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Abstract 
Since their appearance on the market, catastrophe 

insurance futures have triggered a considerable interest 
from both practitioners as well as academics. As one 
example of a securitized (re)insurance risk, its pricing 
and hedging contains many of the key problems to be 
addressed in the analysis of more general insurance de- 
rivatives. In the present paper we review the main 
methodological questions underlying the theoretical 
pricing of such products. We discuss utility maximi- 
zation pricing more in detail. A key methodological 
feature is the theory of  incomplete markets. Our paper 
follows closely the exposition given in Meister (1995). 

Catastrophe Insurance Futures 

Introduction 

In recent years the magnitude of catastrophic losses 
has been staggering. Catastrophic events put significant 
financial demands on society. In response to market 
conditions, the Chicago Board of Trade (CBOT) intro- 
duced catastrophe insurance futures and options in 
1992. The catastrophe insurance (CAT) futures are 
based upon a loss index consisting of specified losses 
reported by insurance companies. If an insurance com- 
pany's insurance portfolio is highly correlated to the 
loss index, then the company may achieve a reinsur- 
ance by the purchase of catastrophe insurance futures 
or options. Therefore, the catastrophe insurance futures 
and options can be considered as standardized reinsur- 
ance instruments. Similar products are also under con- 
sideration in Europe. 

The exact specifications of the catastrophe insurance 
futures contracts are the subject of many recent papers. 
A complete description is given by the CBOT in its 
Catastrophe Insurance Reference Guide (1995) and 
The Management of  Catastrophe Losses using CBOT 
Insurance Options (1994). Data information is to be 
found in the CBOT's Catastrophe Insurance Back- 
ground Report (1995). A very good introduction on the 
use of CAT futures is due to Albrecht, K6nig, and 
Schradin (1994), which also contains a useful list of 
references. In this introduction, we only recall some of 
the basics underlying CAT futures. 

Four different catastrophe insurance futures are 
traded at the CBOT: eastem, midwestem, western, and 
national catastrophe insurance futures (from now on: 
insurance futures). Several options of the American 
type on each contract are also traded. At the moment, 
the trading volume of the insurance futures options is 
larger than the one of the insurance futures proper. A 
reason is certainly that the options tend to hedge non- 
proportional reinsurance contracts rather than propor- 
tional ones, and proportional reinsurance contracts are 
not very common in the context of catastrophe insur- 
ance. In the following, we will discuss the actual in- 
surance futures, rather than the corresponding options. 
Since the exact specifications of  the four insurance fu- 
tures are the same with exception of the states con- 
cerned, we will not distinguish between them. An 
excellent overall introduction to futures in general is 
Duffle (1989). 

Insurance futures trade in quarterly cycles with con- 
tract months March, June, September, and December. 
For example, the June contract covers losses from 
events occurring during the first quarter of the same 
year as reported by the end of June. Since the settle- 
ment value is based on losses incurred (paid plus 
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estimated unpaid), a third quarter allows for loss settle- 
ment. Trading ends on the fifth day of the fourth month 
following the contract month. Therefore, the June con- 
tract settlement takes place on October 5. The settlement 
value of the contract is determined by a loss index. 

The Loss Index 
The loss index is the underlying instrument of the 

future's final value. It consists of  losses reported to the 
Insurance Service Office (ISO). Losses are reported to 
the 1SO by approximately 100 companies, but the ISO 
selects only some of the data on the basis of size, di- 
versity of business and quality. As the selected losses 
should be representative for the different lines of in- 
surance and states, they are replaced by weighted 
losses. The weights correspond to the percentages of 
(estimated) premiums received by the selected com- 
panies and total (estimated) premiums earned per line 
and state. Both the list of reporting companies included 
in the pool (selected companies) and the estimated pre- 
mium volume are announced by the CBOT prior to the 
beginning of the trading period for that contract. 

The different lines of insurance include homeowners, 
commercial multiple peril, earthquake, automobile 
physical damage, fire, allied lines, farmowners, and 
commercial inland marine. Reported losses can arise 
from the perils of windstorm, hail, earthquake, riot, and 
flood. 

Now let Lr denote the sum of selected weighted 
losses incurred during the quarter corresponding to the 
contract and reported at the end of the following quar- 
ter. Let I-I denote the announced premiums earned dur- 
ing the three months exposure period. Then, the 
insurance future's settlement value F r is given by 

F r =  $25,000X Min(--~ ,2) .  (1) 

A convenient way of rewriting (1) is as follows 

F r = $ 2 5 , 0 0 0 X  ( ~ - - - r - M a x ( - ~ - 2 , 0 ) ) ,  

so that in finance terminology, a catastrophe future (or 
more precisely its settlement value) is equivalent with 
a long position in the loss ratio and a short position in 
a European call option with maturity T, strike price 2, 
with an underlying loss ratio. Depending on the as- 
sumptions on the process (L,), results from general 
mathematical finance may be used. 

The Loss Process (Lt) 
The goal of this section is to develop a plausible 

stochastic model for the process (L,)o~_r of losses re- 
ported to the selected insurance companies until time t 
(T being the end of the reporting period). Basically, for 
0<~T, 

7 4 

L, = ]~ 0~, + ~ Cf, t ~ L~" + L~ 2' 
k--1 £=1 

where losses are subdivided in seven classes of ordi- 
nary losses (Ok.,) (k=l  . . . .  , 7), arising from allied 
lines, automobile physical damage, commercial multi- 
ple peril, farmowners, fire, homeowners, and inland ma- 
fine. There are four classes of catastrophic losses (Ce.,) 
( e = l , . . . ,  4) arising from earthquakes, wind/hail/ 
flood, hurricanes, and riot. The latter classes of losses 
are defined as losses exceeding a certain high threshold. 
For example, in their interesting analysis Huygues- 
Beaufond and Partrat (1992) classified losses due to 
hurricanes exceeding $30 million and those due to 
wind/hail/flood above $7.5 million as catastrophic. 
Both statistical analysis (as in Huygues-Beaufond and 
Partrat [1992]) and theoretical considerations (super- 
position and thinning of point processes as in Daley 
and Vere-Jones [1988], Propositions 9.2 V! and 9.3.I.) 
lead to Poisson-type of assumptions on both L ~ and 
L ~2). Under the assumption that the processes L <1) and 
L ~2> are only weakly correlated or indeed uncorrelated, 
again from a theoretical point of view one may safely 
assume that (L,) obeys one of the following nested as- 
sumptions. 

Basic Assumptions 
1. (L,) follows a compound Poisson process. 
2. (L,) follows a mixed compound Poisson process. 
3. (L,) follows a doubly stochastic (or Cox) compound 

Poisson process. 
For a definition of these processes, see the section im- 
mediately following. 

Any insurance derivative involving claim payments 
will fall within one of the above categories, or at least 
be an important modeling component. See, for in- 
stance, the already mentioned work of Huygues-Beau- 
fond and Partrat (1992), Panjer and Willmont (1992), 
Grandell (1991), and the references therein. As noted 
by Sondermann (1991), over the decades, actuaries 
have collected bulks of statistical information which 
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enable them to specify such processes one and two with 
considerable accuracy, so that one can safely say that 
a lot more is known about risk processes than about 
security price processes. For a model combining one 
of  the above jump models together with a diffusion 
component, see Cummins and Geman (1994, 1995). 

We assume the loss process (L,)osmr to be defined on 
a basic probability space (~,  F, ('k',)0<_~_. P), where P 
is the so-called physical probability measure and 
(F,)o<_~r is an increasing family of  sub-t~-algebras of F 
so that for all t, L, is F,-measurable (i.e., (L,) and is 
(F,)-adapted). We interpret F, as containing all basic 
information up to and including time t, often (though 
not always) one assumes that (F,) is the natural filtra- 
tion belonging to (L,), F,=ty (L~, O<s<t). This essen- 
tially exposes a weakness in the trading of  CAT 
futures: though L, is the main information needed to 
determine the future's price F, at time t, (L,) is only 
known on two days. An interim report publishes the 
value of L, at the fourth day after the reporting period; 
the final index value is known at maturity. A further 
uncertainty is due to the actual quality or type of re- 
porting. In this way, a CAT future is fundamentally 
different from a common (finance) future which is 
based on a regularly (in many cases very frequently or 
even tick-by-tick) reported spot price. This incomplete 
reporting adds an extra component to the overall vol- 
atility of insurance futures. 

Some Basic Notations and Definitions 
Consider a probability space (lq, F, P) and a second 

probability measure Q on (1~, F). Let X and Y be ran- 
dom variables on (fl, F, (P, Q)). Px(s): =P[X<_s] de- 
notes the distribution of the random variable X under 
the measure P; Ep[X] Y] denotes the conditional expec- 
tation of X given the or-algebra ~(Y) with respect to the 
measure P. I fA~ ~' and s~ Y([I), then Pv=s[A] is a sec- 
ond notation for Ee [1AIY=s]. We call a function f :  R 
--> R measurable if  it is measurable with respect to the 
Borei ~r-algebra ~(R). ~'(A) always denotes the Borel 
sets of  A (where A itself is a Borel set). A cadlag func- 
tion on R is a right continuous function such that the 
limits from the left always exist. QI~-PI~ is the nota- 
tion for the equivalence of the measures P and Q on 
the or-algebra F. QI~ ~- PI~ means that P and Q are 
mutually singular on F; Qx~Px means that QI~<m~PI~m 
and Qx _L Px means that Qt~<x) _L Pl~xv 

A doubly stochastic compound Poisson or compound 
Cox process (S,),_>o can be written as follows: 

N, 

st:Ex  
k= I 

where (X~,)(2, )(3, • • .) are strictly positive, i.i.d, random 
variables on (f/, F, P), and (N,) is an increasing point 
process, independent of (Xk), starting at zero, with 

Ns+, - N, - Poisson (A(s + t) - A(t)) (s > 0) 

where (A(t)) itself is a strictly increasing stochastic pro- 
cess on R ÷, also defined on the probability space (~,  
F, P). For a precise definition, see Grandell (1991). 

A mixed compound Poisson process is a doubly sto- 
chastic compound Poisson process with 

A(t) -= A × t 

and A being a strictly positive random variable on ([1, 
F, P). If  the random variable A is constant, almost 
surely we call the resulting process a compound Pois- 
son process. In this case, (N,) is an homogeneous Pois- 
son process with constant intensity h>0 .  In this paper 
we always assume that P[X~>0]= i, X~L2(II, F, P), 
P[A>0] = 1, A~ L2(f~, F, P), and Vt~ R: A(t)s L2(1"1, F, 
P). 

Recall that two measures P and Q on (l), P) are 
equivalent if they have the same nullsets. Finally, the 
integrable, adapted process (X,) is an (F,)-Martingale 
with respect to Q if  

V0 < s  < t <  T:  EQ(X, - X~ [ F s) = 0, 
Q-almost surely. 

Pricing by "No-Arbitrage" 

Introduction 
In order to highlight the fundamental differences be- 

tween CAT futures (or indeed more general insurance 
derivatives) and traditional finance derivatives, let us 
look at the pricing problem for the latter in the context 
of no arbitrage. This introduction is based on the 
excellent paper by Ffllmer (1990). Further basic ref- 
erences are Harrison and Kreps (1979), Harrison and 
Pliska (1981), and the more recent Delbaen and 
Schachermayer (1995). An excellent textbook treat- 
ment (in French) is Lamberton and Lapeyre (1991). For 
an English language edition, see Lamberton and 
Lapeyre (1996). 
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Consider a price process (X,)o~r on (fl, g,  P) and a 
random cash flow H before or at time T. H, as an g :  
measurable random variable on (fl, g ,  P), is called a 
contingent claim. Typical examples are: 
1. A European call option written on (X,) with maturity 

T and strike price K, 

H = (Xr - K) + , 

where x+=max(x, 0); 

2. If  (X,) describes a loss process and H is the final 
cash flow arising from a nonproportional reinsur- 
ance contract covering losses in a layer (K,, K2) at 
time T, 

H = min (X~ K2) - min (X~ K,); 

3. The settlement of  a CAT future, 

H = $25,000 × min (~___r, 2) ,  and 

4. An Asian option with strike price K and maturity T, 

. _ -  

Recall that an arbitrage opportunity is the possibility 
of  making a riskless sure profit. In a no-arbitrage mar- 
ket, such opportunities do not exist. The (fair) pricing 
of  contingent claims in such a market standardly starts 
with the following assumption (construction): "Let Q 
be an equivalent Martingale measure to P, i.e. Q - P 
and (X,) is an (g,)-Q-Martingale." It is precisely this 
assumption which crucially depends on the stochastic 
properties of  the underlying process Of,). In standard 
finance markets like the Cox-Ross-Rubinstein binomial 
tree model, the Bachelier Brownian motion model or 
the Markovitz-Black-Scholes geometric Brownian mo- 
tion model, one can show that not only such a Q exists 
but is moreover unique (as we shall discuss later, the 
latter is related to the notion of  market completeness 
and is crucially different in insurance markets). How- 
ever, let us for the moment assume that we have such 
a unique Q. Recall that H is gr (=tr  (X, : 0<s<T), say)- 
measurable; then in the above standard finance cases 
one can write H as an [t6 representation: 

H = Ho + 6, dX, (2) 

for some Ho and predictable (think left continuous) pro- 
cess (6,)- The representation (2) leads to a portfolio 
strategy replicating (riskless) the claim H if the pre- 

mium Ho is suitably chosen (and here Q will enter!). 
Indeed at time t we hold the amount 6, in the risky 
asset X,, and the amount 

in the riskless asset ("money in the bank") given by 
the constant 1 (think of  discounted amounts). The value 
V, of  this portfolio at time t is V,=~eY,+-q,, and hence 
by construction Vr=H (we neglect transaction costs!). 
This will all work if we can calculate the initial in- 
vestment Ho (=  Vo) and the process (~,). Unfortunately, 
Itr 's  representation (2) is mostly only a nonconstruc- 
tive existence theorem. Using the notion of  self-financ- 
ing strategies and It6's lemma, one can derive a 
constructive solution (involving PDEs). Here is the fi- 
nal trick to calculate Ho: 
1. (X,) is a Q-Martingale (not necessarily a P-Martin- 

gale); 
2. (~s) is predictable and "nice," whence 

= ' Q-Martingale; (l,-forsdXs)o~ r is a 
3. EQ(I,)=EQ(Io)=O; therefore EQ(H)=Ho; since we 

know H and Q we have found the fair premium Ho. 
Though admittedly we have left out various details, the 
above discussion clearly gives us a way in which to 
price and hedge insurance derivatives based on a risk 
process (X,): 
Step 1 Investigate the relationship between no-arbi- 

trage conditions and the existence of  equivalent 
Martingale measures Q. 

Step 2 What about uniqueness of  Q (related to com- 
pleteness)? 

Step 3 Find the It6 representation of  (X,) and investi- 
gate the explicit construction of  hedging port- 
folios. 

Step 4 What if any of  the above fail? 
In the following sections, we show that for risk pro- 

cesses in general many equivalent Martingale measures 
(and consequently fair premiums) exist so that a key 
discussion will be devoted to Step 4. By way of  an 
important example, we restrict our discussion to mixed 
compound Poisson processes. 

Mixed Compound Poisson Processes 
and Change of  Measure 

For a given process (X,) on (fl, g,  P), in order to 
investigate the existence of  equivalent Martingale 

18 Securitization of Insurance Risk: The 1995 Bowles Symposium 



measures, one has to be able to characterize Radon- 
Nikodym derivatives dQ/dP. The following result is 
proven in Meister (1995). We use the notation discussed 
previously in Some Basic Notations and Definitions. 

THEOREM 1 Suppose (S,),~o is a mixed compound 
Poisson process on (fl, ~ under P and Q. The follow- 
ing statements are equivalent: 
1. Vs_>O: QI,,~PI~; 
2. Px,~Qx,, and 
3. 3"7 : R ~ R measurable with 

E~,(exp('v(X,)))= 1, Ep,,(~ exp(~/(X0))<% and 

dQ] ( . ~ )  E?, (A': exp ( - As)) 
~-ff ~, = exp y (X,) Ee~ (A N: exp ( As))" 

Theorem 1 allows us to explicitly calculate Radon-Ni- 
kodym derivatives for the most important insurance 
risk processes. 

Example 1 (Compound Poisson case) 
Let P and Q be probability measures such that (S,)~o 

is a P- and Q-compound Poisson process, and let 
Px,~Qx,, PA=~Ix,, QA=Bx~, h~, 2%>0. Then Theorem 1 
immediately yields 

N~ 
dQ (X~)) (h-22~ "~ e -(x=-~'')* 
d-PI : exp (,--~l "Y 

for some measurable function y. 

Example 2 (Gamma mixed compound 
Poisson case) 

Let P and Q be probability measures such that (S,),~0 
is a P- and Q-gamma mixed compound Poisson process 
and Px, ~Qx,. Consider %, %, c~, c2>0 to be the param- 
eters describing the distribution of A, i.e. 

PA ~ r ( y l ,  Cl), QA ~ r('Y2, c2), 

where F(%, Cg) denotes the gamma distribution with 
parameters ~/,, c,. 

Then again using Theorem 1, for some measurable 
function % 

dQ 
3' r (N~ + %) \(c'~+--~] 0 dP ~ , = e x p  ~=1 (X~) 

where 0 is given by 

C7 2 (C, + S) ~' F (Yl) 
0 -  

c]" (c2 + s) "2 F (Y2)' 

The above model is also called the compound negative 
binomial process. 

Example 3 (General inverse Gaussian 
mixed compound Poisson case) 

Let P and Q be probability measures such that (S,),~0 
is a P- and Q-general inverse Gaussian mixed com- 
pound Poisson process and Px,-Qx,.  Consider I.tl, 112, 
[3t, [32>0 and hi, h2eR to be the parameters determin- 
ing the distribution of A under the two measures (h~, 
~ are constants here and not realizations of the random 
variable A), i.e., 

PA ~ GIG(g,, ~l, h~), QA ~ GIG(g2, [32, h2). 

For further details on the processes, see Panjer and 
Willmot (1992). In this case, we obtain 

dP ,, ,=l 

k~+N, (U=t3i-' (1 + 21a~s) ''a) 
ka,+y, (la,[3i-' (1 + 213,s) 'n) 

with 

(1 + 2131s) x'/2 kx, (p.,[37') 
0 -  

(1 + 2132s) x~j2 kx2 (lad3f~) ' 

The above model is also called the compound Sichel 
process. 

As explained in Meister (1995, Proposition 2.9), the 
above results can immediately be used to show that 
after a change of measure, the process (S,),~o remains a 
mixed compound Poisson process if the Radon-Niko- 
dym derivatives 

ao I 
dP ~ 

have the right structure. 

Mixed Compound Poisson Processes 
and Martingales 

Consider a mixed compound Poisson process (S,),~0 
under P, and a premium density p>O. The following 
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result shows how equivalent Martingale measures for 
the process (S,-pt),>_o can be obtained. A proof of the 
result can be found in Meister (1995, Proposition 2.11). 
For more details on premium densities and actuarial 
premium calculation principles, see Delbaen and 
Schachermayer (1995). 

THEOREM 2 Suppose (S,),>o as above. (S,-pt),_~ is 
an (~,)-Martingale under Q and for all s>O, QI~-PI,~ 
i[and only (f 
I. 3h>0, f3 : R + ~ R measurable with Ep (e~X'))=h 

and Ep (X?e~'X'9< zc such that 

dQ '~'~ 
--~l = e x p ( = ~ [ 3 ( ~ ) - h s ) ( E e ( A N ' e - ' ~ ) ) ' ,  

and 
2. p=Ee(X~e~'~"). 

An immediate consequence from the above result is 
that if the jumpsizes of (S,),_>0 are not constant under 
the measure P (i.e., nonconstant claimsizes), then an 
equivalent Martingale measure for (S,-pt),_~ cannot be 
unique! In the less interesting case of constant claims, 
we have uniqueness. 

A Word about Completeness 
Completeness essentially means that the underlying 

process (X,),>o is so that every contingent claim can be 
replicated by a (self-financing) strategy. Not surpris- 
ingly is this notion linked to It6 representations. 

DEFINITION 1 The market ((~, ~, (~,)o<_~_r, Q), 
(X,)o<,<r) is complete if  eve~ contingent claim HsL  2 
(~, Fr, Q) admits an lt6 representation (2) with respect 
to the process (X,). 

We basically know that the no-arbitrage condition is 
"equivalent" with the existence of an equivalent Mar- 
tingale measure. For a mathematically precise state- 
ment see Delbaen and Schachermayer (1995) or 
Stricker (1990). Sondermann ( 1991 ) showed that a sim- 
ilar result holds in reinsurance markets. Besides prov- 
ing the existence of replicating strategies in various 
no-arbitrage models, completeness implies (or is indeed 
equivalent with) uniqueness of equivalent Martingales. 
The following models are known to be complete: 
1. One-dimensional Brownian motion (Itr, 1951), 
2. Multidimensional Brownian motion and some spe- 

cial types of diffusions (Jacod, 1979), 

3. (N,-Xt),_>o with (N,) a homogeneous Poisson process 
(Kunita and Watanabe, 1967), and 

4. Square integrable point process Martingales 
(N,-  foh fls),>_ o (Brrmaud, 1981). 

As soon as we move to compound processes based on 
homogeneous, mixed, or doubly stochastic Poisson 
processes, even when completeness is present, we may 
lose the uniqueness of  the equivalent Martingale prop- 
erty and therefore the unique pricing property. For fur- 
ther details see Meister (1995, Section 3.3). We 
introduced the notion of completeness via the existence 
of hedge portfolios (It6 representation). In various mar- 
kets completeness turns out to imply the uniqueness of 
an equivalent Martingale measure. These cases are fi- 
nite probability spaces or continuous price processes 
(Jacod, 1979), of a price process for which the natural 
filtration (F,=cr (X~ : s<t)) is strictly left-continuous 
(Pratelli, 1994). Unfortunately in an insurance market 
framework in general, none of these cases apply. 
Clearly further research on this topic is called for. 

Before embarking on the pricing problem for catas- 
trophe insurance futures, we quote some words of warn- 
ing concerning incompleteness and insurance pricing. 
!. There is no "right" price of insurance; there is sim- 

ply the transacted market price which is high 
enough to bring forth sellers, and low enough to 
induce buyers (Lane, 1995). 

2. In incomplete markets, exact replication is impos- 
sible and holding an option is a genuinely risky 
business, meaning that no preference independent 
pricing formula is possible. If, however, option pric- 
ing is imbedded in a utility maximization frame- 
work, i.e., the potential option purchaser's attitude 
to risk is specified, then a unique measure emerges 
in a very natural way (Davis and Robeau, 1994). 

3. Arbitrage-based pricing theories are theories about 
relative prices and do not attempt to explain why 
the prices of a particular stock reached their ob- 
served level. Only the interrelationship between 
prices is explained (Jensen and Nielsen, 1994). 

Back to CA T Futures  

The key questions concerning catastrophe insurance 
futures markets are: 
1. Do strategies of taking long and short positions in 

insurance futures contracts exist which yield a sure 
profit? 
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2. What are necessary and sufficient conditions to ex- 
clude the opportunities of  a sure profit? 

Recall that we denote the process of total losses flow- 
ing into the insurance futures index by (L,). Also we 
assume (L,) to follow either a compound Poisson pro- 
cess, a mixed compound Poisson process or a doubly 
stochastic compound Poisson process, defined on some 
probability space (lq, F, P). We denote the insurance 
future's price process by (F~)o~_ r. A short position at 
time t means the commitment to pay the random 
amount F r - F  , at time T. A holder of a long position 
will receive F r - F ,  at time T. There are no cashflows 
before T. This is a theoretical assumption as the CBOT 
clearing system requires certain payments from agents 
before T. Furthermore, the insurance future contract has 
the starting value zero, and settlement takes place at 
time T. Consider the market to be liquid and the con- 
tracts to be divisible in the sense that any agent can 
buy or sell any fraction of a contract at any time. We 
consider deterministic interest rates, though our results 
also hold for stochastic interest rate models. For ex- 
pository purposes, we assume interest rates to be zero; 
because there are no cashflows between 0 and T, we 
can think of all cashflows to be discounted to their 
value at time zero. We, furthermore, recall that Fr  is 
determined by $25,000 min 

hence the process (F,) is bounded. Both (L,) and (F,) 
will be adapted with respect to the filtration (F,), de- 
noting the increasing information tr-algebras available 
through time. We have to give a new definition for the 
meaning of a strategy: a strategy is used by an agent 
who agrees at certain random times to several long or 
short positions in an insurance future contract, where 
the number of the positions only depends on the infor- 
mation which is available at those (random) times. To 
be more precise, 

DEFINITION 2 The set (~)= {n, r, . . . . .  r,, ~ . . . . .  
~,}, where n~N, 'r, : f /  ---) [0, T], i=1 . . .  n are 
(~t,)-stopping times; ~i : f~ ---) R are F~,-measurable, 
and square integrable is called a strategy. The final 
ga#~ o f  trade Gr(~) o f  a strategy (~) is given by 

Gr(~) = ~ ~k (Fr - F¢,) (~ L 2 (~,  ~r, P)). 
k=l 

It may not seem to be obvious that we do not allow 

for continuous strategies. Note that usually a continu- 
ous strategy describes the amount held in some risky 
asset. The price fluctuation then determines the final 
gain of trade. The above context is slightly different: 
we do not hold a certain amount of  an underlying asset, 
but at any time we can agree to an insurance future 
contract, which is settled at time T. As it stands, defi- 
nition 2 allows for quite realistic strategies. 

A strategy (~) allowing for a sure profit is called an 
arbitrage strategy, i.e., a strategy (~) satisfying: 

Gr(~) > 0 P - almost surely, and 

Ep [Gr(~) ] > O. 

Under the natural assumption that (F,) is a right-con- 
tinuous process, the following theorem gives a neces- 
sary and sufficient condition for the absence of 
arbitrage strategies. The formulation turns out to be ex- 
actly the same as, in the context of  standard financial 
markets. 

TUEOREM 3 Consider the insurance futures market 
(fl, F, ( F , ) o ~  P), with right-continuous price process 
(F,)o_~r. The following are then equivalent: 
1. (F,)o~,~T does not allow arbitrage strategies, and 
2. there exists an equivalent measure Q (i.e. P - Q )  

such that (F,) is an (F,)-Martingale under Q. 
For a proof, see Meister (1995, Proposition 3.6, The- 
orem 3.7). 

Example 4 
A common premium principle in insurance mathe- 

matics is the Esscher principle, see for instance Gerber 
and Shiu (1995). Applied to the pricing of  insurance 
futures, the Esscher principle leads to 

F, =- E o (F r I Fr), 0<~T, 

where for some tx>0 

d Q  e ctFr 

dP Ep (e°~)" 

Obviously Q ~ P  and (F,) is a Q-Martingale. If  (L,) fol- 
lows a doubly stochastic compound Poisson process, 
then (F,) is certainly right-continuous; hence, the 
Esscher model is arbitrage free. For a further discussion 
on the relevance of  the Esscher principle in general 
finance, see Bfihlmann, Embrechts, and Shiryaev 
(1996). 
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Pricing and Replication in the 
Insurance Futures Market 

Introduction 
An insurance market is often not complete, and even 

complete insurance markets do in general allow for 
many equivalent Martingale measures. Hence, there ex- 
ists several possibilities to price contingent claims ex- 
cluding arbitrage opportunities. In this context the 
common approach to pricing is a preference dependent 
model. Preferences are usually described by von Neu- 
mann-Morgenstern utility functions. We shall distin- 
guish between prices calculated by individual agents 
and equilibrium prices over a whole market. 

An individual agent's objective is to maximize ex- 
pected utility of  wealth at a certain fixed time. The 
agent, therefore, only agrees to a position in an insur- 
ance future contract if it is an attractive investment 
compared with other possible investments. Hence, the 
insurance future's price should only depend on the 
agent's preferences and investment opportunities. A 
market equilibrium is the situation where by exchang- 
ing risks all agents can maximize their expected utility 
at the same time. Equilibrium prices are derived by 
changing the measure and taking the corresponding ex- 
pectations under the new measure. In this case the in- 
surance future's price should only depend on all the 
agents' utilities and investment opportunities. 

In some situations, an agent wants to replicate a con- 
tingent claim by an engagement in the corresponding 
market. In an incomplete market, there exists claims 
which cannot be replicated in the sense that they do 
not admit an It6 representation. Thus, there remains 
some uncertainty about the replication cost. 

Pricing of Insurance Futures in a 
Utility Maximization Framework 

A recent study on the subject of  option pricing in a 
utility maximization framework is due to Davis and 
Robeau (1994). Although one cannot apply the results 
to an insurance market context in a straightforward 
manner, we find it important to discuss these basic 
ideas. An interesting paper giving an easy introduction 
to utility functions in an insurance context is Gerber 
(1987). 

An investor with utility u and a certain initial en- 
dowment x forms a dynamic portfolio. To determine 
the portfolio, he or she can make the choice of  a strategy 
7r out of  the set S of  possible strategies. The cash value 
of  the portfolio at time t is X~(t). The objective is to 
maximize expected utility of  wealth X~(T) at a fixed 
final time T. The investor asks the question whether the 
maximum utility can be increased by the purchase or 
short-selling of  a European option whose cash value at 
time T is some nonnegative random variable, the 
purchase price at time t=0 being p. Thus, from the in- 
vestor's point of  view, p is a fair price for the option if 
diverting a little of  the funds into it at time t=0  has a 
neutral effect on the investor's achievable utility. 

This "marginal rate of  substitution" argument leads 
then (under additional assumptions) to a general option 
pricing formula basically dependent on the set o f  strat- 
egies S ,  the initial endowment x, and the utility func- 
tion u. 

Let the investor now be an insurance company. The 
company holds a portfolio of  insurance policies for 
which it receives premiums, but also has to pay for 
occurred losses. Let (P,)o~,~r denote the total value of  
premiums received up to time t, and (Y,)o~r be the total 
value of  claims occurring up to time t, both processes 
defined on some probability space (lq, F, (F,)o~_r, P) 
where F,=cr(P,., Ys, s<t). We assume the existence of  a 
liquid reinsurance market, i.e. at any time ~ T  the in- 
surance company can decide to sell any fraction of  the 
remaining risk (Y~)~r~ based on the information avail- 
able at time t. To be more precise, 

DEFINITION 3 I f  t~ [0, T], a reinsurance strategy 
(~s),~r is a predictable stochastic process on (~ ,  F, 
(Fs), P) with 

O <_ ~s <_ l for  all s e [t, T]. 

H,  denotes the set o f  all reinsurance strategies which 
"start"  at time t. 

Again, for expository purposes, we assume interest 
rates to be deterministic, described by the function 
(r(t))os~_ ~ where r(t) denotes the value at time T of  a 
cashflow arising from an investment of  1 at time t. We 
introduce, furthermore, the process (X,)o~r given by 

X, = r(t) (P, - Y,), O < t < T, 

denoting the inflated net earnings from the insurance 
business up to time t. 

If the insurance company at time t chooses some 
reinsurance strategy (~s)~ H,, then the company's final 
gain at time T (positive or negative) is given by 
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Gr(~) = fJ r ~,dX,, 

where we assume the reinsurance companies to receive 
primary insurer premiums for their engagement. 

Assume the insurance company to have a utility 
function u, denoting the company's preferences. We 
assume u to be a C2-function on R with u'>0, and u"<0. 
The insurer's objective is to maximize expected utility 
of the final gain at time T by using the information F,. 
Let 

V = sup E~ [u(Gr(~))lF,] 

be the maximum expected utility of  the (inflated) final 
gain, and A, be some subset of  H,. The insurance com- 
pany now asks the question whether its maximum util- 
ity V could be increased by the agreement to a long or 
a short position in an insurance future contract. The 
"marginal rate of substitution" argument is used as fol- 
lows: F, is a fair price for the insurance future at time 
t if "agreeing a little" into a contract has a neutral 
effect on the company's achievable utility. For the pur- 
pose of giving a mathematical formulation, we define 
for any 8 and F,: 

W(8, F,) = sup Ee [u(Gr(O + ~(Fr - F,))IF,] 

and give the following: 

DEHNrrlon 4 Suppose that for  each F, the function 

a ---) W(a, F,) 

is differentiable at ~=0, and there is a unique solution 
F, o f  the equation 

OW 
Og (0, F,) = O. 

Then ['~ is the fair price (in the above sense)for the 
insurance future at time t. 

In the following theorem, we can give a pricing for- 
mula for insurance futures: 

TrlEOI~M 4 Suppose that there exists ~ A ,  such that 

V = E,,. [u(a,.(~)) I F,] 

and the function 

---) W (8, F,) 

is differentiable at 8=O for each F,. Then the fair in- 
surance future price at time t is given by 

= Ep [u' (Gr Fr I F,] 
E,, [u' [ 

The proof of this result is given in Meister (1995, The- 
orem 4.3). This result should also be compared with 
formula (17) in Gerber (1987). 

E x a m p l e  5 

Consider the insurance company to have an expo- 
nential utility u(x) = (1 - e ~) with risk averseness cx > 0 
when it decides not to reinsure its claims, i.e., 
A, = {(1),<~_r}. Then we have 

F, = Ep [e -~'xr-x') Fr [ ~,l 
Ep [e -~`xT-x'' I F,] ' 

Assume, furthermore, the premium process (P,) to be 
deterministic. Then, using that Y, is F:measurable and 
r(T)= 1, it follows that 

~, = Et, [e ~'~rm-'"~r'~ Fr [ F,] 

Ee [e ~'r~r)rT-rmr') I ~,] 

E? [e ~v~ F r I F,] 
Ep [e~T I F,] 

Now replace the insurance company by the insurance 
market holding those policies which lead to losses 
flowing into the insurance future's index, i.e., for all 
0<~T, Y,=L,. The fair insurance future price (from the 
insurance market's point of  view), therefore, is 
(c=$25,000/H): 

F, = Ee [e "L~ c (Lr A 21I) I F,] (3) 

Showing that in this case the utility maximization ap- 
proach essentially leads to the Esscher principle. 

In order to work out formula (3), one needs to im- 
pose specific conditions on (L,)o~r, like the three basic 
assumptions in the loss process (L,) section. For in- 
stance, under assumption one (compound Poisson case) 
one obtains 

= ceX( t - r )Ep(e~r~)  t...a "qk 
k=o k! 

where 

"~k ~ f0  (2H-L0+ e~(s + L,) dF*k(s) 

+ 217(1 - F *~ (217 - L,)+). 
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Here F(x)=P(X~_x) is the jump (or claim) distribution, 
and F *k denotes the kth convolution of F. 

In the uncapped case, 

Lr 
Fr= $25,000--~cLr 

and gamma distributed claim amounts X~ ~F(n, I.t), the 
above formula reduces to the very easy 

{ 1, 
k ,  = c L,  + x ( r  - t)  (I t  _ 

which explicitly shows that j0 increases with L,, k, and 
a; F, decreases as time to maturity T becomes shorter. 
For generalizations and further analysis see Aase 
(1994) and Meister (1995). 

Remarks 

1. As we have remarked in the section titled, Pricing 
By No-Arbitrage, insurance markets are often not 
complete; hence, there exist contingent claims 
which cannot be perfectly hedged in the sense that 
they do not admit an It6 representation. However, 
one can show that under rather weak assumptions, 
there exist "best" risk minimizing reinsurance strat- 
egies in the sense of  F611mer and Sondermann 
(1986), F611mer and Schweizer (1989), and 
Schweizer (1990, 1994). Details on this approach 
concerning CAT futures are to be found in Meister 
(1995, Section 4.4). An excellent paper using equi- 
librium pricing is Aase (1994). 

2. Whenever pricing formulas concerning a financial 
instrument are to be worked out in an incomplete 
market (allowing for various equivalent Martingale 
measures), it is useful to estimate the distribution of 
the contingent claim under the physical measure P 
and apply standard loading techniques as is often 
done in an insurance context. The latter is mostly 
better than a blindfold application of some (nonu- 
nique) Martingale pricing formula. Such an analysis 
has been given by Kliippelberg and Mikosch (1995). 
In the latter paper it is assumed that (N,),~o is either 
a renewal process or a family of Poisson rv's with 
intensities (h(t)),~ o, such that E(N,)--h(t) ---) % t 
~. The claim process equals S,=Z~-~ X,, where 
(X,),~N is a sequence of i.i.d, rv's having distribution 
function F and mean It. In the presence of large 
(catastrophic) claims, a natural condition on F is of 

the type F (x )= l -F (x ) -x - "L(x )  for x ---) 0% where 
a > l  and L is slowly varying, i.e., for all t>0, 

L(xt) l 
!i~m~ - ~ =  . 

We denote this condition by Pc ~ ( - a ) .  See Bingham, 
Goldie, and Teugels (1987) for a detailed discussion on 
the latter conditions. For a discussion on the modelling 
of catastrophic claims, see Embrechts, Klfippelberg, 
and Mikosch (1997). Motivated by CAT futures, Kliip- 
pelberg and Mikosch (1997) estimate for large t, the 
distributional behavior of 

( S, 
V(t) -- $25,000 × min , 2)  

\ch(t)it 

for some safety loading c>0. 

THEOREM 5 Under the above assumptions, the fol- 
lowing asymptotic estimates hold. 
1. I f  or>l, then as t --~ % 

Ee(V(t)) = $25,000 -1 (1 + (1 + o(1)) 
C 

(2c - 1)X(t) ff-((2c - 1)itX(t)) "l.] 
o r -  1 

2. Ifet>2,  then as t ---) % 

1 ( E  (ALE) + (1 + O(1)) 
Vare(V(t)) = ($25,000) 2 ~ ,, g2Mt) 

2 ( 2 e -  1)2X(t) "l 
~ a - -  2") F - ( ( 2 c -  1)ith(t))]. 

The key problem in obtaining results of the above 
type can be seen as follows: 

( s, + ' L Ee k c ~ )  - K] ~ - - cg(t---)) " P(S, - g(t) > x) dx, (4) 

where we assume that "~--Kc-1 >0. Letting t ~ 
in (4), we need estimates on P(S , -g ( t )>x)  for 
x=x(t) --* oo. This leads to the well-known area of 
large deviation results, however, under the nonstan- 
dard (heavy-tail) condition P~K~(-a).  This is ex- 
actly the theory worked out in Kliippelberg and 
Mikosch (1995). 

3. Throughout this paper, we have concentrated mostly 
on the pricing of  the CAT futures themselves; 
clearly the same theory may be used to price deriv- 
atives on the CAT futures like options and 
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call-option spreads. See, for instance, Aase (1994) 
and Meister (1995). 

4. The final word on the pricing of insurance deriva- 
tives has not yet been said. The present paper pro- 
vides some insight into the underlying mathematical 
methodology. More and more, insurance products 
are coming onto the market containing a financial 
component of some sort. Both finance experts as 
well as actuaries will have to get to know the other 
expert's field better. We hope that our paper con- 
tributes toward closing the existing gap so that with 
the right methodology at hand, we can seriously 
start tackling risk securitization. 
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