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Abstract 
Insurers can hedge the risk of assets and interest sen- 

sitive liabilities with readily available financial instru- 
ments. Similarly, certain types of loss exposures which 
are strongly correlated with the valuation of special 
commodities (for example, default risk in mortgage in- 
surance in Houston, Texas is negatively related to the 
price of oil, etc.) can also be hedged by utilizing the 
commodity futures market. Until recently, however, the 
management of other underwriting risks has primarily 
been limited to reinsurance contracts. In 1992 the Chi- 
cago Board of Trade (CBOT) introduced insurance fu- 
tures contracts based on the loss ratio of a portfolio of 
actual insurance policies over a given period of time. 
This is conceptually similar to more commonly traded 
stock index futures, with the exception that there is no 
intrinsic underlying tradable asset upon which to base 
no arbitrage pricing, and there is only partial infor- 
mation available about the dynamics of  the underlying 
loss ratio series. This paper describes methods for de- 
termining bounds on the price of  derivative instru- 
ments, such as options on insurance futures, given only 
market information. 

Introduction 
The first recorded use of derivative contracts to in- 

surable risk was an option contract covering grain 
bound for Venice in the seventh century (Ferrick, 
Faber, and Dumas Limited [1994]). The CBOT began 
trading in grain futures in 1840, and more recently 

(since 1972), the Chicago Mercantile Exchange and 
many other exchanges throughout the world trade in 
currency futures and other financial derivatives. The 
rapid growth of the use of financial futures and options 
(and other financial derivative products such as interest 
swaps, look back options, compound options, etc.) has 
shown a development from the arena of product risk 
management (for example, bonds, swaps, currency fu- 
tures and options, etc.) to an arena of exposure risk 
management (for example, interest rate, stock market, 
foreign exchange rate options and futures, etc.). The 
latest step in this process was the CBOT's introduction 
in December 1992 of insurance futures to manage ex- 
posure in the general area of the insurance line upon 
which the contract is based. Cox and Schwebach 
(1992) discuss the mechanics of these insurance fu- 
tures, their purpose and use, and how they fit into the 
financial market in general. Insurance futures are based 
on the loss ratio for a portfolio of actual insurance pol- 
icies over a given period. The loss ratio is analogous 
to the stock market index underlying a stock index fu- 
tures. An important difference is that the insurance 
portfolio loss ratio is not readily available, and there is 
no purchasable set of  insurance contracts by which to 
price the futures contract (in contrast to the stock mar- 
ket). The insurance futures contract is also the basis for 
put and call options, and option spreads. 

The above-listed insurance futures contracts and op- 
tions have payoffs which are similar to traditional re- 
insurance in the sense that if one is long in the futures 
contract, and the loss index goes up indicating 
increased losses in the insurance market, then these 
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losses are partially offset by financial gains in the fi- 
nancial market. Thus, the CBOT complex offers an 
alternative to reinsurance that is easily reversible and 
low cost. The call spread is the most popular contract. 
It was designed to compete with reinsurance stop-loss 
contracts. Insurance futures contracts also provide an 
investor or speculator easy access to the insurance mar- 
ket since there is no licensing, only margin require- 
ments. The idea behind the introduction of insurance 
futures is to allow more efficient use of capital. The 
beneficiaries ultimately are insurance consumers and 
insurance company owners. In fact, it has been spec- 
ulated that more capital in the reinsurance market 
would possibly have helped to alleviate the insurance 
crisis of the late 1980s. [The market for reinsurance is 
relatively difficult to enter when compared to financial 
markets, a fact that some such as Berger, Cummins, 
and Tennyson (1992) assert may have contributed to 
the general insurance crisis of 1984-86.] Insurance fu- 
tures provide an alternative way for capital to be used 
like reinsurance. The result should be more stable con- 
sumer prices. 

Although the CBOT has, from time to time, pro- 
posed futures on other insurance lines such as health, 
as of May 1995 there was but a single insurance futures 
market in operation, and it involved what is known as 
catastrophe insurance, loss ratios being based upon 
specified lines of insurance susceptible to catastrophic 
losses from natural events such as hurricanes, earth- 
quakes, floods, wind damage, etc." The Insurance Ser- 
vices Office uses actual loss and premium data from 
participating insurance companies to aggregate these 
lines of insurance (homeowners property loss, auto- 
mobile physical damage, etc.), and the CBOT creates 
a market based upon this loss ratio index. Cox and 
Schwebach (1992) suggest that prices of insurance fu- 
tures and options can be priced using the Black-Scholes 
framework as a crude approximation. D'Arcy and 
France (1992) give a convincing argument for the vi- 
ability of catastrophe futures. Boose and Graham 
(1993) assess the viability of an insurance futures mar- 
ket using an empirical model. A successful catastrophic 
insurance futures and option market could reduce the 
threat of insolvency due to lack of capacity to with- 
stand catastrophic loss as occurred in Florida after Hur- 
ricane Andrew. Boose and Graham (1993), however, 
conclude that the positive factors effecting success of 
the insurance futures market (large size of the insurance 

"A new crop of insurance futures and options markets has 
been opened subsequently. 

market, low transactions cost, high liquidity) are offset 
by the infrequent release of loss information. The 
Standard & Poor's 500 stock index is distributed to the 
market every 15 seconds. In contrast, the loss ratio and 
related aggregate loss data underlying the insurance fu- 
tures contract is released to the market only twice: once 
at the end of the loss period and once at the settlement 
date, although monthly reports of industry catastrophe 
losses are available to the public. This lack of infor- 
mation should be taken into account in models used to 
price insurance and futures options. 

Helyette Geman has presented informally joint work 
with David Cummins (1994) on valuation of insurance 
futures. Their approach is based on Asian options. This 
Asian option is based on an average of prices before 
the exercise date. Since the CBOT contract is based on 
a loss ratio, of which the numerator is the sum of prior 
losses, the Asian option feature fits the actual contract 
very well. However, their approach is based on the as- 
sumption that all traders can observe the loss ratio con- 
tinuously. There is no published model which allows 
for this important feature; in the actual insurance fu- 
tures market traders may have different sets of infor- 
mation regarding the underlying index. 

The purpose of the current research is to establish a 
relation between information (or lack of information) 
about the loss ratio and insurance futures prices based 
solely on observable market prices. The potential for 
insurance futures to play an important role in hedging 
underwriting risk is enormous. However, the absence 
of models which take into account the lack of infor- 
mation presents a barrier to their success. The results 
should allow traders to better understand this unusual 
aspect of the catastrophe insurance futures market. 
With better understanding, speculators and hedgers 
may be more willing to enter the market. 

Methodology 
In this section we present one way to allow for lack 

of information. Let S(t) denote the aggregate losses 
paid during the interval [0,t]. The loss ratio on the set- 
tlement date T is S(T)/Q where Q is an estimate of the 
premiums written during the interval [0,t]. The value 
of S(t) is known at only a few points in time (four 
points for a three-month contract, for example), but 
trading in the futures contract with a price denoted by 
F(t) takes place continuously. In a financial market 
which is "frictiontess" (in that traders can buy or sell 
as many securities as desired at posted market prices 
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without incurring transactions costs) and allows no ar- 
bitrage, the fundamental theorem of asset pricing 
implies the existence of a "risk-neutral probability 
distribution" (or "equivalent martingale measure") 
such that the current price of any asset is equal to its 
expected future value discounted at a risk-free rate r. 
[See Harrison and Kreps (1979) for a detailed discus- 
sion of  this theory.] For example, since a futures con- 
tract requires no cash outlay at time 0, the futures price 
must be equal to the expected value of the settlement 
value with the expectation calculated using the risk- 
neutral distribution: 

As another example, a call option written on a futures 
contract gives the owner the right, but not the obliga- 
tion, to buy the futures contract for some predetermined 
"strike price" K at expiration T. Assuming the owner 
of the option follows the optimal exercise policy (ex- 
ercise at expiration if and only if the futures price ex- 
ceeds the strike price), the value of the option at 
expiration is then given by (F(T)-K)+=max[0, 
F(T)-Kt] ,  and its value at any earlier time t ( t<T) is 
given by 

I-(1 + r) r 

where E denotes expectations taken with respect to the 
risk-neutral distribution. 

The values of more exotic options can be similarly 
represented as the expected value of some payoff 
function under the risk-neutral distribution. For exam- 
ple, a call option spread is a CBOT contract which 
provides the owner an exercise value of 100,000" 
{Max(F(T) -K , ,  O ) -  Max( F( T ) -  K2, 0)} where the 
strike prices K~ and K2 and exercise date T are specified 
in the contract. This is equivalent to buying a call op- 
tion with an exercise price based on a loss ratio of Kt 
and selling based on Kz. Let u(s) denote the payoff 
function: 

u(s) = max(s - K,, 0) - max(s - 1(2, O) 

0 if s < KI 
= s - K j  if K I <_ s < K z 

K z - K~ if s > K z. 

Suppressing the contract face amount of 100,000, we 
can write the value at expiration as u(F(T)) and at any 
earlier time t, the price would be given by: 

(1 

where, again, E denotes expectations taken with respect 
to the risk-neutral distribution. 

In general these risk-neutral distributions will be 
unique if and only if the market is "complete" in that 
the underlying risk can be perfectly hedged by trading 
existing securities [see Harrison and Kreps (1979)]. 
This completeness assumption underlies the standard 
Black-Scholes valuation methods and may be appro- 
priate when valuing put and call options on a stock or 
stock market index where the underlying asset (the 
stock or stocks making up the index) are continuously 
traded and prices are continually updated. But, in the 
case of insurance futures contracts and options on these 
futures contracts, the underlying asset (the loss ratio S) 
is not traded and its value is infrequently updated so 
that, consequently, the assumption of completeness 
seems inappropriate. In the incomplete markets case, 
we cannot identify a unique risk-neutral distribution, 
but we can use available information to restrict the set 
of possible equivalent risk-neutral distributions and 
compute upper and lower bounds on the price of  any 
security. 

The bounds on securities prices thus depend on what 
information we assume to be available about the un- 
derlying uncertainty. For example, rather than assum- 
ing that traders have precise information about the 
distribution for S(T), we might assume, as in Brockett 
and Cox (1985) and Cox (1991), that only a range of 
values is known: 

IX, _< E[X(T)] < ~t2 and (r 2 < Var[X(T)] < ~r~. 

Alternatively, as in Smith (1995), we might assume 
that we know prices for certain securities and want to 
determine bounds on the prices for others that are con- 
sistent with the known prices. For example, we might 
be given prices for a futures contract and several call 
option contracts and seek bounds on some other call 
option contract. We will examine this second example 
in detail shortly. 

The general framework of our analysis is concomi- 
tant with the mathematics of the general moment prob- 
lem from statistics [cf., Kemperman (1987)]. 
Specifically, we assume that we are given n+ l  real 
valued functions f (x ) ,  i=0, 1 . . . . .  n, whose expecta- 
tions are assumed known and finite, that is, we know 

11, = Ep[f] = f f  (x)dP(x), for i = 0, 1 ..... n. 
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Though we know these moment values, the specific 
underlying distribution P is unknown. For convenience 
we take Jo(X) = 1 and ~to = 1 so that the first moment 
constraints specify that we are dealing with a proba- 
bility measure. We let J.t=(~t 0' la~ . . . . .  ~tn) and f=(f0, 
f, . . . . .  f,) and assume the moment functions are 
linearly independent. Now, given a real valued objec- 
tivefimction ~, our goal is to compute 

inf Ep[+] and sup Ep[+] (1) 

where the infimum and supremum are taken over the 
set of  all distributions P such that Ep[f] = Ix. In our con- 
text, we allow P to vary over the set of  all risk-neutral 
distributions consistent with the given information. 

There are two different methods for solving these 
optimization problems, both of  which lead to the same 
answer. In the "primal" approach, one seeks a distri- 
bution P that attains or approaches the bounds in (1): 
the theory of  the moment problem [cf., Brockett and 
Cox (1985), Kemperman (1987), Smith (1995)] shows 
that the infimum and supremum are obtained by distri- 
butions which are discrete at most n+  1 mass points; 
therefore, we can restrict our search to this subset of 
distributions. Alternatively, in the "dual"  approach, we 
seek linear combinations of the given moment func- 
tions which lie above (for the upper bound) and below 
(for the lower bound) the function whose expectation 
is to be bounded and seek the polynomials with the 
least and greatest expectations. Under certain specific 
conditions regarding the moment functions f and ob- 
jective function + (for example, if they form a Che- 
bycheff system of functions for example), we may find 
explicit formulas for the solutions to these optimization 
problems [cf., Brockett and Cox (1985)]. In the more 
general setting, while explicit formulae are not known, 
the problem can readily be solved using numerical 
methods. For example, Smith (1995) describes a pro- 
cedure where one first solves a discretized version of  
(1) using standard linear programming methods and 
then obtains an exact solution by "polishing" this ap- 
proximate solution by solving a low-dimensional, 
non-linear programming problem. 

An Example 
To illustrate this methodology, we consider a spe- 

cific example where we are given the current (time 0) 
value of  an asset (Xo) and the prices for a series of  call 
options on this asset that expire at time T. To make the 
example concrete, suppose the curren~ asset price is 

$40 and call options that expire in four months with 
strike prices $35, $40, and $45 have current prices 
$6.26, $3.08, and $1.26, respectively. We will then 
compute bounds on the underlying (cumulative) risk- 
neutral distribution as well as bounds on a call option 
with a $30 strike price. These prices are consistent with 
the Black-Scholes model with a risk-free discount rate 
of 5% per year and an annual volatility (or) of 30%: in 
the Black-Scholes model, the risk-neutral distribution 
is log normal (ln(X/Xo) and is normally distributed with 
mean (r-cr2/2)t and variance ~z t) so that the call op- 
tion with a $30 strike price would have a price of  
$10.59. 

To place this example in our general framework, we 
let X= [0, ~] represent the possible asset prices at time 
T. The moments correspond to the current prices for 
the traded securities, and the moment functions repre- 
sent the discounted time T payoffs as a function of  the 
underlying asset price at time T. For the asset itself, we 
takef~(x)=x/(1 +r) r and have a corresponding moment 
value 1a~=$40. For the call options, the moment func- 
tion is given byf(x)=(x-K)+/(1  +r) r where K, denotes 
the strike price and the moments la, correspond to the 
given prices for the call options. We can compute 
bounds on the underlying (cumulative) risk-neutral dis- 
tribution at some point d by taking the objective func- 
tion ~(x) to be a step function with a step at d (since 
P(X < d)=E[qb]); by varying the point d we can trace 
out the entire distribution function. We can compute 
bounds on the call option with $30 strike price by tak- 
ing the objective function +(x) to be (x-30)÷/(1 +r)  r. 

The results for this example are summarized in Fig- 
ure 1. In all cases, the bounds are achieved by distri- 
butions with no more than three points of  support; a 
few of  these distributions are shown in the figure. Here 
we find that the bounds on the underlying risk-neutral 
distribution are quite loose. From the "dual" perspec- 
tive described above, this is a reflection of the fact that 
step functions used in computing these bounds are 
poorly approximated by the given moment functions: 
a "step" security that pays $1 if  and only if the stock 
price is less than, say, $35 cannot be approximated very 
well by a portfolio consisting of the stock and given 
call options. The bounds on the value of  a call option 
with a strike price of  $30, however, are somewhat 
tighter as we can better approximate its payoffs using 
the given securities. 
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FIGURE 1 
B O U N D S  ON THE R I S K - N E U T R A L  DISTRIBUTION IN THE OPTION PRICING E X A M P L E  
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Some Extensions 
This general framework can be extended to incor- 

porate additional information about the underlying dis- 
tribution by including this information into the 
constraint set in the optimization outlined previously. 
For example, another useful constraint is to allow the 
external measure to be "not too unusual" in the sense 
that its deviation from some prespecified potential risk- 
neutral distribution is not too great. For example, the 
Black-Scholes model assumes the risk-neutral 
distribution to be the lognormai distribution, and we 
may want to allow limited deviations from this distri- 
bution. A measure of  deviation which can be used in 
this context is the entropic or information theoretic dis- 
tance measure 

I(P,,P2) = f p(x)lnp(x)dP2(x) 
where p(x)  is the Radon-Nikodym derivative of  P~ with 
respect to P2. If  P~=P2, then I(P,,  P2)=0, and 
I(P,,  P2)>0 if P~-4:P z. The minimum information dis- 
tance estimate of Pz subject to the constraint set is 
called the MDI estimate, and is discussed in detail in 
Brockett (1991 ). 

In the above option pricing example, we are given 
prices for an asset and three call options on the asset, 

and we seek bounds on the underlying risk-neutral dis- 
tribution and the price of  call option with a $30 strike 
price. The results for this example are summarized in 
Figure 2. Here we have taken the prior P2 to be a 
log-normal distribution (as assumed in the standard 
Black-Scholes model) with parameters consistent with 
the given asset and call prices. In this case, the mini- 
mum possible information distance is 0, and we take 
our entropy or information cutoff to be 0.02 (so that 
the unknown risk-neutral distribution is somewhat 
"close" to lognormal. Here, we see that the bounds on 
the risk-neutral distribution are much tighter than they 
were in the unrestricted case (compare Figures 1 and 
2), and the bounds on the price of a call option with a 
$30 strike price are tighter as well: [10.53, 10.66] ver- 
sus [10.50, 11.08]. (See Smith [1995] for a discussion 
of  how to compute these values.) 

Conclusions and Implications 
for Future Research 

This paper has shown how to use the information 
available from market prices to determine bounds on 
the value of derivative instruments like options on in- 
surance futures without completely specifying all 

I. Bounds" on the Price o f  Catastrophe Insurance Options on Futures Contracts 5 



FIGURE 2 
RESULTS FOR THE OPTION PRICING EXAMPLE WITH ENTROPY CONSTRAINTS 

Probability 

1.00 "r 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 - -  

0,00" 

25.00 

Upper Bounding Envelope 

30.00 35.00 40.00 

Lower Bounding Envelope 

Distribution Achieving 
Lower Bound at x--43 

Bounds on the Price a Call Option 
with a Strike Price of $30: 

Exact: $10.59 
Upper Bound: $10.66 
Lower Bound: $10.$3 

45.00 _50.00 55.00 x ($) 

information about the distributions involved. That is, 
unlike the Black-Scholes option pricing formulae 
which require a lognormal probability distribution to 
obtain exact values for all options, this method assumes 
no knowledge of the probability distribution other than 
the values of observed market prices which are then 
viewed as "moments" relative to this unknown prob- 
ability distribution. For a specific option under inves- 
tigation, bounds on the value of the option are 
constructed using solutions to the moment problem. 
For catastrophic insurance futures, the assumption of 
Iognormality is questionable, and the extent to which 
the Black-Scholes formulas give reasonable answers is 
a subject for further research. Also to be investigated 
are other insurance futures and options markets such as 
the crop insurance futures and options markets that 
have recently been created. 
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