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Abstract 

The Esscher transform is a time-honored tool in 
actuarial science. This paper shows that the Esscher 
transform is also an efficient technique for valuing 
derivative securities if the logarithms of the prices of 
the primitive securities are governed by certain stochas- 
tic processes with stationary and independent incre- 
ments. This family of processes includes the Wiener 
process, the Poisson process, the gamma process, and 
the inverse Gaussian process. An Esscher transform of 
such a stock-price process induces an equivalent proba- 
bility, measure on the process. The Esscher parameter or 
parameter vector is determined so that the discounted 
price of each primitive security is a martingale under 
the new probability measure. The price of any deriva- 
tive security is simply calculated as the expectation, 
with respect to the equivalent martingale measure, of 
the discounted payoffs. Straightforward consequences 
of the method of Esscher transforms include, among 
others, the celebrated Black-Scholes option-pricing for- 
mula, the binomial option-pricing formula, and formu- 
las for pricing options on the maximum and minimum 
of multiple risky assets. Tables of numerical values for 
the prices of certain European call options (calculated 
according to four different models for stock-price 
movements) are also provided. 

1. Introduction 

The Esscher transform [35] is a time-honored tool in 
actuarial science. Members of the Society of Actuaries 
were introduced to it by Kahn's survey paper [51] and 
Wooddy's Study Note [79]. In this paper we show that 

the Esscher transform is also an efficient technique for 
valuing derivative securities if the logarithms of the 
prices of the primitive securities are governed by cer- 
tain stochastic processes with stationary and indepen- 
dent increments. This family of processes includes the 
Wiener process, the Poiss0n process, the gamma pro- 
cess, and the inverse Gaussian process. Our modeling 
of stock-price movements by means of the gamma pro- 
cess and the inverse Gaussian process seems to be new. 
Straightforward consequences of the proposed method 
include, among others, the celebrated Black-Scholes 
option-pricing formula, the binomial option-pricing for- 
mula, and formulas for pricing options on the maximum 
and minimum of multiple risky assets. 

For a probability density function fix), let h be a real 
number such that 

M(h) = S.~eh~f(x)'dx 

exists. As a function in x, 

f(x;h) - enVy(x) 
M(h) 

is a probability density, and it is called the Esscher 
transform (parameter h) of the original distribution. The 
Esscher transform was developed to approximate the 
aggregate claim amount distribution around a point of 
interest, x 0, by applying an analytic approximation (the 
Edgeworth series) to the transformed distribution with 
the parameter h chosen such that the new mean is equal 
to x 0. When the Esscher transform is used to calculate a 
stop-loss premium, the parameter h is usually deter- 
mined by specifying the mean of the transformed distri- 
bution as the retention limit. Further discussions and 
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details on the method of Esscher transforms can be 
found in risk theory books such as [6], [7], [27], [38], 
and [70]; see also Jensen's paper [49]. 

In this paper we show that the Esscher transform can 
be extended readily to a certain class of stochastic pro- 
cesses, which includes some of those commonly used to 
model stock-price movements. The parameter h is 
determined so that the modified probability measure is 
an equivalent martingale measure, with respect to 
which the prices of securities are expected discounted 
payouts. 

Our first application of the method of Esscher trans- 
forms is formula (2.15), which is a general expression for 
the value of a European call option on a non-dividend- 
paying stock and includes the Black-Scholes option- 
pricing formula, the pure-jump option-pricing formula, 
and the binomial option-pricing formula as special 
cases. We also introduce two new models for stock- 
price movements; the first one is defined in terms of the 
gamma process and the second in terms of the inverse 
Gaussian process. Formulas for pricing European call 
options on stocks with such price movements are also 
given, and numerical tables (calculated according to 
four different models) are provided. 

In the second half of this paper, we extend the 
method of Esscher transforms to price derivative securi- 
ties of multiple risky assets or asset pools. The main 
result is as follows: Assume that the risk-free force of 
interest is constant and denote it by 5. For t_>0, let Sl(t), 
S2(t ) . . . . .  Sn( 0 denote the prices of n non-dividend- 
paying stocks or assets at time t. Assume that the vector 

(ln[Sl(t)/St(O)], ln[S2(t)/S2(O)] . . . . .  ln[Sn(t)/Sn(O)])' 

is governed by a stochastic process that has independent 
and stationary increments and that is continuous in 
probability. Let g be a real-valued measurable function 
of n variables. Then, for x_>0, 

E*[e-8*Sj(x)g(Sl(x), S2(x) . . . . .  Sn(x))] 
= Sj(O)E**[g(S~(x), S2(x) . . . . .  Sn(x))], 

where the expectation on the left-hand side is taken 
with respect to the risk-neutral Esscher transform and 
the expectation on the right-hand side is taken with 
respect to another specified Esscher transform. It is 
shown that many classical option-pricing formulas are 
straightforward consequences of this result. 

A useful introduction to the subject of options and 
other derivative securities can be found in Boyle's book 
[15], which was published recently by the Society of 
Actuaries. Kolb's book [52] is a collection of 44 articles 
on derivative securities by various authors; most of 
these articles are descriptive and not mathematical. For 

an intellectual history of option-pricing theory, see 
Chapter 11 of Bernstein's book [9]. 

In this paper the risk-free interest rate is assumed to 
be constant. We also assume that the market is friction- 
less and trading is continuous. There are no taxes, no 
transaction costs, and no restriction on borrowing or 
short sales. All securities are perfectly divisible. It is 
now understood that, in such a securities market model, 
the absence of arbitrage is "essentially" equivalent to 
the existence of an equivalent martingale measure, with 
respect to which the price of a random payment is the 
expected discounted value. Some authors ([5], [34], 
[67]) call this result the "Fundamental Theorem of 
Asset Pricing" In a general setting, the equivalent 
martingale measure is not unique; the merit of the risk- 
neutral Esscher transform is that it provides a general, 
transparent and unambiguous solution. 

In the next section we use some basic ideas from the 
theory of stochastic processes. Two standard references 
are Breiman's book [18] and Feller's book [36]. 

2. Risk-Neutral Esscher Transform 
For t>O, S(t) denotes the price of a non-dividend- 

paying stock or security at time t. We assume that there 
is a stochastic process, {X(O},ao, with stationary and 
independent increments, X(0)--0, such that 

S(t) = S(O)e x~°, t_>O. (2.1) 

For each t, the random variable X(t), which may be 
interpreted as the continuously compounded rate of 
return over the t periods, has an infinitely divisible dis- 
tribution [18, Proposition 14.16]. Let 

F(x, t) = Pr[X(t) < x] (2.2) 

be its cumulative distribution function, and 

M(z, t) = E[e ,x~')] (2.3) 

its moment-generating function. By assuming that M(z, t) 
is continuous at t--0, it can be proved that 

M(z, t) = [M(z, 1)]' (2.4) 

([18, Section 14.4], [36, Section IX.5]). We assume that 
(2.4) holds. 

For simplicity, let us assume that the random vari- 
able X(t) has a density 

d 
f (x ,  t) = ~_xF(X,t), t > 0 ;  

then 

M(z, t) = ~?. eZ'f(x, t)dx. 
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Let h be a real number for which M(h, t) exists. (It fol- 
lows from (2.4) that, if M(h, t) exists for one positive 
number t, it exists for all positive t.) We now introduce 
the Esscher transform (parameter .h) of the process 
{X(t)}. This is again a process with stationary and inde- 
pendent increments, whereby the new probability den- 
sity function of X(t), t>O, is 

f ( x ,  t;h) = chef(x, t) 

~_" ehYf(y, t)dy 

= eh~f(x, t) '(2.5) 
M(h, t) 

That is, the modified distribution of X(t) is the Esscher 
transform of the original distribution. The correspond- 
ing moment-generating function is 

M(z, t;h) = ~ e= f ( x ,  t;h)dx 

= M ( z  + h, t) (2.6) 
M(h, t) 

By (2.4), 

M(z, t; h) = [M(z, 1; h)]'. (2.7) 

The Esscher transform of a single random variable is 
a well-established concept in the risk theory literature. 
Here, we consider the Esscher transform of a stochastic 
process. In other words, the probability measure of the 
process has been modified. Because the exponential 
function is positive, the modified probability measure is 
equivalent to the original probability measure; that is, 
both probability measures have the same null sets (sets 
of probability measure zero). 

We want to ensure that the stock prices of the model 
are internally consistent. Thus we seek h=h*, so that 
the discounted stock price process, {e-aS(t)},ao, is a 
martingale with respect to the probability measure cor- 
responding to h*. In particular, 

S(0) = E* [e-aS(t)] 

= e -a E*[S(t)], 

where 8 denotes the constant risk-free force of interest. 
By (2.1), the parameter h* is the solution of the equation 

1 = e -& E*[eX(°], 

o r  

e a --- M(I, t; h*). (2.8) 

From (2.7) we see that the solution does not depend on 
t, and we may set t=- 1: 

e ~ = M(I, 1; h*), (2.9) 

o r  

= In[M(1, 1; h*)]. (2.10) 

It can be shown that the parameter h* is unique [40]. 
We call the Esscher transform of parameter h* the 
risk-neutral Esscher transform, and the corresponding 
equivalent martingale measure the risk-neutral Esscher 
measure. Note that, although the risk-neutral Esscher 
measure is unique, there may be other equivalent mar- 
tingale measures; see the paper by Delbaen and 
Haezendonck [30] for a study on equivalent martingale 
measures of compound Poisson processes. 

To evaluate a derivative security (whose future pay- 
ments depend on the evolution of the stock price), we 
calculate the expected discounted value of the implied 
payments; the expectation is with respect to the risk- 
neutral Esscher measure. Let us consider a European 
call option on the stock with exercise price K and exer- 
cise date x, x>0. The value of this option (at time 0) is 

E*[e -m (S(x) - K).], (2.11) 

where x+ = x fix>O, and x+ = 0 ifx_O. With the definition 

K = ln[KIS(O)], (2.12) 

(2. 11) becomes 

e-~['[S(O)e x - K l f ( x ,  x;h*)dx 
die 

-S'S(O)SSe~ = e f ( x ,  x;h*)dx 

- e-8"K[ 1 - F ( r ,  x;h*)]. 

It follows from (2.5), (2.6) and (2.8) that 

, e oh°÷ l)~f(x, x) 
e f ( x , x ; h  ) - 

M(h*, x) 

_ M(h*M(h., + 1~ "c)f(x' x;h* + 1) 

= M(1, x;h*)f(x ,  x;h* + 1) 

(2.13) 

= eS~f(x, x;h* + 1). (2.14) 

Thus the value of the European call option with exer- 
cise price K and exercise date x is 

S(0)[1 - F(K, x; h* + 1)] - e-inK[1 - F(~:, x; h*)]. (2.15) 
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In Sections 3 and 4, this general formula is applied 
repeatedly. It is shown that (2.15) contains, among others, 
the celebrated Black-Scholes option-pricing formula as a 
special case. 

2.1 Remarks 
In the general case in which the distribution function 

F(x, t) is not necessarily differentiable, we can define 
the Esscher transform in terms of Stieltjes integrals. 
That is, we replace (2.5) by 

dF(x,t;h) = ehXdF(x, t) 
~? ehydF(y, t) 

ehXdF(x, t) 
M(h, t) 

(2.1.1) 

(In his paper [35] Esscher did not assume that the indi- 
vidual claim amount distribution function is differentia- 
ble.) Formula (2.15) remains valid. 

That the condition of  no arbitrage is intimately 
related to the existence of an equivalent martingale 
measure was first pointed out by Harrison and Kreps 
[42] and by Harrison and Pliska [43]. Their results are 
rooted in the idea of risk-neutral valuation of Cox and 
Ross [24]. For an insightful introduction to the subject, 
see Duffie's recent book [32]. In a finite discrete-time 
model, the absence of arbitrage opportunities is equiva- 
lent to the existence of  an equivalent martingale mea- 
sure ([28], [67]). In a more general setting, the 
characterization is more delicate, and we have to 
replace the term "equivalent to" by "essentially equiva- 
lent to." Discussion of the details is beyond the scope of 
this paper; some recent papers are [4], [5], [23], [29], 
[44], [53], [59], [68], and [69]. 

The idea of changing the probability measure to 
obtain a consistent positive linear pricing rule had 
appeared in the actuarial literature in the context of 
equilibrium reinsurance markets ([12], [13], [19], [20], 
[39], and [73]); see also [77], [2], and [78]. 

Observe that the option-pricing formula (2.15) can 
be written as 

S(O)Pr[S(x) > K; h* + 1] - e-8~KPr[S(x) > K; h*], 

where the first probability is evaluated with respect to 
the Esscher transform with parameter h*+l,  while the 
second probability is calculated with respect to the 

risk-neutral Esscher transform. Generalizations of this 
result are given in Section 6. 

To construct a stochastic process {X(t)} with station- 
ary and independent increments, X(0)=0, and 

m(z, t) = [M(z, 1)]', 

we can apply the following theorem [18, Proposition 
14.19]: Given the moment-generating function ~(z) of  
an infinitely divisible distribution, there is a unique sto- 
chastic process {W(t)} with stationary and independent 
increments, W(0)--0, such that 

E[e ~W(°] = [~(z)]'. 

The normal distribution, the Poisson distribution, the 
gamma distribution, and the inverse Gaussian distribu- 
tion are four examples of infinitely divisible distribu- 
tions. In the following sections, we consider stock-price 
movements modeled with such processes. 

3. Three Classical Option Fon'nulas 
In this section we apply the results of Section 2 to 

derive European call option formulas in three classical 
models for stock-price movements. These three formu- 
las can be found in textbooks on options, such as those 
by Cox and Rubinstein [26], Gibson [41] and Hull [47]. 
Note that Hull's book [47] is a textbook for the Society 
of Actuaries Course F-480 examination. 

3.1 Logarithm of Stock Price as a 
Wiener Process 

Here we make the classical assumption that the stock 
prices are lognormally distributed. Let the stochastic 
process {X(t)} be a Wiener process with mean per unit 
time H and with variance per unit time oa. Let N(x; H, 
oa) denote the normal distribution function with mean la 
and variance oa. Then 

F(x, t) = N(x; Ht, oat) 

and 

M(z, t) = exp[(laz + V2oaz2)t]. 

It follows from (2.6) that 

M(z, t; h) = exp{ [(la + hoa)z + 1/2oaz2]t}. 

Hence the Esscher transform (parameter h) of the 
Wiener process is again a Wiener process, with modi- 
fied mean per unit time 

la + hoa 
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and unchanged variance per unit time ~2. Thus 

F(x, t; h) = N(x; (p + h~2)t, o~t). 

From (2. 10) we obtain 

~} = (I t + h*o  2) + 1/2~. 

Consequently, the transformed process has mean per 
unit time 

p * = p + h * ~  
= ~i - (o'2/2). (3.1.1) 

It now follows from (2.15) that the value of the Euro- 
pean call option is 

s(0)[1 -N(~:; (p* + o2)x, 6z~)] - e -~ K[1 -N(~:; la*x, &x)] 

= S(0)[1 -N(~ ;  (~i + k'9.o~)x, ~x)]  

- e -~ K[1 - N(~:; (8 - 1//202)"c, 0"2'I:)]. (3.1.2) 

In terms of the standard normal distribution function ~ ,  
this result can be expressed as 

S(O)dp( -K + (~ + 0212)X'~ 
k 

e-~,Kdp(-K + (~ - 0212 )x'~ - k ~ x  J '  (3.1.3) 

which is the classical Black-Scholes option-pricing for- 
mula [111. Note that la does not appear in (3.1.3). 

3 . 2  L o g a r i t h m  o f  S t o c k  P r i c e  as  a 

S h i f t e d  P o i s s o n  P r o c e s s  

Next we consider the so-called pure jump model. 
The pricing of options on stocks with such stochastic 
movements was discussed by Cox and Ross [24]; how- 
ever, they did not provide an option-pricing formula. 
The option-pricing formula for this model appeared 
several years later in the paper by Cox, Ross and Rubin- 
stein [25, p. 255]; it was derived as a limiting case of 
the binomial option-pricing formula. (We deduce the 
binomial option-pricing formula by the Esscher trans- 
form method in Section 3.3.) A more thorough discus- 
sion of  the derivation can be found in the paper by Page 
and Sanders [61]. 

Here the assumption is that 

X(t) = kN(t) - ct, (3.2.1) 

where {N(t)} is a Poisson process with parameter ~,, 
and k and c are positive constants. Let 

e-00J 
A(x ;0 )  = ~ j! 

O<j<x 

be the cumulative Poisson distribution function with 
parameter 0. Then the cumulative distribution function 
of X(t) is 

F(x, t ) =  A ( ~ ; ~ . t l .  (3.2.2) 
\ r / 

Since 

we have 

E[e m<°] = exp[~(e  ~ - 1)], 

M(z, t) = E(e ~t~('~']) 

= elZ(dk- l)-cz]t (3.2.3) 

from which we obtain 

M(z, t;h) = e tx'h%'k- l)-cz], (3.2.4) 

Hence the Esscher transform (parameter h) of the 
shifted Poisson process is again a shifted Poisson pro- 
cess, with modified Poisson parameter 2~e hk. Formula 
(2.10) is the condition that 

8 = Leh**(e k - 1) - c. (3.2.5) 

Thus a derivative security is evaluated according to the 
modified Poisson parameter 

Z.* = ke h.k. 

= (5 + c)l(e k - 1). (3.2.6) 

For example, the price of a European call option is, 
according to (2.15) and (3.2.2), 

S(0)[1 - A((~: + cx)/k; ~.*ekx)] 

- Ke-8"[1 - A(0¢ + cx)/k; ~,*x)]. (3.2.7) 

Formula (3.2.7) can be found in textbooks on options 
such as those by Cox and Rubinstein [26, p. 366], Gib- 
son [41, p. 168] and Hull [47, p. 454]. Note that the 
Poisson parameter ~, does not appear in (3.2.7). 

3 .3  L o g a r i t h m  o f  S t o c k  P r i c e  as  a 

R a n d o m  W a l k  

A very popular model for pricing options is the bino- 
mial model, which is a discrete-time model. Although 
this paper focuses on continuous-time models, we think 
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that it is worthwhile to digress and derive the binomial 
option-pricing formula by the Esscher transform method, 
because of its importance in the literature. Indeed, the 
two papers in TSA, by Clancy [22] and Pedersen, Shiu, 
and Thorlacius [63], on the pricing of options on bonds, 
are based on models of the binomial type. 

The binomial option-pricing formula was given in 
the papers by Cox, Ross and Rubinstein [25] and by 
Rendleman and Bartter [65]. In their paper [25], Cox, 
Ross and Rubinstein acknowledged their debt to Nobel 
laureate W.E Sharpe for suggesting the idea. 

Here, we assume that the stock price, 

S(t) = S(O)e x°), t = O, 1, 2 . . . . .  

is a discrete-time stochastic process. Let X,, X 2 . . . .  be a 
sequence of independent and identically distributed ran- 
dom variables. Define X(0)=0 and, for t = 1, 2, 3 . . . . .  x, 

X(t) = Xt + X2 + ... + X,. (3.3.1) 

Let l )  denote the set of points on which X~ has positive 
probability. Assume that f~ is finite and consists of more 
than one point; let a be its smallest element and b its 
largest. To avoid arbitrages, we suppose that 

a < ~ < b .  

Let us assume that {S(0} is a multiplicative binomial 
process; that is, t~ consists of exactly two points: 

f l  = {a ,  b } .  

Suppose that 
Pr(Xj = b) = p 

and 
Pr(Xy = a) = 1 - p. 

Let 

B(x;n, 0 ) =  0 ~j~ ~ (~) Oj(1 - O)"-j 

denote the cumulative binomial distribution function 
with parameters n and O. Then the cumulative distribu- 
tion function of X(t) is 

F(x,  t) = Pr X j < x  
~ j =  1 

Since 

M(z, t) = E[e ~x(°] 

= [(1 - p ) e  az + pebZ] ', (3.3.2) 

we have 

where 

M(z, t; h) = M(z  + h, t)lM(h, t) 

= {[1 - 7t(h)]e a' + rc(h)eb'} ', (3.3.3) 

bh 

n(h )  = pe  (3.3.4) 
(1 - p)e  ah + pe  bh" 

Formula (2.9) is the condition that 

e 8 = [1 - rc(h*)]e" + rc(h*)]e b, (3.3.5) 

from which it follows that 

S e a e - 
rt(h*) = b ," (3.3.6) 

e - e  

According to (2.15), the value of the European call 
option with exercise price K and exercise date x is 

S(0)I1-B(~_aXa;X, r t (h*+ 1))] 

where 

- K  e-S~[1 - B (  ~_aaX ; X, /t ( h * )) ] , 

/t(h* + 1) = lt(h*)eb 
[1 - 7t(h*)]e a + 7t(h*)e b 

= 7t(h*)e ~-~ " 

(3.3.7) 

Note that it is not necessary to know the probability p to 
price the option, since it is replaced by 7t(h*). 

4. Two New Models 
In this section we present two continuous-time models 

for stock-price movements. Similar to the pure jump 
model in Section 3.2, we assume here that 

S(t) = S(O)e TM 

= S(O)e Y~t~', 

where c is a constant. The stochastic process { Y(t)} in 
the first model is a gamma process and in the second 
model an inverse Gaussian process. These two stochas- 
tic processes have been used to model aggregate insur- 
ance claims [33]. Recall that, in the pure jump model, 
all jumps are of the same size. However, this is not the 
case in these two models. 
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4.1 Logari thm of  Stock Price as a 
Shif ted G a m m a  Process  

We assume that 

X(t) = Y(t) - ct, (4.1.1) 

where { Y(t) } is a gamma process with parameters Ix and 
13, and the positive constant c is a third parameter. Let 
G(x; Ix, 13) denote the gamma distribution with shape 
parameter Ix and scale parameter 13, 

G(x;Ix, 13) = - ~ [ ~ v a - l e - ~ Y d v ,  x>O.  
r(ct )~o" 

Then 

a n d  

F(x, t) = G(x + ct; Ixt, 13) (4.1.2) 

M(z,  t) = (~-~_ z)a'e -c'' , z <13. (4.1.3) 

Hence 

( B - h  X~'-~,z <13 h, (4.1.4) M(z , t ;h )  = L13 ' -h - z )  e , z - 

which shows that the transformed process is of the same 
type, with 13 replaced by 13 - h. Formula (2.9) means that 

e s ( ~ - h *  ~ " - ,  = e . ( 4 . 1 . 5 )  
~,13 - h* - 1 ) 

Define 

13. = 13-  h*. 
It follows from (4.1.5) that 

1 
13" = (4.1.6) 

1 - e -(c + 8)/~ • 

According to (2.15) and (4.1.2), the value of the Euro- 
pean call option is 

S ( 0 ) [ 1  - G ( K  + ct; Ixx, 13" - 1)]  

- Ke-~l - G(~: + cx; a'c, 13")]. (4.1.7) 

Note that the scale parameter [3 does not appear in 
(4.1.6) and (4.1.7). 

4.2 Logari thm o f  Stock Price as a 
Shif ted Inverse Gaussian Process  

Here, we also assume that 

X(t) = Y(t) - ct, 
but {Y(t)} is now an inverse Gaussian process with 
parameters a and b. Let J(x; a, b) denote the inverse 
Gaussian distribution function, 

J(x ;a ,b )  = d p ( - a  + 2,~-x) 

+e2"'~ep( -a  2,f~-x) x > 0 ,  (4.2.1) 
~ x -  

where • is the standard normal distribution function. 
(Panjer and Willmot's book [62], which was published 
recently by the Society of Actuaries, has an extensive 
discussion on the inverse Gaussian distribution.) Then 

F(x, t) = J(x + ct; at, b). (4.2.2) 

Since the moment-generating function of the inverse 
Gaussian distribution is 

ea(,A- b4r:~-~), z < b, 

we have 

M(z,  t) = e a'C'~- b'~:--')-c'~, z < b. (4.2.3) 

Consequently, 

M(z,  t;h) = e a'¢ b'5:~-h- b-'rg:'g:--°-c'', z < b-h,  (4.2.4) 

which shows that the transformed process is of the same 
type, with b replaced by b-h. Formula (2.10) leads to 
the condition 

8 = a( f b - : ' ~ - h * - ~ / b - h * - l ) - c .  (4.2.5) 

Writing b*=b-h*, we have 

4rb "~ - ~ - 1 = c + 8, (4.2.6) 
a 

which i.s an implicit equation for b*. It follows from 
(2.15) that the value of the European call option with 
exercise price K and exercise date "t is 

S(0)[1 - J ( ~  + cx;ax, b* - I)] 

-Ke-~[1 - J ( ~  + cx;ax, b*)]. (4.2.7) 

Note that the parameter b does not appear in (4.2.6) and 
(4.2.7). 
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5. Numerical Examples 
In this section we present numerical values for vari- 

ous European call options for the four continuous-time 
models. These values illustrate quantitatively some of 
the verbal statements in Table 17.1 of Hull's book [47, 
p. 438]. We thank Frangois Dufresne for his computer 
expertise. 

ff  we assume that {X(t)} is a Wiener process, only 
one parameter (oz, the variance per unit time) has to be 
estimated for applying Formula (3.1.3). This is a main 
reason for the popularity of the Black-Scholes formula. 
Suppose that, for a certain stock, o=0.2 and S(0)=100. 
Consider a European call option with exercise price 
K=90 six months from now (x=0.5). With a constant 
risk-free force of interest ~5=0.1, the value of the Euro- 
pean call option according to (3.1.3) is 

100~(1.1693)-90e-°°5~(1.0279) -- 15.29. 

Table 1 gives the European call option values for vari- 
ous exercise prices K and times to maturity x. For 
option values corresponding to different values of a,  
see Table 14.1 of Ingersoll's book [48, p. 314]. 

TABLE 1 

BLACK-SCHOLES OPTION PRICES 

[S(0)=100, 5=0.1, ~=0.2] 

Exercise Time to Maturity 
Price 
(K) x = 0.25 x = 0.5 x = 0.75 x = 1 

80 
85 
90 
95 

100 
105 
110 
115 
120 

21.99 
17.21 
12.65 
8.58 
5.30 
2.95 
1.47 
0.66 
0.27 

24.03 
19.52 
15.29 
11.50 
8.28 
5.69 
3.74 
2.35 
1.42 

26.04 
21.74 
17.72 
14.07 
10.88 
8.18 
5.99 
4.28 
2.98 

27.99 
23.86 
19.99 
16.44 
13.27 
10.52 
8.18 
6.26 
4.71 

If the logarithm of the stock price does not follow a 
symmetric distribution, the assumption of a Wiener pro- 
cess is not appropriate. Suppose that the process {X(0} 
has mean per unit time ~t, variance per unit time o 2, and 
third central moment per unit time 03. Let , / =  03/o 3 
denote the coefficient of skewness of X(I). Then 

ln{E[e aC°] } = ln[M(z, t)] 

= tln[M(z, 1)] 

= t[laz + a2z212 + 03z3/3[ + . . . ]  

= t[~tz + o2z212 + yff3z3/3! +. . . ] .  (5.1) 

In the following we assume, as in the Wiener process 
example, c=0.2, S(0)=100 and ~=0.1. Furthermore, we 
assume IX= 0.1 and y=l. 

5.1  S h i f t e d  P o i s s o n  P r o c e s s  M o d e l  

By (5. 1) and (3.2.3), equating the first three central 
moments in the shifted Poisson process model yields 
the equations 

~klc- c = l x, 

kt? = o a 

and 

from which we obtain 

and 

k = y ~ = 0 . 2 ,  

L = T 2 =  1 

c = ( a / r )  - Iz 

--0.1. (5.1.1) 

The resulting value for ~, is not needed, since the calcu- 
lations are done for k* in accordance with (3.2.6). Table 
2 gives the European call option values computed with 
Formula (3.2.7) for various exercise prices K and times 
to maturity x. 

TABLE 2 

POISSON PROCESS MODEL OPTION PRICES 

[S(0)=100, 5=0.1, ~t=0.1, ~=0.2, ~=1] 

Exercise Time to Maturity 
Price 
(K) x = 0.25 x = 0.5 x = 0.75 x = 1 

80 
85 
90 
95 

100 
105 
110 
115 
120 

21.98 
17.10 
12.22 
7.35 
4.39 
3.40 
2.42 
1.43 
0.60 

23.90 
19.15 
14.39 
9.63 
7.83 
6.10 
4.37 
2.64 
1.96 

25.78 
21.14 
16.50 
12.91 
10.63 
8.35 
6.06 
4.32 
3.63 

27.61 
23.09 
18.56 
15.70 
13.01 
10.31 
7.62 
6.42 
5.38 
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5.2 Shifted Gamma Process Model 
By (5.1) and (4.1.3), matching the first three central 

moments in the shifted gamma process model yields the 
equations 

( o g 1 3 )  - c = I x ,  

2 = o 

a n d  

20~3 = 03 = ,~3 ,  

from which it follows that 

Or, = 4 I T  2 = 4,  

13 = 2/(03,) = 10 

and 

c = (2if/T) - Ix 

=0.3. (5.2.1) 

The resulting value for 13 is not needed, since the calcu- 
lations are done for ~* in accordance with (4.1.6). Table 
3 gives the European call option values computed with 
Formula (4.1.7) for various exercise prices K and times 
to maturity x. 

TABLE 3 

GAMMA PROCESS MODEL OPTION PRICES 

[S(0)=100, 8=0.1, B=0.1, ~=0.2, 7=1] 

Exercise Time to Maturity 
Price 
(K) x = 0.25 x = 0.5 X = 0.75 ~ = 1 

80 
85 
90 
95 

100 
105 
110 
115 
120 

21.98 
17.10 
12.22 
7.60 
4.66 
2.93 
1.88 
1.23 
0.82 

23.90 
19.15 
14.50 
10.59 
7.61 
5.45 
3.91 
2.82 
2.05 

25.78 
21.18 
16.89 
13.20 
10.18 
7.80 
5.96 
4.55 
3.48 

27.62 
23.24 
19.17 
15.59 
12.55 
10.03 
7.99 
6.35 
5.05 

5.3 Shifted Inverse Gaussian Process 
Model 

By (5.1) and (4.2.3), matching the first three central 
moments in the shifted inverse Gaussian process model 
yields the equations 

ab-~12 - c = Ix, 

ab-~14 = a 2 

and 

3ab-~18 = 0 3 = ~ 3 ,  

from which it follows that 

a = 3(6t~h/a) ~ = 3(1.2) ~, 

b = 3/(2o"/) = 7.5 

and 

c = (3t~/T) - Ix 

=0.5. 

The resulting value for b is not needed, since the calcu- 
lations are done for b* in accordance with (4.2.6): 

, f ~  - , f ~ -  I = c + 8  
a 

from which we obtain 

0.2 = 

./1.2' 

b* = 81A~o. 

(That b* is a rational number is atypical.) Table 4 gives 
the European call option values computed with Formula 
(4.2.7) for various exercise prices K and times to matu- 
rity x. 

TABLE 4 

INVERSE GAUSSIAN PROCESS MODEL OlrHON 

PRICES 

[S(0)=100, 8=0.1, Ix=0.1, c=0.2,  y=l]  

Exercise Time to Maturity 
Price 
(K) x = 0.25 x = 0.5 x = 0.75 x = 1 

80 
85 
90 
95 

100 
105 
110 
115 
120 

21.98 
17.10 
12.22 
7.70 
4.67 
2.88 
1.83 
1.20 
0.80 

23.90 
19.15 
14.56 
10.63 
7.61 
5.41 
3.86 
2.77 
2.01 

25.78 
21.22 
16.95 
13.23 
10.18 
7.77 
5.91 
4.50 
3.44 

27.64 
23.27 
19.21 
15.61 
12.54 
10.01 
7.95 
6.31 
5.01 

5.4 Remarks 
The four continuous-time models have in common 

that, in each case, all but one parameter can be read off 
from the sample path of the process. The parameters that 
are not inherent in the sample paths are Ix, ~., ~, and b. 
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In each case the probability measure is transformed by 
altering the respective parameter. 

It can be shown that the limit for T--->0 of each of the 
models of Sections 3.2, 4.1 and 4.2 is the classical log- 
normal model of Section 3.1. In this sense these three 
models, in particular, Formulas (3.2.7), (4.1.7) and 
(4.2.7), are generalizations of the classical lognormal 
model and the Black-Scholes formula. 

Stock-price models in the form of 

S(t) = S(O)e "-~°), 

as opposed to 

S(t) = S(0)d °)-", 

are equally tractable. However, they are less realistic, 
since they imply a negative third central moment of the 
logarithm of stock prices. 

Let us write down Equations (5.1.1), (5.2.1) and 
(5.3.1) in one place: 

c = (c/T) - St, (5.1.1) 

c = (2o/T) - l.t, (5.2.1) 

c = (3t~/T) - ~t. (5.3.1) 

It is interesting to observe how these three formulas for 
the downward drift coefficient c differ. It turns out that 
these processes are special cases of a general family, 
which has been studied by Dufresne, Gerber and Shiu 
[33] in the context of collective risk theory. For further 
elaboration, see Sections 5 and 6 of our paper [40]. 

Eight months after this paper was submitted for pub- 
lication, Heston's paper [45] appeared. Heston [45] has 
also introduced the gamma process for modeling 
stock-price movements. His Formula (10a) can be 
shown to be the same as our Formula (4.1.7). 

6. Options on Several Risky Assets 
In this section we generalize the method of Esscher 

transforms to price derivative securities of multiple 
risky assets or asset pools. Some of the related papers in 
the finance literature are [16], [17], [21], [37], [50], 
[56], [57], [58], [66], [75], and [76]. An obvious appli- 
cation of such results is portfolio insurance, or devising 
hedging strategies to protect portfolios of assets against 
losses ([3], [54], [55]). Other applications, such as the 
valuation of bonds involving one or more foreign cur- 
rencies and pricing the quality option in Treasury bond 
futures, can be found in the cited references. In the 
actuarial literature, there are papers such as [3], [8], 

[14], [71] and [72]. The papers by Bell and Sherris [8] 
and by Sherris [72] study pension funds with benefit 
designs offering resignation, death and/or retirement 
benefits that are the greater of two alternative benefits. 
The two alternatives are typically a multiple of final 
(average) salary and the accumulation of contributions. 
Such a benefit design provides the plan participants an 
option on the maximum of two random benefit 
amounts. 

For t_>0, let Sl(t),  S2(t) . . . . .  S,(t)  denote the prices of n 
non-dividend-paying stocks or assets at time t. Write 

Xj(t) = ln[Sj(t)lSj(O)], j = 1, 2 . . . . .  n, (6.1) 

and 

X(t) = (Xt(t),  Xz(t) . . . . .  X,( t)) ' .  

Let R" denote the set  of column vectors with n real 
entries. Let 

F(x, t) = Pr[X(t) < x], x ~ R", 

be the cumulative distribution function of the random 
~,ector X(t), and 

M(z, 0 = E[eZ'XC')], z ~ R", 

its moment-generating function. In the rest of this paper 
we assume that {X(t)},~ o is a stochastic process with 
independent and stationary increments and that 

M(z, t) = M(z, 1)', t > 0. (6.2) 
For simplicity, we also assume that the random vec- 

tor X(t) has density 

8" 
f (x ,  t) = bxl~x2 ... 8x,  F ( x '  t ) ,  t > O. 

Then the modified density of X(t) under the Esscher 
transform with parameter vector h is 

f (x ,  t;h) = eWXf(x'  t) 
M(h, t) 

and the corresponding moment-generating function is 

M(z, t; h) = M(z + h, t)/M(h, t). 

The Esscher transform (parameter vector h) of the pro- 
cess {X(t)} is again a process with stationary and inde- 
pendent increments, and 

M(z, t; h) = [M(z, 1; h)]'. (6.3) 
In the general case where the density function f (x ,  t) 
may not exist, we define the Esscher transform in terms 
of Stieltjes integrals, as we did in (2.1.1). 

The parameter vector h=h* is determined so that, for 
j = 1 , 2  . . . . .  n, 
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{ e-~Sj(t) },~o 

is a martingale with respect to the modified probability 
measure. In particular, 

$i(0) = E[e-~'Si(t); h*], t_>0, j = 1, 2 . . . . .  n. (6.4) 

(Note that these conditions are independent of t.) The 
value of  a derivative security is calculated as the expec- 
tation, with respect to the modified probability measure, 
of the discounted value of its payoffs. 

Define 

1~= (o, o . . . . .  o, L o  . . . . .  o ) ' ~  R o, 

where the 1 in the column vector 1 i is in the j-th posi- 
tion. Formulas (6.4) become 

e a = M(lj, t; h*) 

=[M(1  i ,1 ;h*] ' ,  t > 0 ,  j = l , 2  . . . . .  n, (6.5) 

by (6.3). The following is the main result in this section. 

Theorem 

Let g be a real-valued measurable function of  n vari- 
ables. Then, for each positive t, 

E[e-~Sj(t)g(S~(t), S2(t) . . . . .  S~(t)); h*] 

= Si(O)E[g(Sl(t), S2(t) . . . . .  S~(t)); h* + lj]. (6.6) 

P r o o f  

The proof follows the same line of  argument that we 
used in deriving the European call option formula 
(2.15). The expectation on the left-hand side of (6.6) is 
obtained by integrating 

e~tSi(O)eXJg(Sl(O)eX' . . . . .  Sn(0)eXn) f(x, t; h*) 

with respect to x = (x I . . . . .  x ) '  over R'. Since 
(h* + l j ) 'x  ~ .  

e .fix, t) e~Jf(x, t; h*) = 
M(h*, t) 

_ M(h* + 1 i, t ) f (x ,  t;h* + l j) 
M(h*, t) 

= M ( l p  t ;h*)f(x ,  t;h* + 1i) 

= eS'f(x,  t;h* + l j ) ,  

the result follows. [] 
There is another way to derive the theorem. For k = 

(k I . . . . .  kn)', write 

Then 
S(0 k = Sl(t) k' ... Sn(t) kn. 

E[S(t)kg(S(t)); h] = E[S( t)kg(S( t) )eh'XC°] 
E[eh'XCO] 

_ E[S(t )kg(S( t ) )S( t )  h] 
m 

E[S(t)h].  

_ E[S(t) k÷h] E[g(S( t ) )S( t )  k+h] 
E[S(t) h] E[S(t)  k+h] 

= E[S( t )k ;h lE[g(S( t ) ) ;k+ h] .  

Now the theorem follows from this factorization for- 
mula (with h=h* and k = l )  and (6.4). 

One of  the first papers generalizing the 
Black-Scholes formula to pricing derivative securities 
of  more than one risky asset is by Margrabe [57]. 
Assuming that the asset prices are geometric Brownian 
motions, Margrabe [57] derived a closed-form formula 
for the value of  an option to exchange one risky asset 
for another at the end of a stated period. In other words, 
he determined the value at time 0 of  a contract whose 
only payoff is at time x, the value of  which is 

[S l (x) - S~(x)] ÷. 

C o r o l l u t ' y  1 

The value at time 0 of  an option to exchange S2('t ) for 
S,(x) at time x is 

Sl(O)Pr[Sl(X ) > 82(• ) ;  h *  + ll] -S2(O)Pr[S,(x ) > S2(x); h* + 12]. 

P r o o f  

The option value at time 0 is 

E(e-~r[Sl('~) - S2(x)]+; h*). 

Let I(A) denote the indicator random variable of an 
event A. Then 

[ S , ( x ) -  S2(x)]. = [ S , ( x ) -  S2(x)y[s,(x) > s~(x)] 

= s~(x)l[s,(x) > s~(x)] - s~(x)]l[S~(x) > s~(x))]. 

Thus 

E(e-~[Sl(x) - S2(x)]+; h*) 

= E(e-~[Sl(x)l[Sl(X) > S2(x)]; h*) 
- E(e-8~S2(x)I[Sl(x) > S2(x)]; h*) 
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= Sl(O)E(l[Sl(x)  > S2(x)]; h* + 1~) 
, - S2(O)E(l[Sl(x ) > S2(x)]; h* + 12), 

by the theorem. Since E[I(A)] = Pr(A), the result fol- 
lows. [] 

In Section 7 we discuss the geometric Brownian 
motion assumption and show that Margrabe's formula 
is an immediate consequence of Corollary 1. Now we 
give another derivation for the European call option for- 
mula (2.15). 

Corollary 2 
Formula (2.15) holds. 

Proof 
Consider n=2 with Sl(t)=S(t)  and S2(t)=Ke s('-~). Then 

X(t) = (Xl(t), X2(t))" = (X(t),  ~t)', 

M(z, t) = M(z  l, t ) ?  ~, 

and 

M(z, t; h) = M(z~, t; h ~ ) ?  a. (6.7) 

Since the parameter h 2 does not appear in the right-hand 
side of (6.7), the parameter h* is arbitrary, and h* = 
h*. Thus the value of the European call option is 

E*(e-~[S(x)  - K]+) 

= E ( e - ~ S l ( x )  - S2(x)].; h*) 

= S~(O)Pr[S~(x) > S2(x); h* + 1~] 
- S2(O)Pr[S,(x) > S2(x); h* + 12] 

= S(O)Pr[S(x) > K; h* + 1] - e-mKPr[S(x )  > K; h*] 

= S(0){ 1 - Pr[S(x) < K; h* + 1] ] 
- e -8' K{ 1 - Pr[S(x) <_ K; h*] }, 

which is formula (2.15). [] 

Margrabe's work [57] was extended by Stulz [75], 
who also assumed that the asset prices are geometric 
Brownian motions. B y  laborious calculation, Stulz 
derived formulas for valuing options on the maximum 
and the minimum of two risky assets; that is, he found 
the value at time 0 of a contract with payoff at time x 

(Max[S I(x), S:(x)] - K)+ 

and the value at time 0 of a contract with payoff at time x 

(Min[Sl(X), S2(z)] - K)+. 

These two option formulas of Stulz were generalized to 
the case of n risky assets by Johnson [50]. Indeed, one 
may further ask the following questions: How much 
should one pay at time 0 to obtain (the value of) the 
second-highest value asset at time x? The third-highest 
value asset? The k-th highest value asset? More gener- 
ally, what is the value of the European call option on the 
k-th highest value asset at time x with exercise price K? 
Note again that, in the papers quoted in this paragraph, 
the asset prices are assumed to be geometric Brownian 
motions. 

For a fixed time x, x>0, let .~ denote the set consist- 
ing of the random variables {Sj (x); j= 1, 2 . . . . .  n}. Let 
St¢ denote the random variable defined by the k-th 
highest value of S. Thus, St~ l and St, 1 denote the maxi- 
mum and minimum of S, respectively. 

Corollary 3 
Assume that X(t) has a continuous distribution. Then 

the option to obtain the k-th highest value asset at time x 
is worth 

n 

~ S ~ ( O )  Pr(Sj(x) ranks k-th among $; h* + lj) (6.8) 
j = l  

at time 0. 

Proof 
The option value at time 0 is 

E(e4~Stkl; h*). 

Since X(x) has a continuous distribution, we have the 
identity 

n 

Stkl = ~ ,S~(x ) l [S~(x )  ranks k-th among S]. 
j = l  

Formula (6.8) now follows from the theorem. [] 

Corollary 4 
Assume that X(t) has a continuous distribution. Then 

the European call option on the k-th highest value asset 
at time x with exercise price K is worth 

n 

~ s~(0) Pr(Sj(t) > K and S~(t) ranks k-th among S; h* + 1 i) 

j = 1 - e-~KPr(Stkj > K; h*) (6.9) 

at time O. 
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The proof for Corollary 4 is essentially a combina- 
tion of  the proofs for Corollary 2 and Corollary 3. Note 
that, when K= 0, Corollary 4 becomes Corollary 3. 

There are obviously many other applications of the 
theorem. For example, in a paper recently published in 
the Journal of  the Institute of  Actuaries, Sherris [71] 
analyzed the "capital gains tax option," whose payoff at 
time x is 

(S(x) - Max[C(x), K])+, 

where S(x) denotes the price of a risky asset at time t 
and C(t) denotes the value of an index at time t. Sherris's 
result follows from the formula 

(S - Max[C, K))+ = S I(S > C and S > K) 

- [CI(S  > C > K)  + KI(S  > K > C)]. 

Let us end this section by showing that an American 
call option on the maximum of n non-dividend-paying 
stocks is never optimally exercised before its maturity 
date. Consequently, the value of  the American option is 
given by Corollary 4 (with k=l).  The proof is by two 
applications of Jensen's inequality: 

E[e-'~'(Max{Sj(t) } - K)+; h*] 
> (E[e-SqVlax{Sj(t)}; h*] - e-&K)+ 
> (Max{E[e-~'Sl(t); h*] } - e-8'K). 

= (Max{Sj(0)} - e-*'K)+ 

>_ (Max { sj(o) } - K)+ 

For t>0 and 5>0, the last inequality is strict if the 
option is currently in the money, that is, if 

i a x { S j ( 0 ) }  > K. 

7. Logarithms of Stock Prices as a 
Multidimensional Wiener Process 

In the finance literature, the usual distribution 
assumption on the prices of the primitive securities is 
that they are geometric Brownian motions. In other 
words, {X(t)} is assumed to be an n-dimensional 
Wiener process. We now show that many results on 
options and derivative securities in the literature are rel- 
atively straightforward consequences of the theorem 
and its corollaries. 

Following the notation in Chapter 12 of Hogg and 
Craig's textbook [46] for the Course 110 examination, 

we let la=(p~, la2 . . . . .  la,)' and V= (a o) denote the mean 
vector and the covariance matrix of  X(I), respectively. It 
is assumed that V is nonsingular. For t>0, the density 
function of X(t) is 

1 -(x-tp'(2tV)-Ix-tp) Rn" 
f (x ,  t) = (2r0,/2ltV 11/2 e , x 

It can be shown [46, Section 12.1 ] that 

M(z, t) = exp[t(Z'la + 1/2 z'Vz)], z ~ R". 

Thus, for h ~ R n, 

M(z, t; h) = M(z + h, t)lM(h, t) 

=exp{t[Z'(la+Vh)+Vg.z'Vz]}, z ~  R n, 

which shows that the Esscher transform (parameter vec- 
tor h) of the n-dimensional Wiener process is again an 
n-dimensional Wiener process, with modified mean 
vector per unit time 

p + V h  

and unchanged covariance matrix per unit time V. 
Equations (6.5) mean that, for j =  1, 2 . . . . .  n, 

= 1~ (p + V h * ) +  1/21~Vlj, 

from which we obtain 

la + V h *  = ( 5 -  ½ f i n ,  5 -  1/za22 . . . . .  5 -  ½on,)' .  (7.1) 

Consequently, the mean vector per unit time of the 
modified process with parameter vector h*+lj  is 

p +V(h*  + lj) = (5 + f f l j -  1/'20"11 , ~ + ~2j-- 1/2~22 . . . . .  

+ • - 1/2 ~n.)'- (7.2) 

Note that the right-hand sides of (7.1) and (7.2) do not 
contain any elements of p. 

To derive Margrabe's [57] main result, we evaluate 
the expectation 

E(e -~¢ [St('0 - S2(x)].; h*), 

which, by Corollary 1, is 

St(0)Pr[Sl(X ) ) S2(~); h*+l,] - S2(O)Pr[S,(x) > S2(x); h*+lz] 
= S I ( 0 ) P r [ Y  < ~;  h*+ll] - S2(0)Pr[Y < ~; h*+12], 

where 

and 

Y = X2(x) - X,(x) (7.3) 

= ln[S,(O)lS2(O)]. (7.4) 
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Now, Y is a normal random variable with respect to any 
Esscher transform, 

E(Y; h* + ll) = [(5 + O"21- 1/2022 ) - ( 5  + O l l -  1//2 (~ll)]X 

= (- 1/2°n + (~2~ - 1/2(~2z)x 

and 

E(Y; h* + 12) = [(~5 + (~22 -- 1//2022) -- (5  q" O12 -- 1//2 (]~ll)]X 

---- (-- 1/'2 (~11 + (~12 -- 1/'2 (~22)X" 

The variance of Y does not depend on the parameter 
vector; it is 

((~11 - 2(~12 + (~22) x. 

With the definition 

v 2 = t~lx - 2012 + t~22 (7.5) 

(the variance per unit time of the process {Xt(t)-XE(t)}), 
we have 

E(Y; h* + l t)  = -v2x/2, 

E(Y; h* + 12) = vex/2 
and 

Var(IO = v2x. 

Thus the value (at time 0) of the option to exchange 
S2(x) for St(x) at time x is 

S'(O)t}( ~+v2~/21-s2(O)tb(~-v:x/2)v4x / , v S '  (7.6) 

which is the formula on p. 179 of Margrabe's paper [57]. 
It is somewhat surprising that (7.6) does not depend 

on the risk-free force of interest, 5. Note also that, if 
S2(t)=Ke -~C~"), (7.6) becomes the Black-Scholes for- 
mula (3.1.3). 

Next we calculate the value (at time 0) of the option 
to receive the greater of  S~(x) and S2(x) at time x. 
Because of  the identity 

Max[Sl(x), S2(x)] = S2(x ) + [SI(X ) - -  S2('1~)]+, 

the option value is 

$2(0 ) + e -8~ E([St(x ) - S2(x)]+; h*), 

which, by (7.6), is 

+ - v2x/2"] "] 

~).A ) ~),A )J 

[ln[Sl(O)/S2(O)] + v2x/2) 
= S t ( 0 ) ~ /  

{ln  [S2(0) / /S t  (0 ) ]  "[" ~ . (7 .7)  + s~(o).~ ~ v2x12) 

This result can also be obtained by applying Corollary 3 
(with n=2). Again, it is noteworthy that (7.7) does not 
depend on 5. 

Let us also derive the results in Stulz's paper [75] 
and in Johnson's paper [50]. By Corollary 4 (with n=2), 

E(e-S'{Max[St(x), S2(x)] - K}+; h*) 

= E[e-&(Stq - K')+; h*], 

= St(O)Pr[SI(x) > K and St(x) > S2(x); h* + It] 

+ S2(O)Pr[S2(x ) > K and S2(x) > St(x); h* + 12] 

-Ke-e~Pr[S~(x) > K or S2(x) > K; h*]. (7.8) 

First, we evaluate the last probability term, 

Pr[SI(x) > K or S2(x) > K; h*] = 
1 - Pr[St(x) < K and S2(x) < K; h*]. 

Similar to (2.12), define 

~l = ln[K/St(O)] (7.9) 

and 
= in[K/S2(O)]. (7.10) 

Then 

Pr[S~(x) < K and S2(x ) _< K; h*] 
= Pr[Xt(x ) _< s: t and X2(x ) _ s:2; h*]. (7.1i) 

By (7.1) 

and 

E[Xt(x); h*] = (8 - V2o~0x 

E[x2cx); h*] = (~i - 1/2 O22)x. 

Let t~E(a, b; p) denote the bivariate cumulative standard 
normal distribution with upper limits of integration a 
and b and coefficient of correlation p. (For vario0s 
properties of • 2 , see Section 26.3 in the book by 
Abramowitz and Stegun [1]). Write 

o ,  = ~ ( 7 . 1 2 )  

and 
P,: = o,/1(o,%). (7.13) 
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Then the probability defined by (7. 11) is 

02" (K' - ( ~ -  t ~ / 2 ) x  r,2- ( 8 -  t~/2)x pl2) (7.14) 
m ~ ~ 2 A  ' " 

) 
To obtain approximate numerical values for (7.14), we 
can use formulas (26.3.11) and (26.3.20) together with 
Figures 26.2, 26.3 and 26.4 in the book by Abramowitz 
and Stegun [1]. An algorithm to calculate the bivaxiate 
cumulative standard normal distribution to four-decimal- 
place accuracy can be found in the paper by Drezner 
[31 ]. The Drezner algorithm (with a typo corrected) can 
be found in Appendix 10B in Hull's book [47, p. 245] 
and in Appendix 13.1 in the book by Stoll and Whaley 
[74, p. 338]. 

Next, we evaluate the first probability term in (7.8), 

Pr[S,(x) > K and S,('i;) > S2("c); h* + li] 
= Pr[-XI(X) < -~:, and X2(x)-X,(x) < {; h* + lt], (7.15) 

where the constants ~:1 and { are defined by (7.9) and 
(7.4), respectively. Now, 

E[-Xl(x); h* + 1,] 

E[X2(x)-X,(x); h* + ll] 

Var[X2(x)-Xl(X); h] = 

and 

Cov[ -X, (x ) ,  x2(x)-x~(x); h) : 

where v is defined by 
expressed as 

= - ( 8  + (~,, - Vu o , , ) x  

~-~ --(~ 4" 1/~OII)X , 

= (-gUO,l + (S~2 - Vua~2)x 
= -v2x/2, 

(t~l, - 20,2 + O2z)X 
v2,[ 

CoV(Xl(l~), Xl('~)-X2(x); h) 

(~11 -- ~12) '~ 

= [~l(l~l -- P1202)]X, 
(7.5). Thus (7.15) can be 

- Pl2(~2/i (7.16) 01) 2 7 1(1 4- (8 4" '/2 (Y~)X ~ 4" (v2x/2). (~, 

By symmetry, we can write down the expression, in 
terms of the distribution 02, for the second probability 
term in (7.8). Hence the value at time 0 of  the European 
call option on the maximum of two risky assets with 
exercise price K and exercise date x is 

Sl(O)(i)2(-  ]~l 4- (8 4- '/2 1~21 )~ [ 0", ,j~ 

ln[S,(O)/S2(O)] + vz'[/2. ~l--_P12~2~ 

v4q v ) 

S~(0)Of-  ~:2 + (t5 + '/2 ~ ) x  + [ 

_K e -s~ 

In[ S2(O)/S,(O) ] + v2x/2, c2 - p,2t~, ~ 
V , ~  ' V ) 

1 - O 2  /2Cl)x, 12~z)X; Pl2 , 

(7.17) 
which is the same as equation (6) in Johnson's paper 
[50, p. 281]. 

Let us also consider the expectation 

E[e-~[Min[Sl(X), S2(x)] -K)+; h*], 

which by Corollary 4 (with n=2) is 

SI(O)Pr[K<St('c) < $2('0; h* + 11] 

+ S2(O)Pr[K<S2(x) < SI(x); h* + 12] 

-Ke-~Pr[K<SI('C) and K < S2(x); h*] 

= Sl(O)Pr[-Xl(x) <-K, and Xl(x ) - X2(x ) 

< ln[S2(O)lSl(O)]; h* + 11] 

+ Ss(O)Pr[-X2(x ) < -r~ and X2(x ) - Xl(X ) 

< In[S,(O)IS2(O); h* + 12] 

-Ke-~Pr[-XI(x) < - r ,  and -X2(x) < -r.2; h*]. 

By a calculation similar to the above, we obtain the 
value at time 0 of the European call option on the mini- 
mum of two risky assets with exercise price K and exer- 
cise date x: 

S l (0 )Of -  ~:1 + (8 + '/2 o~)x 
O.1, ~ 

h l [S2 (O) /S l (O) ]  -V2"C/2. pl2o2 - ol'~ 

v,~ff~ ' v ) 
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S2(O)¢' f -  r.5 + (8 + 95 o~)'r + 
02 ~ 

I n t S I ( O ) / / S 2 ( O ) ] -  V2~ / /2  P I20v - -O2  ) 

v~h 

_K e -a¢ 

-- [ I  + (5  -- 1201 -- ~2 =1" (5  -- (I)5 )x, /502)x; P12 • 

(7.18) 
This is the same as formula (11) in Stulz's paper [75, p. 
165] (both 65d~ should be G2x) and formula ,(8) in 
Johnson's paper [50, p. 281]. 

Because of the identity 

(Max[S~(x), Ss(x)] - K)+ + (Min[S,(x), Ss(x)] - K)+ 

= [S~(~) - KI+ + [S2(x) - K]+, 

the sum of (7.17) and (7.18) should be 

s,(o),t, ( -  ~:, + (~ + 1/2 0] )~. 

_Ke_6,~(-  r~, + (8 - 115 a] )x) • 
 ,.ff ) 

+ & ( 0 ) a , ( -  ~:5 + (Sa_~__.~ + '/5 0~)~]) 

- K e - " * ( -  K5 + (8 - 112 Oi)'C) 

We can verify this algebraically by applying the formulas 

(l)z(a, b; p) + (l)2(a, -b;  -p )  = (l)(a) 

and 

(I)2(a, b; p) - (I)2(--a, -b;  -p)  = (/)(a) - (l)(-b) 

= (l)(a)  + (I)(b) - 1. 

Johnson [50] also gave formulas for European 
options on the maximum and the minimum of n risky 
assets with exercise price K. These formulas are of 
course special cases of Corollary 4. Let us end this sec- 
tion by showing how to evaluate the first probability 
term in (6.9) (with k= 1), 

Pr[Sl(x) > K and S~('r,) ranks first among S; h* + 11] 

= Pr[S~(x) > K, Sl('r) > S2(x) . . . . .  

SI(x) > S,(x); h* + 11]. (7.19) 

Write 

w = (o, x2(x), x3(x) . . . . .  x.(x))', 
1 = ( 1 ,  1, 1 . . . . .  1)' 

and 

s = (ln[SI(0)/K], ln[Sl(O)lS2(O)], ln[S l (O) /S3(O)]  . . . . .  

ln[Sl(O)/S.(O)])'. 

Let N,(x; Ix, V) denote the n-dimensional normal distri- 
bution function with mean vector la and covariance 
matrix V. Then the probability expressed by (7.19) is 
the same as 

Pr[W -X~(x)l  < s; h* + ll] 

=N,(s;  E [ W - X I ( x ) I ;  h* + 1~], xY), (7.20) 

where "~Y = (xy0) denotes the covariance malxix of the 
random vector W - X~(x)I. By (7.2), 

E[W - XI(x)I; h* + ll] 

= E(W; h* + ll] - E[XI(x)I; h* + 11] 

= (0, 5 "~" O21 -- 1//9-(~22 . . . . .  5 'J¢ Onl -- 1//9.(~nn) I 
- (5 + o1~ - 1/2o11)1 

= (--~, O21 -- 1//2022 . . . . .  Onl -- lt/20nn )" 
- V2oltl. 

To find the matrix Y, which is independent of h*, 
observe that 

[ W  - X l ( x ) l ]  [ W  - X~(x ) I ] '  

= W W '  - X~(x)[WI' + lW']  + [X~(x)]211 ". 

T h u s  

for i>1, 
Yll = (~'11; 

Yil =Yu =-'~il + (~11; 

and, for i¢1 and j~ l ,  

Yij = Yji = oij - (O~l + %1) + all.  

As a test of understanding of the method presented 
in this paper, the interested reader is encouraged to 
work out all the probability terms for evaluating the 
options with payoffs (Stll-K)+ and (St,1-K)+. Answers 
can be checked against the published formulas in 
Johnson's paper [50]. 
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8. Conclusion 
The option-pricing theory of Black and Scholes [11] 

is perhaps the most important advance in the theory of 
financial economics in the past two decades. Their the- 
ory has been extended in many directions, usually by 
applying sophisticated mathematical tools such as sto- 
chastic calculus and partial differential equations. A 
fundamental insight in the development of the theory 
was provided by Cox and Ross [24] when they pointed 
out the concept of risk-neutral valuation. This idea was 
further elaborated on by Harrison and Kreps [42] and 
by Harrison and Pliska [43] under the terminology of 
equivalent martingale measure. 

Under the assumption of a constant risk-free interest 
rate, this paper shows how such equivalent martingale 
measures can be determined for a large class of stochas- 
tic models of asset price movements. Any Esscher 
transform of the stochastic process {X(t)} provides an 
equivalent probability measure for the process; the 
parameter vector h* is chosen such that the equivalent 
probability measure is also a martingale measure for the 
discounted value of each primitive security. The price 
of a derivative security is calculated as the expectation, 
with respect to the equivalent martingale measure, of 
the discounted payoffs. In other words, after an appro- 
priate change of probability measure, the price of each 
security is simply an actuarial present value. 

We hope that this paper helps demystify the proce- 
dure for valuing European options and other derivative 
securities. If actuaries can project the cash flow of a 
derivative security, they can value it by using what they 
learned as actuarial students--by discounting and aver- 
aging. The one difference is that averaging is done with 
respect to the risk-neutral Esscher measure, which this 
paper shows how to determine. 
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