
Crosshedging of Insurance 
Portfolios 

by Hans B/ihlmann 

Motivation 
New tools for managing insurance risk are being cre- 

ated everywhere. With a special emphasis on catastro- 
phe insurance and reinsurance, we want to better 
understand what these tools are basically trying to 
achieve. 

It is important to note that the concept of  crosshedg- 
ing gives us the key to the actuarial understanding of  
most new tools arising in the area of  alternative risk 
transfer mechanisms. Securitization of  insurance, 
which is the theme of  this symposium can, as I see it, 
almost always be seen as an exercise in crosshedging. 

The practical motivation for my presentation theme 
comes from catastrophe insurance and reinsurance. I 
am therefore first going to model this important branch 
of  insurance. The model will then serve as a guide 
throughout the whole lecture. 

The Catastrophe Risk Model 
Assume that your insurance company has written a 

portfolio of  homeowners policies in a clearly defined 
geographic area. The total claims originating from this 
portfolio for one specific time interval (year, quarter) 
is called S. 

As standard in nonlife actuarial techniques, assume 

1. S -- Z u = 1 Ys - doubly stochastic sum (1.1) 
number of  claims : N - Poisson distributed 

amount of  claim j:  ~ - iden t i ca l ly  distributed with 
cumulative distribution factor F(x). 

Also assume N, Y1, Y2 . . . . .  ~ . . . .  independent, 
which leads to the standard compound Poisson 
model. 

The specific character o f  an insurance portfolio 
exposed to catastrophe risk is modeled in the 
parameter of  the Poisson distribution-parameter 
of frequency of claims. 

Think of  this parameter as follows 

2. ~t + X (1.2) 
where la is fixed and )~ is a random variable of  
shocks (due to catastrophes). 

It is instructive to look at the following nu- 
merical example: 

3. E[Y] = 1 -- our unit is the average claim size 
E[Y 2] = 3 - which is a rather high value for 

property claims (1.3) 
~t = 100 
k = 0 with probability 9/10 and 
k = 100 with probability 1 / 10. 

We have just constructed a model for a portfolio in 
which, on average, once in ten years the expected num- 
ber of  claims is doubled. Whenever this happens, com- 
mon language will say that a catastrophe (windstorm, 
flood, earthquake) has happened. 

Let us compute 

E[S] = (~t + E[•]) * E[Y] 

= (100 + 10) * 1 (1.4) 

= 110 

Var[S] = (~t + E[k]) • E[F] + 

A 

Var [h.] * (E[ Y])~" 

B 

= (100 + 10)* 3 + 900.  1 = 1230. 

We observe two things: 

(1.5) 
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1. The variance is big compared to the mean. 
2. The variance component B gives us particular trou- 

ble. 
What can we do to reduce B, which is the variation 

due to h (in practical language: the variation due to the 
catastrophic risk)? 

The Idea of Crosshedging 
Assume that there is a second portfolio T covering 

risks in the same area (T could also be the aggregate 
portfolio written by all insurance companies other than 
yours in the same area). You are invited to participate 
in a quotashare of  the insurance benefits of  T. 

Let us summarize: 
You are given the opportunity to change the random 
variable 

S i n t o S -  or* T (2.1) 

at the price of  

* 11. (2.2) 

Clearly this leads to the following questions: 
1. What is the optimal value of  e?  Call it a*. 
2. Which price H is acceptable to you? 

General Formulas for 
Crosshedging 

The exercise: 

Find e* such that Var[S - e* * T] = min! 

leads to 

and with 

(3.1) 

a* - Cov(S,T) (3.2) 
Var[T] 

we find 

S* = S -  a * *  T (3.3) 

(Coy(S, T))~ 
Var[S*] = Var[S] - ( 3 . 4 )  

Var[T] 

Remark: These formulas are derived in any introduc- 
tory text on linear forecasting. It is actually the most 
elementary case which can be easily generalized to a 
higher dimension (using matrix notation). 

As simple as these formulas are, the finance litera- 
ture still fails to draw a lot of  conclusions from them. 
This is due to the fact that, for example, in connection 
with catastrophe derivatives, nobody seems to have ap- 
plied the crosshedging technique to the actuarial struc- 
ture of  the random variables S and T (assumed 
compound Poisson in this paper). 

A Successful Area 
of Crosshedging in Insurance: 
Credibility Theory 

Credibility can indeed be understood as crosshedg- 
ing the individual risk against its own past. 

Consider: 
S-c la ims  generated by the individual risk in the 

year o f  study 
T - s u m  of the claims of  the same risk in the past: 
The credibility premium P = M + e * T  charged to the 

insured leads then to the net payment S - e * T - M  of 
the insurance company. 

As 

Var[S - e * T -  M] = Var[S - OL * T] (4) 

(you may omit the constant M), 

we have reduced the credibility approach to our basic 
exercise in crosshedging! 

The Fundamental Difference 
between the Basic Models 
in Credibility Theory and in 
Catastrophe Risk Crosshedging 

The Credibility Model 
The total claims of  the individual risk in one time 

period are described by the random variable 

N 

S = ]~ ~ - Compound eoisson 
j=l  

with N - Poisson(h). (5.1) 

The essential feature now relates to the fact that the 
past variables S~, i= 1, 2 . . . . .  n, of the same risk are 
assumed compound Poisson with the same h. 
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Hence, we can use the variable T=~7=, S, to 

1. learn about the value of  h-credibi l i ty language and 
2. reduce the variance component due to the variability 

of  k-crosshedging language. 

The Catastrophe Risk Model 
S is defined as in (1.1)-(1.5): 

1. S = E ~ ,  Yj 
2. N-Poisson(h  +B) 

where 

l.t is fixed and 
h is a random variable of  shocks. 

Contrary to the credibility case, there is no use in 
looking at the past variables S,, i= 1, 2 . . . .  , n. Their h 
parameter value has no relation whatsoever to the h 
value of  the recent random variable S! Typically these 
values are drawn independently in each period. 

But as catastrophes occur in whole areas, competing 
companies in the same area will also suffer from them. 
Hence, the increased value of  h should also be effective 
in their portfolios! This is the basic idea of  crosshedg- 
ing for catastrophe risks. 

We, therefore, take T as total claims from a big com- 
peting company which is active in the same area (you 
can also think of T as representing the aggregate port- 
folio of all companies other than yours). 

Let 

27 T = =~ ~ -- Compound Poisson (5.2) 

M - Poisson(~tr + h 0. (5.3) 

Assume again Br is constant. 
The essential assumption is, however, that 

hr = Ar * h (5.4) 

That is, we postulate that the expected frequency due 
to catastrophe events h r is a multiple of the corre- 
sponding h in the distribution of  S. In the following 
we explore two cases: 
1. A r is a deterministic factor, and 
2. Ar is a random factor. 
For simplicity we follow case 1 here, but will return 
to case 2 later. 

Alternative Notation 
From an intuitive point, one might prefer to write 

(5.4) as (5.4a): 

1 1 
X = A r * h r  and then try to modelAr. (5.4a) 

Of course for the case of  deterministic At, this is just 
a change of  notation, for the stochastic case one might 
however easily have 1/At=0 with positive probability. 

Remarks 
1. We should think of  T as substantially big relative 

to S; hence Ar is a big factor, and I.tr is big relative 
to l it. 

2. For reasons of  simplicity, we have assumed that S 
and T stem from different portfolios, which is con- 
trary to some practical applications where T stands 
for the sum over all portfolios of  all insurance com- 
panies in a given area. In such a case write 

S -  ot * T = S -  ot * S -  e~ * ( T -  S). 

S and I" = T - S stem now from disjoint portfolios. 

Hence, 

S - a ' T = ( 1  - e0*  S -  oL* 1" 

shows that crosshedging now implies a combination of  
crosshedging between distinct portfolios with a classi- 
cal quotashare reinsurance. 

Numerical Example 
In order to do explicit calculations, let us also give 

numerical values for the parameters of  the distribution 
of  T. 

E[W] = 1.5 

E[W z] = 6 (5.5a) 

Br = 10000 

Ar = 80 (5.5b) 

h distributed as in (1.2) and (1.3). (5.5c) 
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Finally let us express the assumption that S and T 
stem from disjoint portfolios by the property: 

S and T are conditionally independent given h (5.6) 

Applying General Formulas 
for Crosshedging to the 
Microstructure of Variables 
S and T 

For the covariance, we have 

Cov(S,T) = E[Cov(S, T)IN] + Cov[E[SIh], E[TIh]] 

= Cov[X • E[Y], Ar * X * E[W]] 

= AT * E[W] * E[Y] * Var(X). 

Similarly for the variances, 

Var[S] = E[X + p] * E[Y 2] + Var(X) * (E[Y]) 2 

(6.1) 

(6.2) 

(see 1.5) and 

Var(T) =,E[A r * k + I.tr],* E[W z] 

+ Var[Ar * h] * (E[W]) 2 

= (~tr + Ar * E[h]) * E [ W  2] 

+ A~ * Var(h) * (E[W]) 2. (6.3) 

From (3.2) we then get 

Ct * 
Ar * E[W] * E[Y] * Var[X] 

A~- * (E[W])-" * Var[X] + (!aT + AT * E[X]) * E[W z] 

,~* = E[Y] 
E[wl e[W2l • ~tT + A, • E[al 

Ar + 
(E[W]): A r * Vat[hi (6.4) 

Using the numerical values of  1 and 5, we obtain 

1 1 1 1 

1.5 6 10000 + 80 * 10 1.5 84 
8 0 + - - *  

2.25 80 * 90 

For later purposes, we are introducing here the reduc- 

tion f a c t o r  "q 

q = 

A t -  ~- - -  

Ar  

E[W 2] ~tr + Ar E[h]" 

(E[W])~ A, • Var[X] (6.5) 

We must comment on formula (6.4). 
1. There are two critical values: I.tr and At.  

2. Crosshedging is the more useful (i.e. ct* becomes 
bigger) tfl.t r becomes  smaller.  

The conclusion is that the portfolio T used for cross- 
hedging should (as much as possible) contain no other 
claims than those originating from catastrophes. Ideally 
we should have ~tr=0. We call such a portfolio a pure  
catastrophe portfol io.  

3. More critical is At, which we have assumed to be 
constant. If A r is stochastic (and independent of  h), 
then the first A r in the denominator of  (6.4) has to be 
replaced by 

E[AZr] * Var[X] + (E[h]) 2 * Var[Ar] 

E[Ar] * Var[X] 

all others by E[A r]- 
The changes in formula (6.5) follow from those in 

(6.4), 
For illustrative purposes, assume 

A r = 40 with probability 1/2 

= 120 with probability 1/2 

which leads to 

E[Ar] = 80 as in the deterministic case 

E[A 2] = 8000 

Var[Ar] = 1600. 

The figure 80 in our numerical example then jumps up 
to 102. The reduction factor ~q reduces from 0.95 to 0.75. 

4. Nevertheless we see from the numerical exercise 
that the formula (6.4) derived from the deterministic 
case for A r gives the right order of  magnitude for ct*. 
Observe however that the pragmatic argument for 

a , = E [ Y ]  1 

E[W] Ar 

which is advocated in practice typically leads to values 
o f  cx* which are too high! 

Safety and Cost 
So far we have not addressed the question of  whether 

our crosshedging exercise increases the safety of  the 
insurance carrier. This question is obviously also re- 
lated to the cost of  the envisaged operation. Hence, we 
should ask at which cost  level  crosshedging can actu- 
ally be used such that it contributes toward improving 
the safety of  the insurance carrier. These are the ques- 
tions that we are going to address now. 
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Assume the insurance carrier is collecting the pre- 
mium P as its total of income for covering its obliga- 
tions S. We propose to measure the safety of  the 
insurance carrier by the adjustment coefficient K. 

Var[S*] = E[h + It] * E[Y 2] 

+ (E[Y]) z * Var[h] * {1 - "q} 

with the reduction factor ~ as defined in (6.5). 

( 8 )  ' 

Definition 
K>0 is called adjustment coefficient of a portfolio 

at premium income P if  

E[e- K(e-s~] = 1. (7.1 a) 

If P>E[S], such a K>0 exists (under suitable math- 
ematical assumptions, i.e., if the moment generating 
function of S is finite). 

Remarks 
1. Any text on risk theory will explain how to relate 

the adjustment coefficient K to the probability of ruin 
criterion. 

2. Our interpretation is going to be: 
The higher K, the higher the safety of S at premium 

You can rewrite (7.1 a) in the form 

1 
P = - * In E[eKS], (7.1b) 

K 

and by Taylor expansion of  the right side we obtain 
the approximation 

K 
P = E[S] + ~ * Var[S]. (7.2) 

Hence, measuring safety means studying 

P - E[S] Loading 

P. 

K = 2 .  - 2 "  ( 7 . 3 )  
Vat[S] Variance 

The factor 2 is, of course, irrelevant if  we want just 
to compare different levels of safety. 

Applying the Safety Concept 
to the Microstructure of S and S* 

We first need for S*=S-et**T 

Var[S*] = Var[S] 
(Coy(S, T)) 2 

Var[T] 

Using the formulas (6.1), (6.2), and (6.3) we obtain 

Remarks" 
1. We have indeed achieved our goal, namely a re- 

duction of  the variance component B as introduced in 
the section titled Catastrophe Risk Model. 

2. Observe that in our numerical example, we im- 
prove from 

Var[S] = 1230 Variance component B: 900 to 

Var[S*] = 373 Variance component B: 43. 

3. The reduction in the variance component B is ex- 
cellent. But recall our discussion of  formula (6.4). If 
AT is no longer assumed to be deterministic (the as- 
sumption indeed is not realistic), then the reduction fac- 
tor ~q is reduced. In our explicit calculations it dropped 
from 0.95 to 0.75 which would lead to Var[S*]=555, 
variance component B: 225. 

We conclude from this exercise that also under more 
realistic assumptions the crosshedging exercise gives 
us a considerable reduction of  our variance. Again, the 
deterministic AT reflects the general case but it over- 
states the effect. 

Can We Afford the Crosshedging 
Operation? 

All operations of  securitization need to be seen in 
relation to their cost. As in all forms of  reinsurance 
(securitization is one of them) cost is identical to the 
amount of  loading which is transferred. 

We define 
L=P-E[S] -Amoun t  of  loading in the original port- 
folio at premium P; Lr= I I -  E[ T ] -  Amount of loading 
in the portfolio used for crosshedging, H being the pre- 
mium (e.g. futures price) charged for receiving the ben- 
efits of T. 

Now compare the situation before and after cross- 
hedging: 

Before crosshedging 

K P - E [ S ]  L 

2 - Var[S] - Var[S]" (9.1) 
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Aider crosshedging 

K* P - E[S] - ¢x*[II - E[T]] 

Var[S*] 

L - a* * L r 

Var[S*] 
(9.2) 

The crosshedging operation improves our safety ex- 
actly i f  K*>K. 

For the case K*=K, we obtain the upper limit for all 
the premiums H that we can afford. Call this limit II* 
(the corresponding loading L*). From (9.1) and (9.2), 
we conclude 

L 

Var[S] 

L - or* * L* 
- ~ ol* * L *  

Var[S*] 

V a r [ S ] -  Vat[S*] 
= L *  

Var[S] 

From (6.2) and (8) we have 

Var[S] - Var[S*] = (E[r]) ' * Vat[×] * 
Var[S] (E[h] + p) * E[Y 2] + (E[Y]) 2 * Var[h]" 

Hence, 

a * * L * =  L *  * ' q .  
E[Yq * E[X + g] 

1 +  
(E[Y]) 2 * Var[h] (9.3) 

With our numerical values as used before, the middle 
factor turns out to be 0.7317; hence we conclude that 
in order to increase the safety o f  the portfolio S by 
crosshedging, we must have: Transferred loading < 
Collected loading *0.7317*'q (in money units). 

The critical quantity is again the reduction factor "q. 

Epilogue 
The approach chosen for this presentation is truly an 

actuarial one: 
1. the construction o f  a sufficiently structured model, 
2. the insistence that data must be available to estimate 

the relevant parameters in the model, and 
3. the comparison of  results in a practical situation 

with expected results from the model. 
Of  course, we have only been able to give some ideas 
for the first point. The ideas for points two and three 
are obvious and follow. 

The main point, however, is that we have taken a 
truly scientific route and hope that this scientific atti- 
tude also will be accepted ultimately by the financial 
community. Let me take this opportunity to remind you 
that the methods used by the life actuary were in ex- 
istence for more than a century before they were rec- 
ognized as the fundamental basis for the life insurance 
industry. The nonlife actuary is still struggling for this 
recognition. It is certainly high time to take up the 
struggle for the Actuary of  the Third Kind as well. 
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