Valuation of Derivative Securities

The role of financial intermediaries lies in crafting
derivative securities out of cash flows of securities
supplied by the business sector of the economy. Gen-
erally, the assets acquired by financial institutions
have their values determined by established capital
markets; if no market value is available, assets can be
valued in relation to the existing markets. However,
the firm’s liabilities become customers’ private place-
ment assets and their value must be calculated by the
firm. Such calculation lies at the very heart of the
actuarial profession. If the treatment of assets and li-
abilities is to become integrated, we must admit that
the actuarial side should yield.

This is, of course, not an entirely new concept. Fi-
nancial theory views insurance policies as financial
instruments that are traded in the market and whose
prices reflect supply and demand. Models of insurance
taking that perspective are termed ‘“‘financial pricing
models.” Borch (1974) and Buhlmann (1980, 1984)
recognized early the role of supply and demand in
determining price. The financial pricing models dis-
cussed in Chapter 1 are generally either equilibrium
models, or arbitrage models.

The equilibrium approach looks at agents in the
economy. They are assumed to be rational wealth
maximizers, trading in the existing financial securities
markets and being subject to their resource con-
straints. Equilibrium in the economy is obtained when
no agent has any more incentive to trade, and the mar-
ket clears. If agents’ preferences can be modeled, one
can derive prices of claims to cash flows. Both the
Modern Portfolio Theory (Markowitz 1952, 1959) and
the Capital Asset Pricing Model (developed in the
1960s by William Sharpe and, independently, by John
Lintner and Jan Mossin) as well as their refinements,
are equilibrium models.

From the perspective of this paper, however, the
Arbitrage Pricing Model developed by Ross (1976) is
of greater interest. Consider a very simple model of
financial uncertainty, with a world of two periods: now
and the future. We know the state of the world now,

but tomorrow is uncertain, with S being the set of
possible states of the world. Recall the definition of
an Arrow-Debreu security, and let p, with s € S be
the price of an Arrow-Debreu security paying $1 ex-
actly in the state s. Consider N arbitrary assets and S
portfolios constructed from these assets. Let b,; be the
number of shares (units) of asset i, where i = 1,
2, ..., Nin a portfolio j, where j = 1,2, ..., S,
and d; be the value of asset i, i = 1,2,..., N, in
the state of the world j, j = 1, 2, . . ., S. Consider
the matrices D = [d;)i_1,. si-12..n» and B =
[(bylicia. Nj-12..5 and let Iy, be the unit N X N
matrix. The market of these securities is said to be
complete if it is possible to find S portfolios, as de-
fined above, such that:

D - B = Ly, (7.1)

where the multiplication is the matrix multiplication.
There must be exactly S linearly independent assets
in a solution. Such assets are called primitive assets
or primitive securities (with any other assets termed
redundant), and the market is complete if, and only
if, it contains a set of primitive assets that can be com-
bined into a set of portfolios replicating the Arrow-
Debreu securities (and, effectively, Arrow-Debreu
securities are available for trading). If we do have ex-
actly S primitive securities, then D is a square matrix
and B = D', The price of an asset is a linear operator
and the prices p, of Arrow-Debreu securities are
given; thus, the vector D™! - p where p = [p],_, s
gives the prices of primitive securities. If the markets
are complete, then a portfolio consisting of one of
each Arrow-Debreu securities can be constructed, and
it has a payoff independent of future states and the
world. It is called a riskless security. Its price today
isv=p, +p,+---+p,and r = v! — 1 is the
one-period riskless rate of return (with force of inter-
est & defined by ¢® = 1 + r used for continuous com-
pounding).

As we can see, existence of prices of Arrow-Debreu
securities (also termed state contingent prices) is es-
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sential for this methodology. The general equilibrium
approach would have the state contingent prices de-
termined by the model. Otherwise, they are taken as
given, and such a framework is termed the partial
equilibrium model. This work is not concerned with
any particular model, or with model building, but
rather with the implications of financial pricing of
capital assets for the ALM of an insurance firm. Bab-
bel and Merrill (1996) include an extensive analysis
of applicable models.

No-arbitrage pricing theory is a partial equilibrium
methodology. It assumes the Arrow-Debreu securities
prices as given, and complete markets. Consider a
one-period market with § + 1 assets, and S future
states of the world. Given the completeness of the
market, one of the assets, say the (§ + 1)-st, is re-
dundant, and it can be replicated by a portfolio of the
other assets, which can be then written as vectors
as above). o

Let D the matrix with the same meaning as above
(i.e., its columns are the payoffs of the primitive assets
in corresponding states), and let X = [x;],_,,  be the
vector defining the portfolio of primitive assets that
replicates the (S + 1)-st asset, which can also be writ-
ten as vy, ,. Then

Voo, =X v, + o+ xpg=x"-D1 (7.2

(in terms of future payoffs). Since the price is a linear
operator and the prices of primitive securities are
given by D! - p, the price of the (S + 1)-st asset is

xT-D ' p. (7.3)
Note that prices of all securities are linear combina-
tions of prices of Arrow-Debreu securities. A more
powerful statement can be made. In a complete market
with no trading costs, no consideration for taxes, and
a finite number of securities, the Principle of No Ar-
bitrage (also called the Principle of One Price) states
that any portfolio X = [x],_,,_, for which the future
payoffs vector x” — D' contains only nonnegative
entries, and at least one positive entry, must have a
positive price. This means that there are no “free
lunches’: a security that produces a future payoff re-
quires a cash outlay for its purchase.

The Fundamental Theorem of Asset Pricing as dis-
cussed in Dybvig and Ross (1987, 1989) and Panjer
(1998) states that the Principle of No Arbitrage is
equivalent to the price of a security (in a finite market
as above) with payoffs d,, d,, . . . , d, in the states of
the world 1, 2, . . ., S, respectively, being given by
the expression d,p, + d,p, + - -+ + d,p,, where p,,
Das - - -, P, are the prices of Arrow-Debreu securities.

Duffie (1996) provides a proof (not restricted to the
finite space as presented here) and magnificent insight
into the modern dynamic asset valuation theory.
Consider now an amount of a riskless security
whose price today is 1. Because price is a linear op-
erator, its value at the end of the period is 1/v =
e’ = 1 + r. Denote the quantity p,(1 + r) by 6,. Then

S
>0 =1, (7.4)
s=1

and the quantities 0, can be regarded as probabilities
of states s € S. They are called arbitrage probabili-
ties, risk-neutral probabilities, or martingale proba-
bilities. Given this definition, the price of the security
is

v(d, 0, + d,6, +---+d#b,), (7.5)

which can be interpreted as the expected present
value, or actuarial present value, of the future payout
of the security. The probabilities so produced should
not be misconstrued as actual probabilities of the fu-
ture states of the world. They represent probabilities
in an abstract construct of a risk-neutral world. In
general, without strong assumptions such as in this
discussion (we assumed a finite, complete, frictionless
market), they are not unique.

This statement can be generalized. Recall (see, e.g.,
Ross, 1996) that a stochastic process is a collection
of random variables {X(¢):r € T}, with the index set
T typically referring to time (it may be a continuous
time interval or a discrete set of, e.g., nonnegative
integers).

A stochastic process {X(f):t = 0} is said to have
stationary increments if for any s < f and u > 0, the
probability distribution of X(¢ — X(s) is the same as
the probability distribution of X(r + u) — X(s + u). A
process {X(¢):t = 0} is said to have independent in-
crements if for any t, < t, = t; < t, the random var-
iables X(#,) — X(¢,) and X(z,) — X(t;) are independent.
A filtration in a probability space {Q, F, P} (where
Q is the sample space, F is the sigma-algebra of
events, and P is the probability measure) is a collec-
tion of sigma-algebras {F,} such that for s < ¢, F, C
F,, F is the o-algebra generated by U,_, F,, F, = N,
F,, and all sets of probability zero belong to F,. A
martingale is a stochastic process {X(f):t = 0} such
that:

(1) Each X(¢) is a random variable on the probability
space {Q, F,, P}.

(i1) {F,} is a filtration.

(iii) E(X() | X(s), s < 1) = X(s).
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Condition (iii) is the key one. It says that the best
guess (as represented by expected value) of the future
value of the process is its current value. Since the
other parts of the definition will hold for the processes
discussed here automatically, for all practical pur-
poses, one only needs to check condition (iii) to be
satisfied that we do have a martingale to deal with. If
the index set 7 is the set of nonnegative integers, the
condition (iii) can be simplified to say:

EZ, |2, 2,,...,2,) =2, (7.6)

This is a particularly simple form of the definition of
a martingale applicable to time-discrete processes
(Ross 1996).

Let S(¢) be the value of a security at time ¢ > 0,
where S(7) is assumed to be a stochastic process, and
let the risk-free continuously compounded rate of in-
terest be 8. The generalized Fundamental Theorem of
Asset Pricing says that, in a complete, frictionless
(i.e., no transaction costs, no taxes, and no other im-
pediments to trade) market, the absence of arbitrage
is equivalent to the existence of a probability distri-
bution such that, with respect to that probability dis-
tribution, {e~%S(r)} is a martingale; that is, for each
u < t, E(e“"S() = S(u), and, in particular,
E(e7"S(t)) = S(0).

Harrison and Kreps (1979) provide the proof of this
version of the Fundamental Theorem of Asset Pricing
(see also Harrison and Pliska 1981), while Schacher-
meyer (1992) gives an elegant and self-contained
proof of this in finite discrete time, using the Hilbert
space methodology of functional analysis. Note that
the effective meaning of this theorem is that, as
Samuelson (1965) anticipated it: ““properly anticipated
prices fluctuate randomly.”

To have a better perspective on the meaning of the
above statements, consider a finite-state discrete-time
security market model, with a complete and friction-
less market and trades occurring only at the times 0,
1, 2, . ... Let the risk-free interest rate at the time ¢
be i(f), so that a riskless unit security bought at the
time 7 is worth 1 + i(7) at the time ¢ + 1, regardless
of the future state of the world. Let V;(7) be the value
of the j-th primitive security at time 7, and let D;(7) be
the cash flow for that primitive security at time 7 (with
V(1) being the ex-cash-flow, e.g., ex-dividend, value).
Then V,(7) and D,(t) are random variables as seen from
any time s < t. The Principle of No Arbitrage (cf.
Panjer 1998, pp. 107-9) is equivalent to the existence
of a probability measure under which

(Vi(t + 1) + Dyt + 1))),
(7.7)

Vi = £ (T@

where E, denotes the expected value with respect to
the aforementioned probability measure, and its sub-
script indicates that the expected value is taken with
respect to information available at the time t. The
probability measure is again called a risk-neutral
probability measure. Equation (7.7) implies that, in
general, the value at time O of a stochastic cash flow
stream {D(f):t = 1,2, ...} is

= D + 1)
. (21 (I + 0L + (1)) - -+ (1 + (1))

Note that this form of valuation takes into account the
contingent form of payments and, if values of primi-
tive securities are known, can be used for pricing of
various derivative instruments, such as options, mort-
gage-backed securities, and derivatives embedded in
insurance policies. Furthermore, if D(f) = 1 for ¢t =
t,, and O for all other values of ¢, then Equation (7.8)
gives the valuation of the noncallable default-free
zero-coupon bond maturing at the time 7 = ¢,. Since
such zero-coupon bonds are traded in the existing
markets, and their values are given as (1 + i,)~!, with
i, denoting the spot rate for # = ¢,, we can then con-
sider the expression (7.8) to be a function of various
spot rates and derive the familiar duration and con-
vexity measures as discussed in Chapters 2 and 3. If
V({i,}) is (7.8) written as a function of spot rates, then
for a small value of A,

vdi,b) — V{i, + h})
hV({i,}) '

>. (7.8)

(7.9)

and

Vi, + r}) — 2V{i, ) + V{i, — h})
hV({i,})

(7.10)

are measures of duration and convexity, respectively,
with respect to parallel shifts of the spot curve. They
are called option-adjusted duration and convexity, be-
cause the valuation of the security considered takes
into account all contingent claims (i.e., options and
the like) embedded in it.

One can also write Equation (7.8) as

>, Pr(w)

we
<i Dt + 1, w)

= (1 +0)(1 + i(1, w)) - -+ (1 + (2, w)))’
(7.11)

where the events w of the probability space () are
specified, and each is identified with an interest rate
path, or scenario {i(0), i(1, w), ..., i(t, ), ...}, and
the cash flows along that path are {D(1, w), D(2, w),

VII. Valuation of Derivative Securities 63



..., D, w), ...} Tilley (1992) reviews the process
of generating stochastic interest rate scenarios.

Formula (7.11) is also the basis for the widely used
methodology for the valuation of various assets, es-
pecially fixed-income securities with implicit or ex-
plicit derivatives, such as mortgage-backed securities,
caps and floors, options, swaps, etc. In practice, it is
not possible to produce all elements of the probability
space () for this type of valuation, and an appropriate
sample of interest rate scenarios is chosen. This raises
two important issues in producing such samples. First,
if the scenarios used for the calculation are only a
random sample from (), then Equation (7.11) is
merely a point estimator of the expected value sought
and, as such, a random variable itself. Estimation of
the probability that Equation (7.11) is sufficiently
close to the actual value becomes an additional, and
challenging, task.

Second, the probability space () is the risk-neutral
space. Just producing some interest rate scenarios will
not assure us that they are indeed members of that
space. Given that this is an arbitrage-free valuation,
we should be assured that no arbitrage (i.e., no riskless
profit) is available in the sample of interest rate paths.
Tilley (1992) discusses a procedure for assuring that.
An alternative is possible in practice. If we produce a
set of interest-rate paths =, with K being the number
of its elements, then we can set

1
Market Price of the Security = >, —

wEE K
>

> D@t + 1, w) )
ZA+i0)+ 1 +il,w) +s5) (1 +i(t, w) +5))
(7.12)

where s is a “fudge factor” to attain the equality in
Equation (7.12), and the market value of the security
is assumed to be given (so this approach cannot be
used for insurance liabilities, our main area of interest,
but it can be used for marketable assets, and then for
comparison with liabilities of similar structure). This
“fudge factor” is called the option-adjusted spread
(OAS) of the security. OAS is widely used in the in-
vestment area for the purpose of comparing relative
value of securities—those assets offering higher op-
tion-adjusted spread are believed to be a better value.

Observe that, if the scenarios and cash flows pro-
duced for them properly account for credit risk, sen-
sitivities of the cash flows to interest rates, liquidity
of the security, and other derivatives embedded in the
security, then the OAS adjustment should, theoreti-
cally, account only for the difference between the risk-
neutral world and the interest rate path sample used.

Therefore, the strategy of buying high OAS, given that
diversifiable risk of the security has been accounted
for, appears to be merely a strategy of buying assets
with higher nondiversifiable risk. This is a rational
strategy, if the risk is paid for, but it does not appear
to be based on value. Of course, this reasoning is
based on the efficiency of the market; proponents of
value investing are generally nonbelievers in this area.
However, from the perspective of an efficiency be-
liever, value investing is always rewarded merely for
taking on extra nondiversifiable risk. The pitfalls of
option-adjusted spread analysis are very thoroughly
addressed in the work of Babbel and Zenios (1992).

While our analysis implies that practical valuation
of securities, including derivatives created by insur-
ance firms, calls for the use of interest rate scenarios
and some form of the formula (7.11), we should firmly
keep in mind various technical assumptions underly-
ing it, and that variations on these assumptions may
force us to reexamine the methodology. Fitton and
McNatt (1996) provide an excellent discussion of this
issue. They distinguish between arbitrage-free mod-
eling and equilibrium modeling, and separately be-
tween a risk-neutral probability measure and a
realistic probability measure.

Recall that arbitrage-free pricing theory takes the
prices of Arrow-Debreu securities as given, in partic-
ular the existing yield curve, and then complements
them with some process of evolution of the yield
curve, which serves to produce a random sample from
the probability space under consideration. Such a pro-
cess, however, is bound by adherence to existing mar-
ket prices in order to be arbitrage-free. Thus, it does
not attempt to emulate any dynamics of the yield
curve and its underlying economic processes (such
emulation is a defining characteristic of equilibrium
models). The question of whether the reality is per-
fectly arbitrage-free may not have an affirmative an-
swer because of factors such as trading costs, taxes,
and other real-life considerations. In contrast, equilib-
rium models begin with some general idea of the in-
terest rate process and accept existing market prices
as possibly subject to statistical or other types of error.

The distinction between risk-neutral probabilities
and realistic probabilities is also important. As pointed
out previously, risk-neutral probabilities should not be
misconstrued to mean realistic probabilities in some
form existing in the markets. As shown by Fitton and
McNatt (1996), the risk-neutral probability distribu-
tion results in a yield curve in which the spot for every
term is equal to the expected return from investing at
the short rate over the same term. In other words, term
premium, which indeed is risk premium in the real
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world, does not exist in the risk-neutral world. How-
ever, valuing a security under a realistic probability
distribution would require application of risk premium
for additional (later) discount factors.

Fitton and McNatt (1996) also discuss the relevance
of various combinations of the pairs: (1) arbitrage-free
models/equilibrium models and (2) risk-neutral prob-
ability distribution/realistic probability distribution.
They point out that arbitrage-free models lead, by def-
inition, to risk-neutral valuation, and that the combi-
nation of a realistic probability distribution with an
arbitrage-free model is of no value. However, the
other combinations do possess special features of in-
terest:
® [f reliable market data is available, the pricing of

existing securities, be it on the assets or liabilities

balance sheet, should be done with arbitrage-free
models using risk-neutral probabilities.

® If market data is unreliable or unavailable for cur-
rent pricing, or in horizon pricing (where risk pref-
erences may be of significance), one can combine
an equilibrium model providing reasonable esti-
mates for market prices with risk-neutral probabil-
ities.

® However, in stress testing, reserve testing, or mod-
eling of borrower behavior (e.g., mortgage-backed
securities), where realistic risk preferences and term
premium for the yield curve acquire significance,
the authors suggest using equilibrium models with

a realistic probabilitydistribution.

Fitton and McNatt (1996) also provide an interest-
ing perspective on the insurance firm management
process in their conclusions. Insurance policies fea-
tures that contains derivative securities with respect to
existing market securities, such as indexing provi-
sions, minimum interest rate guarantees, crediting
strategies for deferred annuities, must be priced using
the arbitrage-free risk-neutral methodology. Even if
the firm intended to charge more for these than their
existing or derived market prices (assuming, of course,
that the firm could do so in the face of competition),
knowledge of the market price is a prerequisite to any
product strategy. However, the insurance firm is also
bound by regulatory requirements that impose stress-
type constraints. Here, an analysis based on an equi-
librium model with realistic probabilities seems most
appropriate.

The firm may also find itself holding a portfolio of
assets for which no market exists, for example, private
issues. A combination of an equilibrium model with
risk-neutral probabilities is the methodology of choice
in this case.

Last, derivatives created by an insurer may be based
on risks faced by the insured, which are nondiversi-
fiable only to the insured but diversifiable per se. This
is the area of most standard actuarial methodology
but, given that securities issued for such a purpose (for
example, life insurance policies) typically contain ad-
ditional securities with market risks, such as interest
rate guarantees, one must bring the modern financial
methodology into the valuation.

Note that the modern era has brought with it certain
insurance policies that contain only, or almost only,
nondiversifiable market risk and, as such, very much
resemble standard derivatives, for example, options
and futures. Single Premium Deferred Annuity, as
well as Guaranteed Investment Contract, are insur-
ance-company-created, but marketable derivatives. As
financial theory indicates, they should be valued ap-
propriately.

Embrechts (1996) provides insight into the integra-
tion of actuarial and financial pricing of insurance.
The classical actuarial approach views the loss as a
random variable X, and derives the premium © based
on one of the following principles:
® The expectation (expected value) principle: ® =

EX) + 8EX).
® The variance principle: ® = E(X) + éVar(X).

® The standard deviation principle: O = E(X) +
oV Var(X).
® The semi-variance principle: 0 = EX) +

SE(max(X — E(X), 0)).

® The exponential principle: ® = 1/8 In(E(e®¥)).

® The (I — 6)-quantile principle: ® is the number
such that Pr(X > ©) = é.

® The Esscher principle: @ = E(Xe®X)/E(e®¥).

In all of the above, 8 is a number chosen to meet a
certain solvency margin, generally derived from a ruin
estimate based on the distribution of the loss process.
Embrechts (1996) proceeds to point out that the above
approaches can all be associated with a financial pric-
ing model. He also quotes from the standard actuarial
mathematics text by Bowers et al. (1986), indicating
the emergence of arbitrage-free pricing in a competi-
tive insurance market:

“In a competitive economy, market forces will
encourage insurers to price short-term policies so
that deviations of experience from expected value
will behave as independent random variables.
Deviations should exhibit no pattern that might
be exploited by the insured or insurer to produce
consistent gains. Such consistent deviations
would indicate inefficiencies in the insurance
market.”
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The key features of markets in which the models de-
veloped here apply are: completeness (i.e., availability
of Arrow-Debreu securities for trading), frictionless
trading (i.e., lack of barriers due to transaction costs,
taxes, etc.), and absence of arbitrage (in insurance, this
means markets competitive enough in terms of initial
purchases, reinsurance, and assumption). If these con-
ditions are met, financial pricing of insurance does
become a reality. To the degree that certain portions
of insurance policies have these features, financial
pricing of them is a necessary condition for the in-
surance firm’s existence. Given the unrelenting evo-
lution of insurance markets towards meeting these
conditions, it is easy to see why such dramatic
changes have been happening in our field in the last
20 years.

Delbaen and Haezendock (1989; also see refine-
ments by Sondermann 1991 and Embrechts 1996) an-
alyze pricing of reinsurance in arbitrage-free markets.
They begin with the standard risk process of the form:

Nt
X(N) = kzl X, 0=t=T, (7.13)

where the random variables X, are independent and
identically distributed with the cumulative distribution
function F, and {N,} is a homogeneous Poisson pro-
cess (Ross 1996 and Bowers et al. 1986) with intensity
A > 0, so that we have:

N =sup{neNT, +T,+---+T,=t}, (7.14)

where the random variables 7T, are independent and
identically distributed with the exponential distribu-
tion with parameter A, and T; refers to the occurrence
time of the i-th claim of size X,. The processes {7}
and {X,} are assumed to be independent. Then X(N,)
is a compound Poisson process (Bowers et al. 1986)
whose cumulative distribution function has the form:

® k

> e ()]:—? Pr(X, + X, + -+ + X, = x). (7.15)

k=0 .
If at this point one assumes that at each time ¢ the
company can sell the remaining risk of the period
(t, T] for a premium O,, then the underlying price pro-
cess has the form S, = ©, + X(N,). If the market for
buying and selling the remaining risk meets the con-
ditions of completeness, lack of friction and arbitrage,
then we can conclude from the work of Harrison and
Kreps (1979) that there exists a risk-neutral probabil-
ity distribution Q such that {¢~%'S(r)} is a martingale
with respect to Q. Furthermore, if it is assumed that
0, = 0(T — t), where 0 is a premium density, then it
can be shown that, for certain Q, {X(V,)} remains a

Poisson process. If the premium density is of the form
0, = E2(X(N,)) = E(X,)EC(N,), then the distribution
Q that preserves Poisson process has the form:

f ePY dF(y), x =0 (7.16)

0

1
E(ePX0)

where B:[0, +%) — R is a function such that
E(eP*v) and E(X,eP*V) exist. Special choices of the
function B give rise to very familiar results. If B is
constant, E9(N,) = ePA and E9(X,) = E(X,), which
follows the expected value principle. If B(x) = In(a +
bx), with b > 0 and a = 1 — bE(X,) > 0, then E2(N,)
= A and E9X,)) = E(X,) + bVar(X,), following the
variance principle. Finally, if B(x) = ax — In(e“*),
with ¢ > 0, then E9(N,) = A and E9X, =
E(X,e“*")/ E(e**), following the Esscher principle.

The Esscher Transform (Esscher 1932), in which
the Esscher principle originates, gives rise to a novel
perspective on arbitrage-free pricing developed by
Gerber and Shiu (1994, 1996). Let Y be a random
variable, and let /2 be a real number such that the ex-
pected value E(e") exists. The random variable ¢/
E(e") can be used (via the Radon-Nikodym deriva-
tive) to define a new probability measure. If ¢ is a
measurable function, then with respect to this measure
we have

E@p(V)e™)
E(ehY) :

Gerber and Shiu (1994, 1996) call this new measure
the Esscher measure of parameter h. The probability
distribution so obtained is called the Esscher Trans-
form (or exponential tilting in some statistical litera-
ture).

Assume that a stochastic process {X(#:t = 0} has
independent and stationary increments, and addition-
ally that X(r) — &6t assumes both positive and negative
values, where & is the risk-free force of interest. Con-
sider

E((Y); h) = (7.17)

S(1) = S(0)e*® (7.18)

for + = 0. Samuelson (1965) and Parkinson (1977)
provide a justification for Equation (7.18) being a
model of stock prices. Assume also that the moment
generating function

M(h, 1) = E(e"™®) (7.19)
of X(r) exists and that
M(h, t) = M(h, 1). (7.20)

Note that the condition (7.20) is actually not an as-
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sumption; it follows from the fact that {X(#:f = 0} has
independent and stationary increments. The process

th(t) X
= "M(h, 1)~" 7.21
Mo = €M ) a2
is a positive (i.e., it takes on nonnegative values with
probability one) martingale, and it can be used to de-
fine a change of probability measure, the so called
Esscher transform measure of parameter h. The risk-
neutral Esscher measure is the Esscher measure of
parameter 27 = A", such that the process

{e?S(M} = {S(0)eX "} (7.22)

is a martingale with respect to it.

As mentioned before, the risk-neutral probability
measure producing arbitrage-free valuation is not
unique. However, the Esscher Tranform, if it exists,
allows for the creation of a unique pricing mechanism.
Gerber and Shiu (1994, sect. 3.1) show that the clas-
sical Black-Scholes option pricing formula (Black and
Scholes 1973) can be derived with the use of Esscher
Transform. This is based on the reasoning given be-
low, illustrating the power of the Esscher transform
methodology.

Write E(Y; h*) for the expected value of the random
variable Y with respect to the Esscher transform mea-
sure. The martingale property implies that

E(e™"'S(1); h") = eS(0) = S(0).  (7.23)

This, in turn, gives

E(e0er0)
&1 — X(D. L*y — _—
e E(e*®; h") E(e"™0) (7.24)
_ M@+ 1,0 (MG + 1 DY
M, 1) MM, 1) )

or, more simply,

s M@+ 1, 1)

MG 1) (7.25)

This shows the parameter A* to be unique, although
as indicated before, there may be other equivalent
martingale measures. Note that

th(t) th(I) S(t)h

M(h, l)t = E(th(t)) = E(S(t)h) (726)

and, therefore, for any measurable function g

E(S®)g(S®); h)
_ ES@""g(5@))
E(S®"
_ ES®") E(S@0)" g(S(1))
ES®"  ESO")
= ES®* hEES®); h + k).

(7.27)

Gerber and Shiu (1996) refer to Equation (7.27) as the
factorization formula. This formula turns out to be an
extremely useful tool in simplifying analysis of finan-
cial instruments with the use of the Esscher Trans-
form. For example, let k = 1, h = h", and

_J1 if x>K
g(x)—{o if x=K (7.28)

Note that g(x) is the characteristic function of the set
{x:x > K}. Then (7.27) implies:

E(e > max(S(7) — K,0); h")

E(e™*"(S(7) — K)g(S(7); 1)

e (E(S(7)g(S(); ) — KE(g(S(7); h"))

S0) Pr(S(7) > K; h" + 1)

— Ke " Pr(S(7) > K; h") (7.29)

For X(¢) being the classical Wiener process (stationary
and independent increments with X(r) — X(0) ~ N(O,
1)), Equation (7.29) becomes the Black-Scholes
(1973) formula for the price of a European call option
on a nondividend paying stock

C = S(0O)N(d,) — Ke > N(d,) (7.30)

S(0) a’?
In (Ke57> + 5 T

with

d, = and
! 0'\/;'
NEOA.
Ke 0" 2 7
d =
2 oVr

The Escher transform provides one of the ways to
derive the Black-Scholes formula, this celebrated
achievement of modern financial theory, via the the
no-arbitrage pricing methodology.
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