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Abstract 
 

This paper provides a formal analysis of payout adjustments from a 
longevity-risk-pooling fund, an arrangement we refer to as group self 
annuitization (GSA). The distinguishing risk diffusion characteristic of GSAs in 
the family of longevity-insurance instruments is that the annuitants bear their 
systematic risk, but the pool shares idiosyncratic risk. This obviates the need for 
an insurance company, although such instruments could be sold through a 
corporate insurer. We begin by deriving the payout adjustment for a single-entry 
group with a single-annuity factor and constant expectations. We then show that, 
under weak requirements, a unique solution to payout paths exists when multiple 
cohorts combine into a single pool. This relies on the harmonic mean of the ratio 
of realized-to-expected survivorship rates across cohorts. The case of evolving 
expectations is also analyzed. In all cases, we demonstrate that the periodic 
benefit payment in a pooled annuity fund is determined based on the previous 
payment adjusted for any deviations in mortality and interest from expectations. 
GSA may have considerable appeal in countries which have adopted national 
defined-contribution schemes and/or in which the life insurance industry is 
noncompetitive or poorly developed. 
 
Journal of Economic Literature Classification Numbers: D91; G18 
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1. Introduction and Motivation 

From a theoretical perspective, annuitization is a natural mechanism for 
insuring against longevity risk, especially at retirement. Risk-averse individuals 
value annuities highly (Mitchell, 2002). However, voluntary annuity markets 
remain thin, and there is evidence that risk-sharing through transfers is limited 
even within families (Hayashi, et al., 1996). Annuity demand remains low despite 
tax concessions, perhaps because annuity loadings are often penal, especially in 
small economies such as Australia's (see, for example, Doyle, et al., 2001), or in 
countries where the financial sector is not well developed. Supply also appears 
reluctant, perhaps because of an industry perception that systematic risk, in the 
form of breakthrough life-prolonging technical innovation, may bankrupt an 
insurance company with a large life-annuity portfolio. This has led to a situation 
where almost no voluntary longevity risk-spreading takes place in the private 
market, in spite of its clear welfare-enhancing effects (Kotlikoff and Spivak, 1981; 
Kingston and Piggott, 1999). 

Milevsky and Robinson (2001) develop the mathematical analysis that can 
be made by individuals at retirement who face the choice between voluntary 
annuitization and self-annuitization. Self-annuitization provides greater liquidity 
than voluntary annuitization; however it does so at the cost of possibly outliving 
resources. Albrecht and Maurer (2002) evaluate that risk by calculating a personal 
probability of consumption shortfall and show that it is substantial, particularly 
for high-entry ages. 

A possible response is to separate the systematic from the idiosyncratic 
risk. Groups could be formed to pool idiosyncratic risk within a clear framework 
with specified legal rights and obligations, but payouts could be conditioned to 
the mortality experience of the group. This concept of GSA was mooted by 
Wadsworth et al. (2001) and Martineau (2001). A group-self-annuity plan will 
allow retirees to pool together and form a fund that can provide for protection 
against longevity. With the right implementation, GSA can provide a less 
expensive form of insurance against the risk of longevity. 

This is not the only contribution in recent times to address the problem of 
systematic longevity risk. An alternative policy strategy which would allow 
annuity issuers to immunize their systematic longevity risk is for the government 
to issue "survivor bonds," in which payouts are linked to evolving mortality in a 
manner analogous to "indexed bonds," whose payouts are linked to evolving price 
inflation (Blake and Burrows, 2001). Thus far, no such bonds have been issued. 

In the United States, annuities where payments reflect evolving mortality 
have for some time been issued by the Teachers Insurance and Annuity 
Association (TIAA) through its companion organization College Retirement 



 

Equities Fund (CREF). Mortality experience of its participants receiving lifetime 
income is tracked and this historical experience is used as a guide in the annual 
adjustment to the mortality participation factor. TIAA-CREF reports that 
historically, the impact of annual mortality adjustments has been relatively 
modest.1 Brown et al. (2001) provide additional commentary on the TIAA-CREF 
product. Weil and Fischer (1974) indicate that in general, the initial benefit 
payment calculation is based on a conservative interest rate and mortality 
assumptions. Most of the adjustments have reflected investment experience and 
very little on errors resulting from mortality projections. However, there appears 
to be no formal treatment of how benefit adjustments for these types of products 
should be calculated, even with annuities issued by TIAA-CREF, or what 
conditions these adjustments should satisfy. 

This paper aims to present a systematic procedure for valuing GSA 
payouts in the presence of changing mortality. It begins in section 2 by identifying 
the determinants of the periodic payment time path of a GSA payout, assuming 
that a single cohort with identical a priori mortality characteristics is participating, 
that there is a single safe asset with a constant rate of return and that there is no 
government intervention. This can be readily generalized to the case where the 
payouts are underwritten by a risky portfolio, and where members of the pool 
bring different accumulations for annuitization (section 3). We show that the ratio 
of the expected-to-actual proportion of survivors is central to these adjustment 
formulae. 

More complicated cases are then introduced. The pool is "opened," so that 
successive cohorts (with differentiated annuity factors) may participate in the 
pool. In section 4 we extend our analysis to encompass multiple cohorts, joining 
the pool at arbitrary time points, with differentiated annuity factors. We find that 
under remarkably weak requirements, essentially equi-proportional payout 
adjustment, the adjustment is uniquely given by the harmonic mean of the 
expected-to-realized survival proportions for each cohort. In section 5, we allow 
expectations about mortality change to evolve over time as new information about 
mortality emerges. Section 6 provides a numerical illustration demonstrating the 
ideas developed in the paper. We conclude in section 7. 

2. A Simple Actuarial Analysis of GSA Plans 

A GSA plan will initially operate like an ordinary life annuity purchased in 
the private market so that much of the initial pricing procedure consists of 
calculating the annuity payout rate. This benefit payout formula must capture 
both the annuitant's expected mortality in the future, accounting for anticipated 

                                                 
1 All TIAA-CREF pension annuities have been priced on a merged-gender basis since 1983. 
Improvements in mortality in the United States for some time have tended to favor men. 



 

mortality improvements, and the expected rate of return on the investment 
portfolio; for simplicity, we assume a flat yield curve. If these expectations are 
actually realized over time, the payout rates determined at the point of entry will 
remain constant. Assume that at time 0 , a pool of x  annuitants, all aged x , 
decides on the amount they expect to receive periodically in the future. Suppose 
that amount is a level payment of 0B  so that the starting total fund is: 
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0
00 =⋅= ∑

∞

=
+  (1) 

where z  denotes the expected number of lives to survive to age z , ( )Rv += 1/1  is 
the discount factor, and xa  is a standard actuarial notation for the annuity factor. 
We use this notation throughout the paper; for convenience, Appendix B lists 
some of the actuarial and algebraic symbols we use. Its value is given by: 
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and is interpreted as the expected present value of a life annuity-due that pays a 
periodic payment of one at the beginning of the period.2 

We now derive a principle for the development of future benefit payments 
in the case where the actual survival pattern is different from expected, i.e., the 
number of individuals in the fund surviving is different from expected. In this 
case, it is not possible to continue to pay out the level payment determined at the 
beginning since this would result in fund imbalance. The number of actual 
survivors will be superscripted by a * so that the actual number of survivors at 
each future period will be: 

,... ..., , , **
2

*
1 txxx +++  

where x  is fixed and known. We assume that investment earnings rates will be 
realized as assumed. We now determine the distribution formula for future 
benefit payments (again superscripted by *). There remains no change at time 0 so 
that the payment per survivor is 0B  as in equation (1). At time1, however, the 
fund becomes: 

( )( ) ( )( )RaBRBFF xxx +−=+−= 111 0001 . 

Spreading this across the remaining survivors during their expected future 
lifetime, the periodic benefit payment becomes 

                                                 
2 A similar formula can be derived for the case of an annuity-immediate. 
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Using the recursive relationship for annuity factors (see, for example, Bowers, et 
al., 1997), 

( )( ) xxx pRaa 1111 ⋅+−=+  (2) 

where xxxp /1+= , we have: 
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where p denotes the expected annual survivorship rate, with the superscripted * 
denoting the realized annual survivorship rate. Note that the adjustment factor is 
based on the ratios of survivorship rates rather than the numbers of survivors. 

Proceeding inductively, at any time t  in the future, we would have the 
benefit payment determined as: 
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The extension to the case where the investment earnings pattern is different 
from the assumed constant rate of R  is straightforward. Assume that the actual 
investment earnings rates are: 
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2

*
1 tRRR  

where the subscript denotes the period. At time t , the fund will equal to: 

( )( ) ( )( )*
1

*
1

*
1

**
1

*
1

*
1

* 111 ttxttxtttxtt RaBRBFF +−=+−= −+−−+−−+−  

and spreading this across the remaining lives, we have: 
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Using (2) and with some transformations, we have 
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Hence, we observe that the payment for period t  depends on the payment for 
period 1−t  and two adjustment factors: the first one is related to the difference in 



 

expected and realized mortality during the previous period and the second factor 
is related to the difference in the expected and realized investment earnings rate 
for the period. 

The essential feature in the calculations demonstrated above, i.e., the result 
in formula (3), is that the periodic, here assumed annual, benefit payout rates can 
be determined from the previous benefit payout rates multiplied by two 
adjustment factors. The generic adjustment is given by 

tttt IRAMEABB ××= −
*

1
*  (4) 

where tMEA  is the mortality experience adjustment and tIRA  is the interest rate 
adjustment for the period from year 1−t  to t . 

 This is how a GSA plan is anticipated to operate: recompute the benefit 
payouts periodically using the most recent benefit payouts and multiply by 
adjustment factors. If, for example, mortality is lighter than expected for the 
period, it will lower the next period's benefit payouts. The intuition here is that 
the funds that accumulate will have to be spread across a larger surviving group 
and there is less "inheritance" than expected. Similarly, if investment earnings for 
the period were worse than expected, there will also be lower benefit payouts. 

In the following sections, we extend formula (4) to include more 
complicated but realistic situations. 

3. Varying Contributions and Annuity Payouts 

The previous section developed a straightforward calculation of the benefit 
payout rates assuming that participants contribute equal amounts into the fund 
and in return, receive equal amounts of annuity benefit payments. Consider the 
case where we allow varying amounts of contributions and annuity payout rates 
for the participants. To fix notation, assume that at the beginning of the period 

0=t , there is a cohort 0A  of individuals all aged x  who join the group. The i-th 
annuitant brings an amount 0,iF  into the fund at 0=t  so that the total fund at the 
beginning of the period is: 
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where xaFB /00 =  is the level annuity benefit payment for the entire group. Thus, 
it is clear that: 
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After one period, that is at 1=t , the entire group's fund value becomes 
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and is used to determine the next annuity payout. For the entire group or cohort, 
it is 
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so that the benefit payout rate per unit of fund is equal to 
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For any annuitant j who is alive at the end of the period, the benefit payout rate 
can be computed using 

1

*
1,

*
1,

*
1,

*
1,

1

*
1,

*
1,

*
1,

*
1,

1

*
1,

*
1,

*
1*

1,*
1,

*
1*

1,
10

1

01

11

+++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=⋅
+

=⋅=⋅=
∑∑

∑
∑∑

∑∑ x

j
A

i
D

ij

x

j

A
i

D
i

A
i

x

j

A
i

j

A
i

j a

FFFF

a
F

F

FF

a
F

F
FF

F
BB  

where the second term in the numerator is an additional benefit to the annuitant 
derived from a redistribution of the funds available from those who died during 
the period. One can think of this as a form of "inheritance" derived from those 
who died in the group. We denote the whole numerator by *

1,
ˆ

jF . Some algebraic 
manipulation leads us to a further adjustment formula: 
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Therefore, the next year's benefit payout rate is calculated by adjusting the 
previous year's benefit payout rate by a factor due to mortality and another factor 
due to interest rates, and again we have the pattern of formula (4). We can 
inductively extend this to time t . The annuity benefit payout rate for an annuitant 
who survives to time t  can be determined using the following adjustment 
formula: 
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can be interpreted as the realized proportion of the fund surviving from 1−t  to t . 
We define 
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as the realized survivorship rate of a unit of fund. Thus, we see that this benefit 
payout formula fits formula (4) where in this case, we have the mortality 
adjustment 
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and the same interest rate adjustment 
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The following simple example, as depicted in Figure 1, shows the effect on 
the benefit payment when a deviation in mortality occurs in a single period. Here 
we consider a single individual belonging to the age-60 cohort joining at plan 
inception whose initial benefit payment is established at $300 per period. 
 

The interest rate used in this and all following examples in the paper is a 
level 4 percent per annum. The mortality basis used is the U.S. RP-2000 Male 
Healthy Annuitant, selected for no special reason except that the tables extend to 
age 120, allowing us to follow retirees over an extended period. These tables form 



 

the standard basis for valuing pension plan liabilities in the United States.3 Life 
expectancy at age 60 is 21.1 years. After 15 years, 75 percent of the entrants aged 
60 are still alive. 
 
 

Figure 1 
Payment Adjustment due to Mortality Deviation in a Single Year 
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Figure 1: The figure shows the effect of the payment adjustment in the case of deviation in 
mortality in the period between t = 15 and t = 16 in the case of a single cohort. 

A deviation in the mortality rate at period 15 requires a benefit adjustment from 
this initial value at time 16=t . In particular, a drop in the mortality rate at period 
15 by 50 percent causes the benefit payment to drop to $294, approximately a 2 
percent drop, and as expected, benefit payment levels off after that. 

4. Cohort Analysis 

We now introduce cohorts with different annuity factors entering the pool 
at different points in time. The specifications of (4) now change, of course, so that 
expectations current at joining are embodied in the new annuity factor. The 
underlying principle is that the contract offered be actuarially fair at the time it is 
                                                 
3 See the Society of Actuaries report on the RP-2000 Mortality Tables available at 
http://www.soa.org/ccm/content/research-publications/experience-studies-tools/the-rp-2000-
mortality-tables/. 



 

closed. Otherwise, the funds will either have no new clients or be flooded with 
takers. 

In order to integrate the new entrants with existing members in the fund—
and thus exploit risk-pooling—in an actuarially fair manner, two things must 
happen. First, the benchmark benefit offered must reflect expectations held at the 
time of joining. Second, the payout paths of all the groups must capture 
idiosyncratic risk across the two groups in a seamless way. 

Four criteria can be formulated to render these operational: 

1. If all groups experience mortality equal to expected mortality, payouts should 
not alter for any group; 

2. If groups' expected and actual mortalities differ, payments should all vary in 
the same proportion; 

3. Departures of realized from expected mortality should result in a once-for-all 
adjustment in all future payments; and 

4. Period–by-period fund balance should be preserved. 

These requirements seem natural; they are also necessary to maintain actuarially 
fair offers to new entrants. 

There are several time and age dimensions involved when we introduce 
multiple cohorts. First, there is the age at which an individual enters. We shall 
denote this by ][x  where the bracket symbol ][⋅  is a standard actuarial symbol to 
indicate differences in mortality pattern due to selection. Second, we have the 
current period, indicated by time t . Lastly, we have the length of time that has 
elapsed since joining the plan. This will be indicated by k  so that kt −  denotes the 
time at entry measured from plan inception at time 0 . Thus, when kt = , these are 
the cohorts who joined at plan inception. 

We shall denote by 
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the realized fund value at time t  for the i-th annuitant belonging to the cohort 
who entered at age ][x , k  periods ago. With *
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where 1−tA  and tA  consist of the individuals alive at time 1−t  and t , respectively, 
for the cohort ( ][x , k ). To keep the notation simple, we do not label the cohorts 



 

apart from time. Notice that we sum only for those who entered before t , not for 
those who enter at t . In developing the adjusted payment, we consider those 
exposed to risk in the previous period, but not those who are only entering now, 
i.e., the new entrants. For new entrants, the payment is determined by 
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0
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with tjx F ,
0
][  denoting the amount of fund they invest. There is no right or 

obligation for these new entrants to participate in any imbalances caused by 
deviations in the previous period because they were not at that time pool 
members. 

 

We shall denote by *
,][ ti

k
x B  the payment at time t  for the i-th annuitant 

belonging to the cohort who entered at age ][x , k  periods ago. At time t , the total 
benefit payment is 
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again the summation is only for those who have been members of the plan at time 
t . 

Let us examine our four criteria in mathematical terms. The last two criteria 
require that 
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Equation (7) balances the fund and the present value of the future payments. 
Setting the future payments constant restricts the fund balancing response to a 
disturbance in mortality to a once-for-all adjustment in all future payouts. With 
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Thus this becomes: 
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Solving this, the result for our adjustment factor is: 
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The factor also satisfies our first criterion: if no deviations occur between 1−t  and 
t , then  

*pp  is simply equal to 1 for each cohort and tMEA  will be equal to unity. It 
follows that our four criteria of fairness lead to this unique formula for tMEA . 

We transform the adjustment factor a little bit further and use definition 
(5): 
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This last term is a harmonic mean of the ratios *pp  of all cohorts.4 Thus, we have 
the following weighted harmonic mean of these ratios: 
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This is the link between the single-cohort case and the multiple-cohort case: the 
adjustment factor for the multiple cohorts is the weighted harmonic mean of the 
individual adjustment factors. 

Once again the payment *
,][ ti

k
x B  at time t  follows our general formula (4) 
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4 The harmonic mean is equivalent to taking the arithmetic average of the reciprocals of the ratios 
and taking the reciprocal of the result. 



 

where the summation ∑
x

 is taken over all entry ages and the summation ∑
≥1k

is 

taken over all pool members' life durations. As stated earlier, this formula is 
inclusive of cohorts who entered prior to period t  but not those who enter at 
exactly period t . 

Recall that in the previous sections where we only have a single cohort, the 
total fund available at any time was annuitized among the survivors using a 
single annuity factor applicable for the cohort. For multiple cohorts, we have 
multiple annuity factors, but using an average-type annuity factor accounting for 
the multiplicity of the cohorts will assist us in developing a similar approach to 
formula (4) as in the previous sections. To illustrate, annuitizing the total available 
fund, we have the following level annuity benefit payment for all the cohorts: 

[ ] [ ])()(

1

*
,][*

* 1

taavg

F

taavg

F
B k x A

ti
k

x
t

t
t

∑∑∑
≥ −==  (10) 

where [ ])(taavg  is the annuity factor averaged across cohorts. 
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The reciprocal of the last two factors, which is equal to 
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can be interpreted as the average annuity factor [ ])(taavg  appearing in equation 
(10). 

In an effort to find a form of [ ])(taavg  that resembles individual annuity 
factors, we show in the appendix that a definition of [ ])(taavg  is possible that 
leads to an approximation of formula (12). 



 

Returning to our simple example, we show in Figure 2 the effect of pooling 
longevity over several age cohorts when a deviation in mortality occurs in a single 
period. Again, we consider the single individual belonging to the age-60 cohort 
joining at plan inception whose initial benefit payment is established at $300 per 
period. In addition, other cohorts of differing ages were permitted to enter at a 
later time. Upon entering, these new cohorts start with the same fund endowment 
as the first one. For purposes of simplifying the illustration, these new cohorts do 
not encounter any deviation from mortality expectation. As depicted in Figure 2 
below, when we pool all the cohorts together, the effect of a drop in mortality for 
one particular group is less dramatic, as anticipated. In this example, the payment 
drops by less than 0.5 percent to $298.7, much less than the 2 percent computed in 
the previous section. 
 
 

Figure 2 
The Effect of Pooling over Several Cohorts 
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Figure 2: The figure shows the impact of a 50 percent drop in mortality rate in period 15 on the 
benefit payment from period 16 and onwards, without and with pooling. 

5. Fixed versus Evolving Expectations 

For a conventional annuity, individual mortality and the interest rate are 
fixed at the point of entry into the plan. Expected annuity calculations in 



 

successive years are therefore based on the mortality and interest expectations at 
entry. However, in reality, mortality patterns and the interest rate are evolving 
through time. For a GSA annuity, where annuitants bear systematic longevity 
risk, changed expectations must be reflected in these annuity and benefit 
calculations as they emerge. 

To fix ideas, let us assume for the moment that new annuity factors become 
available at some future time t . For any individual entering at this time t , 
following formula (6), the new annuity factors form the basis for determining the 
initial benefit payout which we have denoted by tjx B ,

0
][ . We must also incorporate 

this new information of future mortality in the computation of the payments for 
existing members. It is anticipated that an additional adjustment factor is 
necessary. To determine the appropriate adjustment, we introduce the adjustment 
factor, tCEA , for changed expectation of which the base values of p  and R  and 
the old annuity factors are superscripted with old and the base values of p  and R  
and the new annuity factors are superscripted with new. 

For existing members, as well as for new members, the payment made at 
time t  to each member must be equal to the fund allocated to that member at that 
time divided by the annuity factor. Incorporating the new mortality information, 
we use new

kxa +][  at time t  so that 
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can be shown that 
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being the fund from time 1−t  to t  without recognizing the increase in the fund 
over this period due to redistribution of wealth of members dying in that period. 

Algebraic manipulation leads us to: 
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This may be usefully compared with (4) above. Here, we have an additional factor 
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to account for the new mortality information available at time t . 

Assuming this same information of future mortality and interest rates 
carries to subsequent periods, we continue adapting new

kxa 1][ ++  and start with: 
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which brings us back to the adjustment formula in the known form. This 
demonstrates that the adjustment factor tCEA  is necessarily applied only once at 
the period the mortality basis changes. We illustrate the impact of excluding the 
new knowledge in the benefit calculation of existing members in Figure 3, which 
displays a comparison of the annuity values between old and changed 
expectations. 
 



 

Figure 3 
Fixed versus Evolving Expectations 
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Figure 3: This figure displays a comparison of the "old" and the "new" annuity values over 
age/time for a particular entry age x = 60 when mortality expectations change at a certain point in 
time t = 11. 

The "old" mortality basis is the RP-2000 mortality table for Male Healthy 
Annuitant. In year eleven, we introduce the "new" mortality basis for a male 
individual, which we hypothetically assume to be equal to the RP-2000 mortality 
table for a Female Healthy Annuitant, but further extended by five years, 
prolonging therefore the ultimate lifetime to age 125. All the annuity values are 
based on a discount rate of 4 percent, which for simplicity we assume constant. As 
expected, the "new" annuity values based on the "new" mortality basis are larger 
and extend five years into the future. Returning to our previous example, we have 
a single cohort of individuals aged 60 with entry at plan inception at t=0. We 
additionally assume that we do not have any deviation of mortality from 
expected, i.e., in each year, the realized mortality in the cohort is equal to the 
expectation of mortality at that point in time. If we do not integrate the new 
knowledge of future mortality in year 11, the mortality expectation adjustment 
factor *

tt pp  then equals new
t

old
t pp  and it will be different from period 1 for the 

following ages as shown in Figure 3. From year 55, the new and the old 
expectation of mortality is equal, hence the adjustment factor becomes 1 again. 
Also notice that the adjustment factor drops to zero when the original final age of 
120 is reached at time 60=t . 



 

 

Figure 4 
Ratio of "Old" and "New" Expected Survival Rates 
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Figure 4: The graph shows the deviation between "old" and "new" expectation for survival 
probabilities over time. 

As before, benefit payments start at $300 per period. As we do not have 
deviation prior to year 11, these payments remain constant for that period. If we 
do not adjust the payments to account for new expectations in mortality at the 
start of year 11, the benefit payment declines from year 12 as reflected in the 
adjustment factor in Figure 3. After year 60, the payment drops to zero, because 
according to the old mortality expectation, all individuals would have been 
presumed dead. When the "new" basis of mortality is reflected immediately at the 
time when the information becomes readily available, this causes an adjustment at 
time 11=t  of 893.010]60[10]60[ =++

newold aa  or roughly indicating an 11 percent decrease, 
dropping the payment to $268. In subsequent periods, we again observe a 
constant pattern because we have assumed no further deviation between realized 
and new expected mortality. Furthermore, notice that the payments continue until 
the new assumed final age of 125. 

This is one very strong argument for integrating all new knowledge as it becomes 
available—the new knowledge is immediately crystallized in all subsequent 
payments. Although there are noticeable differences in the periodic cash flow 
pattern, as displayed in Figure 5, it is expected both patterns have an equal 

*
tt pp



 

actuarial present value of $3,066.96 at time 11=t , assuming of course the interest 
rate of 4 percent and the new mortality expectation to discount the payments. 

 
Figure 5 

Fixed versus Evolving Expectations 
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Figure 5: This figure displays a comparison of the level of benefit payments between a "change" 
and a "no-change" in expectations. 

In the case of a "change" in expectations, zero deviation to the (new) expected 
mortality is assumed; hence the payment is constant after the adjustment in 
period 11 while in the case of a "no-change," the payment shows a steady decline 
due to the difference in the "old" and "new" expectations. 

 

6. Numerical Illustration 

To illustrate the ideas developed in the previous sections with a more 
realistic example, we present here a numerical representation of a GSA plan. As in 
earlier examples, the RP-2000 Mortality Tables form the basis of our mortality 
assumptions. The expected investment earnings rate has similarly been assumed 
to be a constant rate of 4 percent. While the realization of the investment returns 



 

can have a dramatic impact on the values of the annuities as well as the resulting 
benefit payout rates, the realized investment return has also been assumed 
constant. We do not attempt to measure the impact of deviations from returns in 
this illustration. While deviations in interest rates are likely to have a greater 
magnitude of impact than the financial risk resulting from longevity variation, we 
focus here on the financial consequences of longevity risk. As shown in the 
development of the model, every individual encounters the same interest rate 
risk, so there is no gain that can be made from pooling in this dimension. 
Financing the risks of longevity through "pooling" is the primary focus of this 
paper. 

The six different cohorts that enter our GSA plan over time are depicted in 
Table 1. Each cohort starts with the same initial fund; notice that the choice of the 
size of the fund is immaterial to the results as long as each cohort is endowed with 
the same initial wealth. 
 

Table 1 
Description of Cohorts in the Example 

Cohor
t 

Time at Entry from 
Plan Inception t 

Age at 
Entry x 

Starting Payment 
of Individual 

Beginning Fund of 
Individual 

1 0 75 350 3,036 

2 0 60 400 5,734 

3 10 60 450 6,451 

4 20 60 500 7,167 

5 20 85 550 2,862 

6 30 60 600 8,601 

 
The payment *

,
0
][ tix B  at entry for a representative individual in each cohort is 

distinguished according to increments of $50 starting from $350 up to $600. This 
choice has been arbitrarily made for the only reason to get less overlapping in the 
graphs showing the benefit payment pattern over time. 

The deviations in mortality rates have been modeled to capture future 
random variation. While this is not a straightforward process, the choice has been 
made to keep the illustration again simple. More sophisticated models of 
uncertainty in future mortality trends can be found, for example, in Olivieri and 
Pitacco (2003) and Haberman and Vigna (2002). Even though the results may 
differ when using a different statistical assumption, the important feature we 
want to show—the decrease in volatility achieved by pooling the cohorts—should 
not be affected in principle. One obvious feature that should be captured is the 
greater variability of mortality with increasing age. The deviations within a cohort 



 

must increase with age due to the decreasing number of survivors or remaining 
lives. This can be empirically observed by comparing crude mortality data with 
graduated data in the process of building a mortality table, where the fitness in 
the older ages is generally poor. After some investigation of Australian mortality 
tables, we find that a reasonable bound for the deviation even in very high ages 
appears to be in the neighborhood of 20 percent. These empirical and intuitive 
observations led us to model the realization of mortality rates over time using the 
following formula: 

[ ]
⎭
⎬
⎫

⎩
⎨
⎧ +−⋅⋅⋅= 115.03.0)1,0(
100

* Uxqq xx , (13) 

where )1,0(U  is a uniform random variable which can easily be generated even in 
a spreadsheet. From this formula, it is clear that we assume the randomness in 
mortality to increase linearly with age. 

 

Figure 6 
Model of a GSA Plan with Six Different Cohorts, No Pooling 
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Figure 6: This figure shows that there is strong volatility in the benefit payments where we have 
no pooling over the age cohorts. Volatility increases clearly with age due to the randomness 
assumptions. 

Figures 6 and 7 graphically depict the variations in payout with and 
without pooling. The smoothing effect of pooling can easily be discerned in Figure 
7, and especially between t = 30, when the last of the sequence of cohorts joins the 
pool, to t = 55, when the first cohort is fully deceased. Even with pooling, of 



 

course, the last cohort to enter faces volatility in payouts in old age, as its 
surviving members thin out, and there is no younger cohort to cushion 
unexpected deviations from expectation. 

An individual at retirement has the choice of joining one of these GSA 
plans or buying an ordinary annuity directly from an insurer. To make such an 
assessment, we would have to simulate the pattern of actual-to-expected mortality 
that would possibly emerge over time. According to our simulation formula in 
(13), we have the ratio of actual-to-expected survival probabilities 

( )
* *1 1 0.15 0.3 0,1

1 100 1 100 1
x x x x

x x x x

p q q qx x U
p q q q
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= = + ⋅ − ⋅⎜ ⎟⎜ ⎟− − −⎝ ⎠

, (14) 

and it is straightforward to show that this ratio is uniformly distributed on the 
interval: 
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Figure 7 
The Effect of Pooling within the Modeled GSA Plan 
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Figure 7: The graph displays that where we pool, some of the deviations cancel out, thus the 
payments are less volatile. Since from time 30 no new entries occur, volatility increases again while 
the number of those alive slowly decreases. 



 

Denoting the ratio in (14) by *
x x xY p p= , the actual benefits that will emerge 

over time as shown in equation (3), ignoring the effect of interest rate, will be 
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Thus, we can then compute the probability that an individual will have a higher 
income from a GSA plan than from an ordinary annuity. Insurance companies 
typically assess premium loading to cover for risk and profits, which reduces the 
benefit payout to the individual. Assume that this reduction is denoted byλ  with 
0 1λ≤ < . Then the required probability can be expressed as: 

( )( ) ( ) ( ) 1* 1
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∏ ∏ . (15) 

Figure 8 displays this probability pattern for various levels ofλ . Here we 
also assume an individual is currently age 65. These results are also based on 
1,000 yearly simulation runs. In the case where there is no premium loading, that 
is 0λ = , this probability stays as expected, at the approximate level of 0.5 for each 
year. We observe that for higher levels of premium loading or benefit reduction 
λ , the probability that benefits from GSA will be higher than ordinary annuities 
quickly approaches to one especially in the early years. 

Figure 8 may also be interpreted to provide guidance on the probability 
that GSA payments will fall below a given proportion of the first-year payout 
through its lifetime. For the stochastic process we have adopted, there is almost 
no chance that payouts will fall below 90 percent of the first-year value before the 
age of 90. This can be seen by tracking the probability that benefits from the GSA 
are higher than an ordinary annuity with a 10 percent loading. While systematic 
longevity risk is little understood, this simulation suggests that the risk of the 
force of systematic longevity bias dramatically reducing GSA payouts is low. 



 

 

Figure 8 
The Probability Benefits from GSA are Higher than Ordinary Annuities 
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Figure 8: The graph displays the probability that benefit payouts from a GSA plan will exceed 
those from an Ordinary Annuity issued by an insurance company, reflecting the fact that insurers 
generally assess a premium loading that reduces the benefit amount. The lambda variable reflects 
the reduction in the benefit payouts as a result of the loading. 

7. Concluding Comments 

Longevity risk is becoming an increasingly important issue for retirees, as 
changing health and lifestyle lead to longer life expectancies. To mitigate the 
financial risk associated with improvements in longevity, a natural response for 
the individual is to annuitize (Brown, et al. (2001) and Auerbach and Herrmann 
(2002)). This paper analyzes the payout implications of pooling longevity risk 
through GSA, an arrangement in which the annuitants bear their pool's systematic 
risk but share idiosyncratic risk; we determine specifications of the stream of 
benefit payments that would emerge in a GSA plan, assuming actuarial fairness, 
and provide adjustment formulae for payout streams under a range of 
assumptions. The resulting benefit payment at any given period is shown to be 
equal to the previous period's benefit payment multiplied by a mortality 
experience and interest-rate experience adjustment. These adjustments account for 



 

deviations of these experiences from expectations. By extending this analysis to 
several cohorts pooled into a single annuity fund, any variation resulting from 
sharing the idiosyncratic risk can be reduced. Regulatory and marketing obstacles 
remain for the practical implications of a GSA, along with issues related to 
adverse selection; we plan to address some of these in subsequent research. 
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Appendix A 

To develop a recursive relation between [ ])1( −taavg  and [ ])(taavg , first 
define 
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Equation (17) gives an average survivorship rate based on a weighted 
average of the reciprocals of each cohort's survivorship rate (harmonic mean 
again). The weights used in (17) can be denoted as 
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and these weights are to be determined at time t . From (16), it follows therefore 
that 
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with weights determined at 1−t . 

Furthermore, we observe that 

[ ] ( ) ( ) ( )∑ ∏∏∑
∞

=

−

=
+

−
−

−
−

=
+−

−
∞

=
⎥
⎦

⎤
⎢
⎣

⎡
⋅+=⎥

⎦

⎤
⎢
⎣

⎡
=−

0

1

0

1
1

1
1

0
1

1

0
1)1(

l

l

n
nt

tl
t

t
l

n
nt

t

l

l pavgvpavgvpavgvtaavg  (19) 

Because of the differences in the weights used in definition (17) and (18), the 
above formula (19) can only be approximately expressed as 

[ ] ( ) [ ])(1)1( 1 taavgpavgvtaavg t
t ⋅⋅+≈− − . (20) 

Using definitions (16) and approximation (20) in formula (10), we can show 
that we get approximately formula (11). To prove this, first notice that 
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and now using the approximation in (20) and assuming weights to be according 
to 
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Using definition (17) with 1−=s  gives us 
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which clearly approximates equation (9). The primary difference between 
formulas (9) and (21) above lies in the summation of the annual payments over 

1−tA  instead of tA  in the numerator.� 



 

Appendix B 

In this appendix, we list some of the standard actuarial symbols and other 
algebraic symbols used in this paper for convenience to the reader. They are listed 
in the order they appear in the paper. 

 

Symbol Interpretation 

x  Number of annuitants left in the pool who are aged x. 

v  Present value of one unit payable one year from now: 
( )Rv += 1/1 . 

xa  Present value of a life annuity issued to individual aged x of 
one unit per year, payable annually at the beginning of each 
year provided the annuitant survives. 

xp  Probability that a person aged x will survive one year from 
now: xxxp /1+= . 

tA  An index referring to the surviving individuals at time t. 

*
tB  Annual benefit payout made to surviving individuals at time 

t. The symbol * is used to indicate the actual and is omitted 
when t = 0. 

*
tF  Fund balance in the GSA pool at time t. 

*
,j tB  Annual benefit payout made to the surviving individual j at 

time t; each individual may have contributed differently. 
*
,j tF  Fund balance of individual j at time t. 

[ ]x  The entry (or issue) age where the bracket symbol [.] 
indicates differences in mortality pattern due to selection. 

*
[ ] ,

k
x i tB  Annual benefit payout made to the i-th annuitant belonging 

to the cohort who entered at age [x], k periods ago. 
*

[ ] ,
k

x i tF  Fund balance of the i-th annuitant belonging to the cohort 
who entered at age [x], k periods ago. 

 


