXERCISE-DECISION BUNDLES) 
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FIGURE 3 
FREQUENCY HISTOGRAM FOR 0~=0.50 PREMIUM ESTIMATOR 

(BASED ON 1,000 SAMPLES OF 5,040 PATHS EACH) 
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4. Estimator Bias 
In this section, we investigate the source of the bias in 

the option premium estimates that was discovered by 
means of the example presented in the last section. It 
turns out that the bias arises because the "optimization" 
is done over afinite sample. The bias vanishes in the limit 
of infinite sample size. The description of the exercise- 
decision algorithm in Section 2 makes it evident that 
estimating the premium for an American option is 
equivalent to estimating the exercise-hold stock price 
boundary at each epoch at which the option can be exer- 
cised. Accordingly, we determined the "exact" boundary 
between holding and exercising the put option at each of 
the 12 exercise-decision epochs by using the Cox- 
Rubinstein binomial lattice that was described in the 
preceding section. With full knowledge of the exact exer- 
cise-hold boundaries, the American option premium was 

estimated again by simulation using the same 1,000 
samples of 5,040 paths on which the results shown in 
Figure 3 were based. The resulting frequency histogram 
of the premium estimates is shown in Figure 4. 

In Figure 4 the premium estimates are normally dis- 
Iributed. The standard deviation of the estimates is 5.3 
cents, the same as in Figure 3. However, the mean of 
the estimates is $7.943, only 0.2 cents higher than the 
exact premium. This deviation is not statistically signif- 
icant at a 5 percent level of confidence, since it is only 
about 1.2 times the standard deviation of 5.3/ji-6-0-0 
cents. Thus, with full knowledge of the exact exer- 
cise-decision boundaries, the American option premium 
estimator is unbiased, even for finite samples of paths. 
We must conclude that the process of estimating He 
exercise-hold boundaries from a finite sample of paths 
introduces the bias. The following analysis demon- 
strates the truth of this assertion. 
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FIGURE 4 
FREQUENCY HISTOGRAM FOR "BEST" PREMIUM ESTIMATOR 

(BASED ON 1,000 SAMPLES OF 5,040 PATHS EACH) 
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The exact price of an American option is the value 
given by the premium estimator equation in Section 2 
when the infinite sample space of stock price paths and 
the exact exercise-hoM boundaries are used. Determin- 
ing the exact price of the option is equivalent to finding 
the exercise-hold boundaries at all exercise-decision 
epochs that maximize the value given by the premium 
estimator equation when the infinite sample space of 
stock price paths is used. An approximation to the exact 
price is obtained by finding the exercise-hold bound- 
aries at all exercise-decision epochs that maximize the 
value given by the premium estimator equation when a 
finite sample of R stock price paths is used. A different 
approximation to the exact price is obtained by imple- 
menting the backward induction algorithm with eight 
substeps at each epoch that was described in Section 2. 
This latter estimate of the exact option price is itself an 
approximation to the former estimate of the exact 
option price, by reason of the construction of the back- 
ward induction algorithm as an optimization. 

Let E i denote the option premium estimate obtained 
when the i-th sample of R paths is used together with 
some premium estimation method. The dependence of 
the estimate on the estimation method used is denoted by 

an appropriate superscript. The superscript **-optimal is 
used to represent the estimation method that utilizes the 
exact boundaries determined from the infinite sample 
space of stock price paths. The superscript R-optimal is 
used to represent the estimation method that utilizes the 
boundaries that optimize the value given by the pre- 
mium estimator equation when the finite sample of R 
paths is used. Finally, the superscript R-algorithm is 
used to represent the estimation method that utilizes the 
boundaries determined from the eight-substep back- 
ward induction algorithm applied to the finite sample of 
R paths. As a consequence of the definitions of the vari- 
ous estimates and the construction of the different esti- 
mation methods, the following inequalities hold for any 
sample i consisting of R paths: 

E -  - o p t i m a l  <~ l~' R - o p t i m a l  !~  R - a l g o r i t h m  <~ ~ R - o p t i m a l  
i - ~ i  and ,-,i -~,-,i • 

Thus, the means of the various estimators computed 
over any finite number of samples of R paths each also 
satisfy the same inequalities. In practice, the strict ine- 
quality will hold "almost surely" When the sample size 
is infinite, the inequalities become equalities. Because 
the ---optimal estimator is unbiased, the first inequality 
demonstrates that the R-optimal estimator must always 
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have positive bias. The bias tends to zero as R---)*,,. 
Furthermore, the second inequality demonstrates that 
the R-optimal estimator must be positively biased rela- 
tive to the R-algorithm estimator. 

The relative bias tends to zero as R---~,,~. It is indeter- 
minable whether the R-algorithm estimator has positive 
or negative bias with respect to the ~,-optimal estimator. 
The two inequalities also show that we should not try 
too hard to "perfect" the R-algorithm estimator in the 
sense of making it better approximate the R-optimal 
estimator, because the latter always has positive bias 
relative to the unbiased **-optimal estimator. 

5. Example Revisited 
Now that we understand that the sign of the bias of 

the R-algorithm estimator is indeterminable, but is 

likely to be positive if the R-algorithm estimates the 
R-optimal exercise-hold decision boundaries closely, 
we should conduct further empirical studies of the bias. 
Table 2 presents results obtained by using the R- 
algorithm estimator of Section 2 on 100 independent 
samples of 5,040 paths each by using a partition of 70 
bundles by 72 paths per bundle. Results are shown for 
3-year American put options with strike prices ranging 
from 10 to 100 in multiples of 5. All other assumptions 
are the same as in the earlier example. The "exact" pre- 
miums were calculated as before, by using the 
Cox-Rubinstein binomial lattice with 1,200 time inter- 
vals. The estimator bias ranges from a low of-0.7 cents 
to a high of +3.4 cents. The standard deviations of the 
estimates peak at 6.3 cents for a put option somewhat in 
the money. The premium estimates must be considered 
very accurate. 

TABLE 2 
STATISTICS FOR t~=0.50 ESTIMATORS OF PREMIUMS FOR AMERICAN PUT OPTIONS 

(STOCK PRICE VOLATILITY OF 30 PERCENT) 

Stock Price: 40 
Option Expiration: 3.00 Years Stock Volatility: 30 Percent 
Exercise Interval: 0.25 Years Annual Interest Rate: 7 Percent 

Estimator 
Strike Price 'Exact' Premium* Estimator Meant Estimator Bias Standard Deviationt 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

0.003 
0.046 
0.242 
0.744 
1.689 
3.172 
5.247 
7.941 

11.255 
15.136 
19.469 
24.100 
28.894 
33.764 
38.665 
43.576 
48.491 
53.407 
58.323 

O.OO3 
0.046 
0.239 
0.744 
1.694 
3.185 
5.268 
7.968 

11.289 
15.161 
19.485 
24.109 
28.899 
33.763 
38.662 
43.574 
48.486 
53.400 
58.316 

0.000 
0.000 

--0.003 
0.000 
0.005 
0.013 
0.021 
0.027 
0.034 
0.025 
0.016 
0.009 
0.005 

-0.001 
-0.003 
-0.002 
-0.005 
-0.007 
-0.007 

0.001 
0.005 
0.012 
0.020 
0.027 
0.038 
0.044 
0.055 
0.063 
0.059 
0.054 
0.044 
0.034 
0.028 
0.024 
0.017 
0.015 
0.014 
0.012 

*Calculated using the Cox-Rubinstein binomial model with 1,200 time intervals. 
?Calculated using a simulation model with 1130 samples of 5,040 paths and exercise boundary determined by first dominant string of l 's in the transition zone. 
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Table 3 presents results similar to those in Table 2, 
but for a partition of 504 bundles by 10 paths per bun- 
dle. In this case, substep 6 of  the exercise-decision algo- 
rithm was refined to account not only for the first 
dominant string of  l ' s  in the transition zone but also the 
last dominant string of O's in the transition zone. As in 
substep 6, a boundary index is determined as the start of 
the first string of l 's,  the length of which exceeds the 
length of every subsequent string of O's. Another 
boundary index is determined as the end of  the last 
string of O's, the length of which exceeds the length of 
every previous string of l 's. In many cases, the two 
boundaries are identical, but if not, the dominant O- 
string boundary must occur before the dominant 

1-string boundary. The boundary index actually used in 
the revised algorithm is the arithmetic mean of the two 
boundary indexes, rounded appropriately. The estimator 
bias shown in Table 3 ranges from a low o f - 1 . 2  cents to 
a high of  +0.8 cents. The standard deviations of  the esti- 
mates are generally a little higher than their counter- 
parts in Table 2. 

Table 4 presents results similar to those in Table 3, 
except that the stock price volatility has been doubled to 
60 percent. Again, the estimator biases are small, rang- 
ing from -0 .8  cents to +2.4 cents. The standard devia- 
tions of the estimates are much larger, but are still very 
small when expressed as a percentage of the exact pre- 
miums. 

TABLE 3 

STATISTICS FOR c~=0.73 ESTIMATORS OF PREMIUMS FOR AMERICAN PUT OPTIONS 

(STOCK PRICE VOLATmrrv Or 30 PERCENT) 

Stock Price: 40 
Option Expiration: 3.00 Years Stock Volatility: 30 Percent 
Exercise Interval: 0.25 Years Annual Interest Rate: 7 Percent 

Estimator 
Strike Price 'Exact' Premium* Estimator Meant Estimator Bias Standard Deviation'l" 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

0.003 
0.046 
0.242 
0.744 
1.689 
3.172 
5.247 
7.941 

11.255 
15.136 
19.469 
24.100 
28.894 
33.764 
38.665 
43.576 
48.491 
53.407 
58.323 

0.003 
0.048 
0.246 
0.750 
1.697 
3.178 
5.255 
7.943 

11.260 
15.139 
19.468 
24.094 
28.889 
33.752 
38.654 
43.566 
48.480 
53.398 
58.315 

0.000 
0.002 
0.004 
0.006 
0.008 
0.006 
0.008 
0.002 
0.005 
0.003 

-0.001 
-0.006 
--0.005 
-0.012 
-0.011 
-0.010 
-0.011 
-0.009 
-0.008 

0.001 
0.005 
0.012 
0.018 
0.028 
0.039 
0.049 
0.052 
0.066 
0.059 
0.058 
0.049 
0.037 
0.034 
0.032 
0.021 
0.021 
0.020 
0.016 

*Calculated using the Cox-Rubinstein binomial model with 1,200 time intervals. 
tCalculated using a simulation model with 100 samples of 5,040 paths and exercise boundary determined by dominant strings of both O's and 
zone. 

l ' s  in the transition 
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TABLE 4 

STATISTICS FOR 0~=0.73 ESTIMATORS OF PREMIUMS FOR AMERICAN PUT OPTIONS 

(STOCK PRICE VOLATILITY OF 60 PERCENT) 

Stock Price: 40 
Option Expiration: 3,00 Years Stock Volatility: 60 Percent 
Exercise Interval: 0.25 Years Annual Interest Rate: 7 Percent 

Estimator 
Strike Price 'Exact' Premium* Estimator Meant Estimator Bias Standard Deviation~f 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

O.486 
1.409 
2.810 
4.636 
6.834 
9.357 

12.162 
15.220 
18.504 
21.986 
25.650 
29.475 
33.453 
37.566 
41.798 
46.137 
50.571 
55.086 
59.670 

O.489 
1.414 
2.815 
4.643 
6.840 
9.367 

12.180 
15.240 
18.526 
22.009 
25.667 
29.493 
33.477 
37.584 
41.809 
46.139 
50.567 
55.078 
59.662 

0.003 
0.005 
0.005 
0.007 
0.006 
0.010 
0.018 
0.020 
0.022 
0.023 
0.017 
0.018 
0.024 
0.018 
0.011 
0.002 

-0.004 
-0.008 
-0.008 

0.013 
0.022 
0.034 
0.044 
0.054 
0.064 
0.075 
0.088 
0.102 
0.120 
0.118 
0.131 
0.129 
0.148 
0.145 
0.149 
0.149 
0.144 
0.144 

*Calculated using the Cox-Rubinstein binomial model with 1,200 time intervals. 
tCalculated using a simulation model with 100 samples of 5,040 paths and exercise boundary determined by dominant strings of both O's and l's in the transition 
zone. 

6. Summary and Conclusions 
This paper has presented an algorithm for valuing 

American options in a path simulation model and has 
demonstrated its accuracy by an example involving a 
put option on a non-dividend-paying stock for which 
the exact premium could be determined. The demon- 
stration of the existence of a useful algorithm for valu- 
ing American options in a path simulation mod~l should 
remove what has been perceived as a major impediment 
to the use of simulation models in valuing a bro- 
ker-dealer's derivatives book and in analyzing the 
asset-liability condition of financial intermediaries. 

In many situations involving the use of multifactor 
models to describe realistic market price behavior, sim- 
ulation is the only method that can handle the American 

option valuation problem satisfactorily. Furthermore, it 
is usually straightforward to apply a simulation tech- 
nique, whereas solving complicated partial differential 
equations numerically generally requires great care as 
well as sophistication in applied mathematical methods. 
This paper has not dealt with some of the complexities 
that arise in determining exercise-hold decision bound- 
aries when multifactor stochastic models of asset price 
behavior are utilized. Empirical studies that I have con- 
ducted suggest that some modification to the algorithm 
presented in this paper is required to handle those situa- 
tions adequately. For example, the bundling must often 
be carried out in at least two dimensions rather than the 
single dimension presented in this paper. Boundary 
points become boundary lines or surfaces. 
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