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1. Introduction 
Actuaries measure, model, and manage risks. Risk 

associated with the investment function is a major un- 
certainty faced by many insurance companies. Actu- 
aries should have knowledge of the asset side of the 
balance sheet of an insurance company and how it re- 
lates to the liability side. Such knowledge includes the 
operation of financial markets, the instruments avail- 
able to the insurance companies, the options imbedded 
in these instruments, and the methods of pricing such 
options and derivative securities. 

In this paper we study the pricing of financial options 
and derivative securities, and their synthetic replication 
by means of the primitive securities. We show that a 
time-honored concept in actuarial science, the Esscher 
transform, is an efficient tool for pricing many options 
and contingent claims if the logarithms of the prices of 
the primitive securities are certain stochastic processes 
with stationary and independent increments. The Swed- 
ish actuary F. Esscher (1932) suggested that the Edge- 
worth approximation (a refinement of the normal 
approximation) yields better results, if it is applied to 
a modification or transformation of the original distri- 
bution of  aggregate claims. Here, this Esscher trans- 
form is defined more generally as a change of measure 
for certain stochastic processes. An Esscher transform 
of such a process induces an equivalent probability 

measure on the process. The Esscher parameter or 
parameter vector is determined so that the discounted 
price of each primitive security is a martingale under 
the new probability measure. A derivative security or 
contingent claim is valued as the expectation, with re- 
spect to this equivalent martingale measure, of the dis- 
counted payoffs. 

Although there may be more than one equivalent 
martingale measure, in general, the risk-neutral Esscher 
measure provides a unique and transparent answer, 
which can be justified if there is a representative 
investor maximizing his or her expected utility. The 
option price is unique whenever a self-financing rep- 
licating portfolio can be constructed. This is the case 
in the multidimensional geometric Brownian motion 
model and also in the multidimensional geometric 
shifted compound Poisson process model. The latter is 
at the same time simpler (in view of its sample paths) 
and richer (the former can be retrieved as a limit). The 
Esscher method can be extended to pricing the deriv- 
ative securities of (possibly) dividend-paying stocks. 

We show that, in the case of a multidimensional ge- 
ometric Brownian motion model, the price of a Euro- 
pean option does not depend on the interest rate, 
provided that the payoff is a homogeneous function of 
degree one with respect to the stock prices. Moreover, 
with the aid of Esscher transforms, a change of nu- 
meraire can be discussed in a concise way. 
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2. The Esscher Transform 
of a Single Random Variable 

Let Y be a given random variable and h a nonzero 
real number for which the expectation 

E[e hr] 

exists. The positive random variable 

e hY 

(2.1) 
E[e by] 

can be used (as the Radon-Nikodym derivative) to de- 
fine a new probability measure, which is equivalent to 
the old measure in the sense that they both have the 
same null sets (sets of  measure zero). In other words, 
the old and new measures are mutually absolutely con- 
tinuous. For a measurable function ~b, the expectation 
of the random variable ~(Y) with respect to the new 
measure is 

E[d~(Y)e hr] 
E[¢(Y); hi - (2.2) E[e hr] 

We call this new measure the Esscher measure of 
parameter h. The corresponding distribution is usually 
called the Esscher transform in the actuarial literature 
(Esscher, 1932; Philipson, 1963; Jensen, 1991). In 
some statistical literature, the term exponential tilting 
is used to describe this change of  measure. 

The method of  Esscher transforms was developed to 
approximate the aggregate claim amount distribution 
around a point of  interest, Yo, by applying an analytic 
approximation (the first few terms of  the Edgeworth 
series) to the transformed distribution with the param- 
eter h=h o chosen such that the new mean is equal to 
Yo- Let 

c(h) = ln(E[ehV]) (2.3) 

be the cumulant-generating function. Its first- and sec- 
ond-order derivatives are 

E[Ye hr] 
c'(h) = ~ = ElY; hi (2.4) 

E[e ~r] 

and 

c"(h) - e[e~']  ',E[-X-(Uq-J = Var[Y; h]. (2.5) 

Since Vat[Y; h i>0  for a nondegenerate random vari- 
able Y, the function c'(h) is strictly increasing; thus the 
number ho for which 

Yo = c'(ho) = E[Y; ho] 

is unique. In using the Esscher transform to calculate 
a stop-loss premium, the parameter ho is usually chosen 
such that the mean of  the transformed distribution is 
the retention limit. 

3. Discrete-Time Stock-Price 
Models 

A purpose of  this paper is to show that the concept 
of  Esscher measures is an effective tool for pricing 
stock options and other derivative securities. We need 
to extend the change of measure for a single random 
variable to that for a stochastic process. In this section 
we consider the simpler case of  discrete-time stochastic 
processes. 

For j = 0 ,  1, 2 . . . .  , let SO') denote the price of  a stock 
a time j.  Assume that there is a sequence of  indepen- 
dent (but not necessarily identically distributed) ran- 
dom variables { Yk} such that 

S( j )  = S(O)exp(Y, + II2 + " ' "  + Yj), 

j = 1 , 2 , 3  . . . .  (3.1) 

Assume that the moment generating function for each 
Y, exists, and write 

(3.2) Mr,(h) = E[ehV,]. 

For a sequence of  real numbers {hk}, define 

= exp(Zh.:'0/1-lM,Xh0 
k ~ j - -  k~j 

(3.3) 

Then {~} is a positive martingale which can be used 
to define a change of  measure for the stock-price pro- 
cess. For a positive integer m, let t~(m) be a random 
variable that is a function of  Y , . . . ,  I'm, 

~(m) = ~(Yt . . . . .  Y,). (3.4) 

The expected value of  O(m), with respect to the new 
measure, is 

E [dd(m) Z,,]. (3.5) 

In (3.5) the random variable Z,, can be replaced by Z s, 
j>m, because of  the martingale property. 

We assume that the risk-free interest rate is constant 
through time and the stock pays no dividends. Let 8 
denote the risk-free force of  interest. The risk-neutral 
Esscher measure is the measure, defined by the se- 
quence of  numbers {h~,}, with respect to which 
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{e-aJS( j ) ; j  = 0, 1, 2 . . . .  } (3.6) 

is a martingale. This leads to 

e ~ = My,(1 + h2)/M,,(h'Q, k = 1, 2, 3 . . . .  (3.7) 

As we pointed out at the end of  the last section, the 
numbers {hl} are unique. 

Suppose that each Yk is a Bernoulli random variable, 
i.e., it takes on two distinct values, ak and bk, only. 
Then there is only one risk-neutral measure, given by 

e s - -  e b ~  

Pr'(Yk = ak) - - -  (3.8) 
ea~ - eb, 

and 

e ~ - e a k  

P r ' ( Y  k = bk) e ~' _ ea ,. (3.9) 

(To rule out arbitrage opportunities we assume that the 
force of  interest 5 is between ak and bk for each k.) 

If we assume that the random variables {Yk} are 
identically distributed in addition to being independent, 
then all h~ are the same number. This points to an ap- 
proach to extend the change of  measure to certain con- 
tinuous-time models, as we shall see in Section 5. On 
the other hand, the risk-neutral Esscher measure can 
also be defined for dependent random variables {Yk}. 
In this more general situation, each hl is a function of  
Yl, Y2, . . - ,  Y,-i and thus a random variable itself. 

4. Fundamental Theorem 
of Asset Pricing 

In this paper we assume that the market is friction- 
less and trading is continuous. There are no taxes, no 
transaction costs, and no restriction on borrowing or 
short sales. All securities are perfectly divisible. It is 
now understood that, in such a security market model, 
the absence of  arbitrage is "essentially" equivalent to 
the existence of  a risk-neutral  measure or an equivalent 
martingale measure,  with respect to which the price  of  
a random payment is the expected discounted value. 
Dybvig and Ross (1987) call this result the Fundamen-  
tal Theorem o f  Asset  Pricing. In general, there may be 
more than one equivalent martingale measure. A merit 
of  the risk-neutral Esscher measure is that it provides 
a general, transparent, and unambiguous solution. 

That the condition of  no arbitrage is intimately re- 
lated to the existence of  an equivalent martingale mea- 
sure was first pointed out in Harrison and Kreps (1979) 
and Harrison and Pliska (1981, 1983). Their results are 

rooted in the idea of  the risk-neutral valuation of  Cox 
and Ross (1976). In a finite discrete-time model, the 
absence of  arbitrage opportunities is equivalent to the 
existence of  an equivalent martingale measure (Dalang, 
Morton, and Willinger 1990; Schachermayer 1992b). 
In a more general setting the characterization is deli- 
cate, and we have to replace the term "equivalent to" 
by "essentially equivalent to." It is beyond the scope 
of  the present paper to discuss the details. Some recent 
papers are Artzner and Heath (1995), Back (1991), 
Back and Pliska (1991), Christopeit and Musiela 
(1994), Cox and Huang (1989), Delbaen (1992), Del- 
baen and Schachermayer (1994a, 1994b), Frittelli and 
Lakner (1994), Mfiller (1989), Schachermayer (1992a, 
1994), Schweizer (1992), and Stricker (1993). 

We note that the idea of  changing the probability 
measure to obtain a consistent positive linear pricing 
rule has appeared in the actuarial literature in the con- 
text of  equilibrium reinsurance markets. See Borch 
(1960, 1990), Bfihlmann (1980, 1984), Deprez and 
Gerber (1985), Lienhard (1986), Gerber (1987), Son- 
derman (1991), Aase (1993a, 1993b), and Chevallier 
and Mfiller (1994). 

5. Continuous-Time Stock-Price 
Models 

In the rest o f  the paper, we consider continuous-time 
stock-price models. For t>0, let S(t) denote the price at 
time t of  a nondividend-paying stock. We assume that 
there is a stochastic process {X(t)} with independent 
and stationary increments such that 

S(t)  = S(O) e x('), t > O. (5.1) 

For a theoretical "justification" that stock prices should 
be modeled with such processes, see Samuelson (1965) 
or Parkinson (1977). (Some authors call {X(t)} a LOW 
process . )  To rule out arbitrage opportunities, we need 
the condition that X ( t ) - 8 t  assumes positive and nega- 
tive values. If  this were not the case, for example, if 
X ( t ) - 8 t > O  for all t, we would have 

S(O)# ~ < S(0)eXm; 

thus, by borrowing S(0) and investing it in the stock, 
one could make a sure profit (unless X ( t ) - S t ) .  This 
condition is analogous to the condition in the Bernoulli 
example at the end of  Section 3 that 8 is between ak 
and bk. 

We assume that the moment generating function of  
X(t), 
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exists and that 

The process 

M(h, t) = E[e~V¢')], 

M(h,  t) = M(h,  1)'. (5.2) 

{e ~", M(h,  1) '} (5.3) 

is a positive martingale and can be used to define a 
change of probability measure, i.e., it can be used to 
define the Radon-Nikodym derivative dQ/dP, where P 
is the original probability measure and Q is the Esscher 
measure of  parameter h. The risk-neutral Esscher mea- 
sure is the Esscher measure of  parameter h=h" such 
that the process 

{e ~' S(t)} (5.4) 

is a martingale. 
The condition 

yields 

o r  

E[e-s'S(t); h °1 = e-s°S(O) = S(O) 

e s' = E[e "+h';'"' M(h',  1)-'] 

= [M(1 + h', 1)/M(h*, 1)1', 

e a = M(1 + h*, 1)/M(h*, 1), (5.5) 

which is analogous to (3.7) with { Yk} being identically 
distributed. The parameter h" is unique. There may be 
many other equivalent martingale measures. 

Because, for t>0, 

ehX~ ,) S(t)  h 
e ~('' M(h,  1)-' - E[ehX(,--------- ] -- E[S(t)h], (5.6) 

we have the following: Let g be a measurable function 
and h, k, and t be real numbers, t>0; then 

E[S(t )  k g(S(t));  h] 

= E[S(t)* g(S( t ) )  e hx(', M(h ,  1)-'] 

E[S(t)  h+k g(S(t))]  

E[S(t)  h] 

E[S(t)  h+*] E[S(t)  h+k g(S(t))]  

E[S(t)*] E[S(t)  h+*] 

= E[S(t)*; hi E[g(S(t));  h + k]. (5.7) 

Thisfactorizat ion formula  simplifies many calculations 
and is a main reason why the method of  Esscher meas- 
ures is an efficient device for valuing certain derivative 
securities. For example, applying (5.7) with k= 1, h=h" 

and g ( x ) = I ( x > K )  [where I(A) denotes the indicator 
random variable of an event A], we obtain 

E[S('r) I (S(r )  > K); h*] 

= E[S(-r); h'] EU(S(7)  > K); h" + 1] 

= E[S('r); h'] Pr[S(r )  > K; h" + 1] 

= S(O)e ~" Pr[S(r )  > K; h" + 1]. (5.8) 

The last equality holds because (5.4) is a martingale 
with respect to the risk-neutral Esscher measure. Thus 
we have a pricing formula for a European call option 
on a nondividend-paying stock, 

E[e-~"  (S (¢ )  - K)+; h'] 

= E[e -~, (S('r) - K)  I(S('r) > K); h'] 

= e-~'{E[S(T) I(S(~r) > K); h'] 

- KE[I (S (¢ )  > K); h']} 

= S(O)Pr[S('r) > K; h" + 1] 

- Ke-~'Pr[S("O > K; h']. (5.9) 

For {X(t)} being a Wiener process, (5.9) is the cele- 
brated Black-Scholes formula; see also (10.20) below. 

6. Representative Investor 
with Power Utility Function 

When there is more than one equivalent martingale 
measure, why should the option price be the expecta- 
tion, with respect to the risk-neutral Esscher measure, 
of  the discounted payoff?. This particular choice may 
be justified within a utility function framework. Con- 
sider a simple economy with only a stock and a risk- 
free bond and their derivative securities. There is a 
representative investor who owns m shares of  the stock 
and bases his or her decisions on a risk-averse utility 
function u(x). Consider a derivative security that pro- 
vides a payment of  ~'(T) at time "r, "r>0; ~r('r) is a func- 
tion of  the stock price process until time ~'. What is the 
investor's price for the derivative security, such that it 
is optimal for him or her not to buy or sell any fraction 
or multiple of it? Let V(0) denote this price. Then, 
mathematically, this is the condition that the function 

d~('q) = E[u(mS('r) + xl[rr('r ) - e~'V(0)])] (6.1) 

is maximal for "q=0. From 

6 ' ( 0 )  = 0,  

we obtain 
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V(O) = e -~" E[Tr('r)u'(mS("r))] (6.2) 
E[u'(mS('r))] 

(as a necessary and sufficient condition, since +"( 'q)<0 
if u"(x)<0). In the particular case of  a power utility 
function with parameter c>0 ,  

X1 -c  
- -  i f c ¢  1 

u(x) = 1 - c , (6.3) 

l n x  i f c  = 1 

we have u ' ( x )=x  -c, and 

V(O) = e ~" E[~r(r)[mS(r)]-c] 
E[[mS('r)]  -~] 

= e - ~  E[W(T)S(T)  -c] 

E[S( r ) -q  (6.4) 

Formula (6.4) must hold for all derivative securities. 
For 7r(r)=S(r) and therefore V(0)=S(0), (6.4) becomes 

S(O) = e - ~  E[S('r)l-c] 
E[S(¢) -~] 

M(1 - c, "r) 
= e -~ S(0) 

m ( - c ,  "c) ' 

o r  

M(1 - c, 1) 
e ~ - (6.5) 

M ( - c ,  1) 

On comparing (6.5) with (5.5), we see that the value 
of  the parameter c is - h * .  Hence V(0) is indeed the 
discounted expectation of  the payoff "rr('r), calculated 
with respect to the Esscher measure of  parameter 
h* = --c. 

By considering different points in t ime  % we get a 
consistency requirement. This is satisfied if the investor 
has a power utility function. We conjecture that it is 
violated for any other risk-averse utility function, 
which implies that the pricing of  an option by the risk- 
neutral Esscher measure is a consequence of  the con- 
sistency requirement. Some related papers are 
Rubinstein (1976), Bick (1987, 1990), Constantinides 
(1989), Naik and Lee (1990), Stapleton and Subrah- 
manyam (1990), He and Leland (1993), Heston (1993), 
and Wang (1993). 

7. Logarithm of  Stock Price 
as a Shifted Poisson Process 

Here we consider the so-called pure jump model. 
The assumption is 

X ( t )  = kN( t )  - ct, (7.1) 

where {N(t)} is a Poisson process with parameter h, and 
k and c are constants with k4:0. Then the price of  the 
nondividend-paying stock is modeled as 

S( t )  = S(O)e ku(t)-et, (7.2) 

The condition that X ( t ) - ~ t  assumes positive and neg- 
ative values is that k and c + 8  have the same sign. This 
model contains the classical Wiener process model as 
a limiting case. Note that 

E[X(1)] = kk - c (7.3) 

and 

Var[X(1)] = k2h. (7.4) 

Suppose that we vary k, k, and c so that (7.3) and (7.4) 
remain the constant values I-t and cr 2, respectively, i.e., 
we set 

k = (or~k) 2 (7.5) 

and 

c = (¢rVk) - It. (7.6) 

In the limit as k---)0, {X(t)} has continuous sample 
paths, and hence it is a Wiener process with drift I.t and 
infinitesimal variance ¢r z. This is illustrated in the two 
graphs in Figure 1. We note that the discontinuities o f  
the second sample path are not recognizable and that 
it appears to be a sample path of  a Wiener process. 

We now determine the risk-neutral Esscher measure 
according to Section 5. Since 

we have 

Because 

E[e ~x(')] = exp[kt(e = - 1)], 

M(z ,  t) = E[e ~")] 

= E(e~t~,l--~) 

= exp([k(e ~k - 1) - zc]t). (7.7) 

M ( z  + h, t) 
E[e~"~; h] - 

M ( h ,  t) 

= exp([kehk(e ~k -- 1) -- zc]t), 

we see that, under the Esscher measure of  parameter h, 
the process {X(t)} remains a shifted Poisson process, 
but with modified Poisson parameter hehL Formula 
(5.5) is the condition that 

= keh'k(e k -- 1) -- c. (7.8) 
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Hence, the risk-neutral Esscher measure is the measure 
with respect to which {N(t)} becomes a Poisson process 
with parameter 

k* = he ~'k. 

= (~ + c)/(e* - I). (7.9) 

The ratio in (7.9) is indeed a positive number because 
we have imposed the condition that k and b + c  have 
the same sign. 

Consider a European option or contingent claim with 
exercise date "r and payoff  function II(s). [At time r 
the option owner receives II(S('r)).] The method of  the 
Esscher transforms prices the option as the expected 
discounted payoff, with the expectation taken with re- 
spect to the risk-neutral Esscher measure. That is, for 
~'r, the Esscher  opt ion pr ice  at time t, with S( t )=s ,  is 
the conditional expectation. 

V(s, t) = E[e ~" '~H(S(T))IS(t ) = s; h*] 

= e ~ '~ ~ Pr[N("r) - N(t)  = n; h*] I](se "k-~'-')) 
n = 0  

= e ~+~'~"-'~ ]~ [X*('r - t)]" H(se, k_,,~,_ % (7.10) 
n-O /"/! 

In this stock price model, the option price is unique 
and given by (7.10). To see this, we construct a self- 
financing portfolio of  the stock and risk-free bond 
whose value at time t is V(S(t), t). The amounts in- 
vested in the stock and bond are dynamically adjusted. 
The term sel f - f inancing means that, once started, no 
funds are added or withdrawn from the portfolio until 
the option exercise date -r. As t--+~, V(S(t), t)---)FI(S("¢)) 
with certainty; hence, at time % the value of  the self- 
financing portfolio is equal to the payoff  of  the option. 
Consequently, the option price at any previous point in 
time must be identical to the portfolio value at that 
time, i.e., the option price is indeed the Esscher option 
price (7.10). 

For t<'r, let "q(S(t), t) denote the amount in the port- 
folio invested in the stock at time t; therefore the dif- 
ference V(S(t), t ) - ~ ( S ( t ) ,  t) is the amount invested in 
the risk-free bond at time t. The crucial question is 
whether we can define "q(S(t), t) so that the portfolio is 
self-financing, i.e., that the investment gain of  the port- 
folio is identical to the change of  the portfolio value, 
as defined by V, in any time interval and in any situ- 
ation. We have to examine two scenarios. 

First, we consider the case where the stock price has 
a discontinuity at time t, jumping from S(t)  to S(t)e  k. 
Then the condition that the instantaneous investment 

gain is equal to the instantaneous change of  the port- 
folio value yields the equation 

"q(S(t), t)e k - "q(S(t), t) 

= V(S( t )e  k, t) - V(S( t ) ,  t), (7.11) 

resulting in the condition 

V(S( t )e  k, t) - V(S( t ) ,  t) 
~(s( t) ,  0 = (7.12) 

e k -  1 

Second, we consider the case where the stock price 
process does not have a jump in a time interval around 
a certain point to. Let S(to)=S. For t in the time interval, 
we have 

and 

S( t )  = se -c~'-'°~ (7.13) 

v(s(o, t) 
= V(se-c t ' -% t) 

~,  [X*(-r - t)]" 
e-I~+x*X,r-t) 

n=o n !  
II(se"k-c~'-'o,). (7.14) 

Thus 

d 
dt V(S( t ) ,  t) 

= (~ + k * ) V ( S ( t ) ,  t) - k * V ( S ( t ) e  k, t), (7.15) 

and the instantaneous change of  the portfolio value is 

[(~ + k * ) V ( S ( t ) ,  t) - h * V ( S ( t ) e  ~, t)]dt. (7.16) 

On the other hand, the instantaneous investment gain 
of  the portfolio is 

~(S(t), t ) ( -ed t )  + [V(S(t), t) - ~(S(t),  t)](~dt). (7.17) 

Here, the condition that the instantaneous investment 
gain is equal to the instantaneous change of  the port- 
folio value yields the equation 

- c 'q (S ( t ) ,  t) + 8[V(S(t) ,  t) - "q(S(t), t)] 

= (~ + k*)V(S(t), t) - ~k*v(g(t)e k, t), 

o r  

~(S( t ) ,  t) = ~ [V (S ( t  e k, t) - V(S(t) ,  t)]. (7.18) 
e + 8  

Since h* is defined by (7.9), conditions (7.12") and 
(7.18) are equivalent, and with this choice of'q(S(t), t), 
the portfolio is indeed self-financing. 
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Observe that, in constructing the self-financing port- 
folio which replicates the option payoff, we did not 
need {N(t)} to be a Poisson process. The self-financing 
portfolio can be constructed because in each infinites- 
imal time interval exactly two scenarios are possible: 
a jump with known magnitude, or no jumps. Thus N(t)  
in (7.1) and (7.2) can be assumed to come from a more 
general class of counting processes; the equivalent mar- 
tingale measure is the measure with respect to which 
{N(t)} becomes a Poisson process with parameter h* 
given by (7.9). 

It is of  interest to consider the limiting case where 
k---)0, with h and c varying according to (7.5) and (7.6). 
With respect to the risk-neutral Esscher measure, the 
drift and infinitesimal variance of  the process (7.1) are 
k h * - c  and U h * ,  respectively. Because of  (7.6), 

lim kc = 0"2. (7 .19)  
k--+O 

Hence 

and 

kh* - c = k - -  

- S i n  

B + c  
C 

e k -  1 

k e k -  1 - k  
C 

e * -  1 e k - 1 

0.2 
--+ 8 - - -  (7.20) 

2 

B + c  
k2h* = k 2 - -  

e ~ -  1 

__+ 0"2 (7.21 ) 

as k--+0. Thus, in the limit the risk-neutral Esscher mea- 
sure corresponds to the Wiener process with drift (7.20) 
and infinitesimal variance (7.21). 

Furthermore, in the limit (k--+0), formula (7.12) 
becomes 

"q(S(t), t) = S ( t )V , (S ( t ) ,  O, (7.22) 

showing that the number of  shares in the replicating 
portfolio at time t, "q(S(t),t)/S(t), is given by the partial 
derivative Vs(S(t),t ), which is usually called del ta  in the 
option literature. Also, by means of the Taylor expansion, 
we have 

h * [ V ( S ( t ) e  ~, t) - Z (S( t ) ,  t)] 

= X*{(e k - I )S( t )V~(S(t) ,  t) 

+ [(e k - I )S( t )]zV, , (S( t ) ,  t)/2 + . . . }  

= (8 + c)S(t)l{~(S(t) ,  t) 

+ 0"2S(t)2V~s(S(t), t)/2 + . . .  (7.23) 

Substituting (7.23) in the right-hand side of  (7.15) and 

d 
dt V(S(t), t) = Vs(S(t), t )[-cS(t)]  + V,(S(t), t) (7.24) 

in its left-hand side, canceling the cSl{~ terms, and let- 
ting k tend to 0 yields the equation 

V,(S(t) ,  t) = ~V(S ( t ) ,  t) - 8S( t )V , (S( t ) ,  t) 

0"2 
2 S(t)zVs,(S(t) ,  t), (7.25) 

which was first derived by Black and Scholes (1973) 
with a replicating portfolio argument. 

8. Extension to Multiple Assets 
In this section we extend the model in the last sec- 

tion to more than one nondividend-paying stock. For 
j =  1, 2 . . . .  , n, let Sj(t) denote the price of stock j at 
time t, t>0, and write 

Xj( t )  = In[Sj(t)/Sj(O)]. (8.1) 

Generalizing (7.1) we model the processes {X~(t)}, 
{X2(t)} . . . . .  {X,(t)} as shifted compound Poisson pro- 
cesses with 

E[~(t)]  = lajt (8.2) 

and 

Cov(X,(t), ~ ( 0 )  = 0"J, (8.3) 

where p.j and 0",j, 1 <i, j<n ,  are constants with the n-by-n  
matrix 

(0",j) (8.4) 

being positive definite. Let k4:0, and let {N,(t)}, 
{N2(t)} . . . . .  {N,(t)} be n independent Poisson pro- 
cesses, each with the same parameter value 

h = k 2. (8.5) 

Let {a,/ l<_i,j<n} be n 2 numbers such that 

~ a 0 a h ~  = 0",h, 1 <i ,  h < n .  (8.6) 
j = l  

(The numbers a~ are not unique. One way to obtain 
them is the Choleski factorization algorithm. As 
n-by-n  matrices, they are related to each other by left 
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multiplication with orthogonal 
i= 1, 2 . . . . .  n, define 

= ai)  - -  ~ i  c~ k j=l  

matrices.) For 

(8.7) 

and 

X~(t) = k ~ a,jNj(t) - c,t. (8.8) 
j=l  

Then (8.2) and (8.3) are satisfied. (To reconcile with 
the notation in this section, one would replace the k in 
the last section by ktr.) 

Let 

X(t) : (X~(t), X2(t ) . . . . .  X,,(t))'. (8.9) 

The process {X(t)} has independent and stationary 
increments with drift vector 

(kt,, kt2 . . . .  , kt,)' (8.10) 

and covariance matrix per unit time (8.4). With ktl and 
a,j held fixed, as k ~ 0  [)~ and c, varying according to 
(8.5) and (8.7)], the limiting stochastic process {X(t)} 
has continuous sample paths and is thus an n-dimen- 
sional Wiener process with drift vector (8.10) and dif- 
fusion matrix (8.4). 

To rule out arbitrage opportunities in the model of 
the last section, we imposed the condition that k and 
~+e  have the same sign, which, in turn, guarantees that 
the new Poisson parameter as defined by (7.9), 

x* = (8 + c ) / ( e *  - 1), 

is positive. Here, we need to generalize the condition 
to one on the parameters a,j, c,, k, and ~. We make the 
following assumption: if'q1, x12 . . . . .  "q, are any n real 
numbers such that 

~'q,(e",J * - 1) _> 0, j = 1, 2 . . . . .  n, (8.11) 
i=1 

with strict inequality for at least one j ,  then this implies 
that 

]~ -q,(c, + ~) > 0. (8.12) 
i=1 

This assumption can be justified by an arbitrage argu- 
ment. If it were violated, there would be n real num- 
bers, "ql, r h , . . , ,  "q,, satisfying (8.11), with strict 
inequality for at least one j ,  and such that 

~ ' q , ( c ,  + ~) <_ O. (8.13) 
i=1 

Inequality (8.13) is equivalent to 

~.  ~ + ~ ( - c ~  s'7 >- ~ e~', 
i=l 

t>_0, (8.14) 

both sides of  which have economic interpretations. If 
the amount of  

i=1 

is invested in the risk-free bond at time 0, the expres- 
sion on the right-hand side is the (accumulated) value 
of  the investment at time t. An alternative, more so- 
phisticated investment strategy is to invest the amount 
of "q, in stock i at time 0 and keep this amount fixed 
at all subsequent times by investing all gains (or losses) 
in the risk-free bond, i=  1, 2 . . . . .  n. The expression on 
the left-hand side of (8.14) is the value at time t of  this 
investment portfolio if  no jumps have yet occurred. 
When the first jump occurs, say, due to Poisson process 
j ,  the instantaneous change of  portfolio value is 

-q,(e ",~k - 1). (8.15) 
i=l 

Because (8.15) is nonnegative for all j and positive for 
at least one, we see how a risk-free profit can be made: 
by selling a bond of the amount 

i=1 

and investing this amount in the n stocks according to 
the strategy described above. 

We assume that the n-by-n matrix (¢,0k-1) is non- 
singular. [This is a relatively weak assumption: since 
the matrix (a,) is nonsingular and k~0,  it is satisfied 
if  Ik] is sufficiently small or if (a~) is triangular.] Let 
~*, h* . . . . .  h* be the solution of  the system of  
equations 

~ h *  (e ~,,k - 1) = c, + ~, i = 1, 2 . . . . .  n. (8.16) 
)=1 

Analogous to h* defined by (7.9), each h* is positive. 
To see this, let r h, r b . . . . .  0, be the solution of the 
system of  equations 
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• ( e  ~,,*- 1 ) =  1 
i=1 

' ~ ' q , ( e  °''k - 1) = 0, m ~ j ,  m = 1, 2 . . . . .  n. (8.17) 
i=1 

Hence, (8.11) is satisfied with one strict inequality, and 
according to (8.12) we have 

0 < ~ -q,(c, + 8) 
i = l  

: ~ vii ~ h* (e a ' -k-  1) 
i=1 m = l  

= ~ h *  ~ ~ , (e  ' ' k -  1) 
r a= l  i=1 

= x*. (8 .18 )  

Extending the self-financing portfolio argument in 
the last section, we show that the price of  a European 
option or contingent claim of  the n stocks is the ex- 
pectation of  its discounted payoff, with the expectation 
taken with respect to a certain modified probability 
measure, which is unique. We introduce the function 
V(s z, s z . . . . .  s°, t), ~'r, defined as the discounted 
conditional expectation 

V ( s ,  s2 . . . . .  s, ,  t) 

= e-~ ' - '~E*[H(S, ( ' r ) ,  S2('r) . . . . .  S,(T)) 

IS, if) = s,, Sz(t) = s z . . . . .  S ,( t )  = s,], (8.19) 

where the expectation is to be taken with respect to the 
new Poisson parameters h*, h* . . . . .  h* defined by 
(8.16). [For j =  1, 2 . . . .  , n, the Poisson process {~(t)} 
is to have the new Poisson parameter h*.] The option 
price at time t, ~'r, is necessarily 

V(St(t) ,  Sz(t) . . . . .  S,( t) ,  t). (8.20) 

To prove this, we note that (8.20) converges to II(S~('r), 
Sz('r) . . . . .  S,('r)) with certainty for t-+r, and we con- 
struct a self-financing portfolio of  the stocks and risk- 
free bond whose value at time t is precisely given by 
(8.20). In this portfolio, let 

"qj(S,(t), S2(t) . . . . .  S,(t) ,  t) 

be the amount invested in stock j at time t; therefore 
the difference 

V(S~(t) . . . . .  S.(t), t) - ~ %(S, ( t )  . . . . .  S.(t), t) (8.21) 
j = l  

is the amount invested in the risk-free bond at time t. 
We have to show that it is possible to choose the 

quantities {~qi(S,(t), Sz(t), . . . , S,(t) ,  t ) , j = l ,  2 . . . . .  n} 
such that the portfolio is self-financing, i.e., that the 
change of  the portfolio value is equal to the investment 
gain in any time interval under each scenario. 

We have to examine n + 1 scenarios. (In an infinites- 
imally small time interval, exactly one of n+  1 events 
will take place: either none of  the n independent 
Poisson processes has a jump, or else exactly one of  
them has a jump.) If  Poisson process j has a jump at 
time t, the price of  stock i jumps from SM)  to S~(t)e ~'j*, 
i= 1, 2 . . . . .  n, and the portfolio value changes from 
V(S,(t),  S2(t) . . . . .  S,( t) ,  t) to 

V(S,( t)e ~',~, S2(t)e ~2,k . . . . .  S . ( t )e  ~",*, t). 

For the portfolio to be self-financing, the change must 
be identical to the investment gain, yielding the 
equation 

V(S~(t)e a',k . . . . .  S , ( t )e  a"~*, t) - V(St( t )  . . . . .  S,(t), t) 

= ~.~ "q,(S,(t) . . . . .  S,(t) ,  t) (e ark - 1). (8.22) 
i=1 

There are n such equations, one for each of the Poisson 
processes ( /=1,  2 . . . . .  n). The solution values 
{Xli(St(t ) . . . . .  S,(t) ,  t), i=1,  2 . . . .  , n} of  these n si- 
multaneous equations are the amounts of  stocks in the 
self-financing portfolio at time t. 

Next, we examine the scenario of  a time interval, 
say around to, in which none of the Poisson processes 
has a jump. For t in this interval, 

Si(t) = S,(to)e -C'<'-'°), i = 1, 2 . . . . .  n. (8.23) 

Then, generalizing (7.15), we have 

d 
dt V(S~(t) . . . . .  S,(t) ,  t) 

= (8 + ~ X*)V(S , ( t )  . . . . .  S,(t) ,  t) 
j = l  

- ~ h* V(S, ( t )e  a~,k . . . . .  S , ( t )e  a",k, t), (8.24) 

and the instantaneous change of  the portfolio value is 

[(8 + ~ h*)V(S , ( t )  . . . . .  S,(t) ,  t) 
j=l  

- ~ X* V(S,( t )e  ~j* . . . . .  S . ( t )e  ~",k, t)]dt. 
J = l  

On the other hand, the instantaneous investment gain 
of  the portfolio is 
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£ Xl, (-c,  dt) + [V - £ "q,](~dt). 
i = 1  i = 1  

[For simplicity we write "q, for 1]i(Sl(t ) . . . . .  Sn(t), t), 
and V for V(SI(t) . . . . .  S.(t), t).] Hence, the condition 
that the instantaneous change of  the portfolio value is 
equal to the instantaneous investment gain is that 

(8 + £ h*)V - £ h*V(S,(t)e",* . . . . .  S.(t)e"",*, t) 
j = l  j= l  

=--£Ci~liJl-~[ V-£~li i = , 

= 8 V -  £-q,(~ + c,), (8.25) 
i=  I 

o r  

L "q,(8 + c,) = L h*[V(S,e"'J* . . . . .  S,e"J*, t) 
i = 1  j = l  

- V ( S , , . . . ,  S,, t)]. (8.26) 

It follows from (8.22) and (8.16) that the right-hand 
side of  (8.26) is 

j~ X* [~ xl,(e'"- I)] 

= £ xl, (8 + el), (8.27) 
i = 1  

which is the left-hand side. Hence, the portfolio so con- 
structed is indeed self-financing, which completes the 
proof that the option price at time t is given by (8.20). 

Let us now consider the limiting case where k--->0 
and h and c, vary according to (8.5) and (8.7). It fol- 
lows from (8.7) that, for i= 1, 2 . . . . .  n, 

lim kG = £ aij. (8.28) 
k---~0 j =  I 

Expanding the exponential functions in (8.16) as a 
Maclaurin series yields 

+ c, = k ~ h* a,j + . . . ,  (8.29) 
j = l  

from which and (8.28) we obtain that, for i= 1, 2, 
. . .  , n ,  

lim k 2 £ X* a,j = lim k(8 + c,) 
k---~0 j =  1 k---~0 

~- ~ao.. 
j = l  

Since the matrix (a,) is nonsingular, we have, for j =  1, 
9 . • • , n ,  

2 * lim k hj  1. (8.30) 
k--*0 

It now follows from (8.6) that 

l i m k Z £  * = £ k--,o j= 1 h j aq ahJ j=l aij ah) 

= o',h. (8.31) 

Considering one more term in the Maclaurin series 
expansion of  (8.29), we have 

+ c, = kj=t h* a o + -~s=, h* a f  + O(k)  

Orii 
= k h* au + - -  + O(k),  (8.32) 

j = '  2 

by (8.31). [We write f ( k ) = O ( g ( k ) )  if f ( k ) /g (k )  is 
bounded as k--->0.] Let E* and Cov* denote the expec- 
tation and covariance operators with respect to the 
equivalent martingale measure [the probability measure 
such that the (independent) Poisson processes {N,(t)}, 
{Nz(t)} . . . . .  {N,(t)} have parameters X*, X* . . . . .  X*, 
respectively]. Then 

E*[X,,(1)] = k £ a,j E*[Nj(1)] - c, 
)=1 

= k £ a,jX* - c, 
j = l  

2 '  

as k--->0, by (8.32), and 

Cov*(X,(1), x~(1)) 

(8.33) 

=  ov,(k £ k £ 
j=l m = l  

k2~ • 
= aij ahj h j 

j = l  

~ih, (8.34) 
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as k---)0, by (8.31). In the limit the process (8.9) is an 
n-dimensional Wiener process, which, with respect to 
the equivalent martingale measure, has a drift vector 
given by (8.33) instead of  (8.10), and unchanged dif- 
fusion matrix (8.4). See also (10.15) below. 

Furthermore, in the limit as k---)0, 

xl,(s, . . . . .  s,,, t) = s, ~(s, . . . . .  s,, t), (8.35) 

showing that the number of  shares of  stock i in the 
replicating portfolio at time t is simply the partial 
derivative 

V~.(S,(t), S2(t) . . . . .  S,(t) ,  t). (8.36) 

To derive (8.35), divide (8.22) [with S~(t)=s~ . . . . .  
SAt)=s,,] by k and let k tend to 0 to obtain 

£ ~s,a, j  = £ xl~aij, j = 1, 2 . . . . .  n. (8.37) 
i : l  "' i=1 " 

Since the matrix (a,) is nonsingular, we have (8.35). 
For another proof that, in a multidimensional Brownian 
motion model, the number of  shares of  stock i in the 
replicating portfolio is V,,, see Theorem 1 of Pedersen 
(1995). 

If the payoff function II is homogeneous of  degree 
one in the stock-price variables, then the option-price 
function V is also homogeneous of  degree one in the 
stock-price variables. By Euler's theorem for homo- 
geneous functions, 

V(s~ . . . . .  s,, t) = £ siV,,(s, . . . . .  s,, t). (8.38) 
i=1 

It follows from (8.35) that, in the multidimensional 
geometric Brownian motion model, 

V(s, . . . . . .  % t) = £ "q,(s, . . . . .  s,, t); (8.39) 
i--I 

hence there is no bond component in the replicating 
portfolio and the option price V does not depend on 
the interest rate g. In Section 10 we derive this inde- 
pendence of  interest rate result in the context of  change 
of  numeraire. For a proof by means of differential 
equations, see Pedersen (1995). 

To conclude this section, we derive the generaliza- 
tion of  (7.25). It follows from (8.23) and an application 
of  the chain rule that (8.24) can be rewritten as 

- ~  c,s,~ + V,, 
i--I 

= g V  - £ X*[V(Sle",, k . . . . .  s ,e" , ' ,  t) - V]. (8.40) 
j=J 

By the multivariate Taylor expansion formula, 

V(s,e  °°k . . . . .  s ,e  ""~k, t) - V(s, . . . . .  s,, t) 

= £ (e "'jk - 1)s, V,, 
i = l  

1 £ £ (e "'k I)( e"~'k 1)sis h V, ,, + (8.41) _ _ _ . . , 

+ 2 ,=I h=J 

Multiplying (8.41) with h* and summing over j gives 
the sum in the right-hand side of(8.40). It follows from 
(8.16) that 

1=~1 ~ ' ~  i=1 £ (e""k- -  1)s~. 

= ~ ~s,~, + ~ c,,,~, 
i=1 i=1 

(8.42) 

the last sum of which cancels with the one on the 
left-hand side of  (8.40). Because of (8.31), 

h,* ( e  "'jk - l ) ( e  "*k - 1) 
i=1 

= £ h*k2a,jahj + . . .  ---) (r,h, (8.43) 
j = l  

as k---)0. It follows from (8.42) and (8.43) that, in the 
limit as k---~0, (8.40) becomes the parabolic differential 
equation 

i=1 ' 2 ,=, h=, ( r j ' s h  g' ~" (8.44) 

9. Extension to Dividend-Paying 
Stocks 

l he results in Section 5 can be extended to the case 
where the stock pays dividends continuously, at a rate 
proportional to its price. In other words, we assume 
that there is a nonnegative number + such that the div- 
idend paid between time t and t + d t  is 

dO S( t )  dt. (9.1) 

(The number dO may be called the dividend-yield rate.) 
If all dividends are reinvested in the stock, each share 
of  the stock at time 0 grows to e*' shares at time t. The 
risk-neutral Esscher measure is the Esscher measure of  
parameter h = h  * such that the process 

{e -~ -*"S ( t ) }  (9.2) 

is a martingale. Condition (5.5) now becomes 
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e ~-* = M(1 + h*, 1)/M(h*, 1). (9.3) 

Since 

E[S('r); h*] = S(0) e I~-*', (9.4) 

the European call option pricing formula (5.9) is 
generalized as 

E[e -~" (S("r) - X)+; h*] 

= S(O)e *" Pr[S(-c) > K; h* + 1] 

- Ke -~  Pr[S(" 0 > K; h*]. (9.5) 

Formula (9.5) may also be used to price currency ex- 
change options, with S('r) denoting the spot exchange 
rate at time "r, g the domestic force of interest, and + 
the foreign force of  interest. For {S(t)} being a geo- 
metric Brownian motion, (9.5) is known as the Gar- 
man-Kohlhagen formula; see also (10.20) below. 

We can extend the model to more than one dividend- 
paying stock. As in the last section, we let Sj(t) denote 
the price of  stock j at time t, j =  1, 2 , . . . ,  n. For each 
j ,  we assume that there exists a nonnegative constant 
qSj such that stock j pays dividends of  amount 

,l,j sj(t) at 

between time t and t+dt.  Same as (8.1) and (8.9), we 
write 

Xj(t) = ln[Sj(t)/Sj(O)], j = 1, 2 . . . . .  n, (9.6) 

and 

X(t) = (Xl(t), X2(t), . . . ,  X,(t))' .  (9.7) 

Let R" denote the linear space of column vectors with 
n real entries, and 

M(z, t) = E[ez'X"q, z ~ R', (9.8) 

be the moment generating function of X(t). We assume 
that {X(t)},_,o is a stochastic process with independent 
and stationary increments and that 

M(z, t) = [m(z, 1)]', t > 0. (9.9) 

Let h = ( h ,  h2 . . . . .  h,)' ~ R" for which M(h, 1) exists. 
The positive martingale 

{e "'x"~ M(h, 1) '},~ (9.10) 

can be used to define a new measure, the Esscher mea- 
sure of  parameter vector h. The risk-neutral Esscher 
measure is the Esscher measure of  parameter vector 
h = h *  such that, for eachj ,  j = l ,  2 . . . . .  n, 

{e -(8-*j' Si(t)} (9.11) 

is a martingale. Condition (9.3) is generalized as n 
simultaneous conditions: 

e "-*, = M(Ij + h*, l)/M(h*, l ) , j  = 1 . . . . .  n. (9.12) 

Here, 

lj = (0 . . . . .  0, 1, 0 . . . . .  0)', (9.13) 

where the 1 in the column vector 1~ is in the j-th 
position. 

As an illustration, let us consider the model in Sec- 
tion 8, where {X(t)} is defined by n independent Pois- 
son processes {Nl(t)}, . . .  , {N,(t)}, each with the same 
parameter value 

h = k-2; (9.14) 

see (8.8). Because 

/ 

E(exp  bjNj(t = E(exp[bjNj(t)]) 
j = l  

n 

= [I exp(th[e b j -  1]) 

(9.15) 

]/ 

j=l 
n 

we have 

M(z, 1) = E[e "'x"~] 

= e x p ( - i ~  1 z , G ) E ( e x p k  z, ao.Nj(t) 
j = l  i = l  

= exp , , -~ (  ~] z, ci + h exp z,a~ - 
j = I  i=1  

Hence, 

M(z + h, 1)/M(h, 1) 

On comparing (9.16) with (9.15), we see that the 
Esscher measure of parameter vector h is the probability 
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measure such that, for j =  1, 2 . . . . .  n, the Poisson pro- 
cess {Nj(t)} has the parameter value 

hi(h) = hexp(k £ h,a,j) 
i=1 

, £ 
k2 exp(k i=t hia°)" (9.17) 

It follows from (9.12) and (9.16) that the risk-neutral 
Esscher measure is determined by the equations 

- +, = - G  + £ hi(h*)( e~'j - 1), 
j=t  

i = 1, 2 . . . . .  n. (9.18) 

Not surprisingly, with +~=0 and hj(h*)=h*, (9.18) is 
identical to (8.16). 

It follows from (9.17) that, for l<j, re<n, 

hj(h)e k''j = hj(h + lm). (9.19) 

Hence, an interesting way to express (9.18) is 

~b , -  c, + £ Xj(h* + 1,) : ~ + ~] Aj(h*), 
j = ]  j = t  

i = 1 ,2  . . . . .  n, (9.20) 

where the right-hand side is constant for all i. 
For k=(k,  . . . . .  k,)', write 

o k S(t) k = S l ( t ) * ' . . .  o,(t)".  (9.21) 

Then, 

E[S( t )kg(S( t ) ) ;  h] 

E[S( t )~g(S( t ) )  e b'x.~] 
E [eWX~,)] 

E[S(t)~g(S(t ) )  S(t)"] 

E[S(t)"] 

E[S(t)  k+h] E[g(S(t))  S(t) k+h] 

E[S(t)  h] E[S(t)  k+h] 

= E[S(t)k; h] ELg(S(t)); k + h], (9.22) 

which generalizes the factorization formula (5.7). An 
immediate consequence of  formula (9.22) and that 
(9.11) is a martingale under the risk-neutral Esscher 
measure is the formula: 

E[e  ~%(t)g(S(t));  h*] 

= E[e-~'Sj(t); h*] E[g(S(t)); h* + lj] 

= Sj(O) e -* ;  E[g(S(t)); h* + lj]. (9.23) 

The Margrabe  option (Margrabe 1978) is the option 
to exchange one stock for another at the end of  a stated 
period, say time % "r>0. The payoff  of  this European 
option is 

[St(a') - S2('r)]+. (9.24) 

Its value at time 0, calculated with respect to the 
risk-neutral Esscher measure, is 

E(e-~'[St( 'r) - S2('r)]+ ; h*). (9.25) 

Since 

(st - s2)+ = stI(st > sz) - s2I(st > s2), 

it follows from (9.23) that 

E(e-s'[St("r) - S2('r)]+ ;h* )  

= St(O)e-*"  E(I[St( 'r)  > S2('r)]; h* + I]) 

- S2(0)e -.2~ E(I[S,( 'r)  > S2('r)]; h* + 12) 

= St(O)e -+~¢ Pr[S]('r) > S2('r); h* + 1]] 

- S2(0)e -+2" Pr[St(x)  > S2('r); h* + 12]. (9.26) 

A special case of  (9.26) is (9.5). 

10. Change of Numeraire and 
Homogeneous Payoff Function 

Consider a European option or derivative security 
with exercise date -r and payoff  

l-I(S,(.r), . . . ,  S,('r)). (10.1) 

Let E,[.] denote the expectation conditional on all in- 
formation up to time t. For 0<~-r, let V(t)= V(St(t ), 
S 2 ( t  ) . . . .  , S.(t), t) denote the option price at time t, 
calculated with respect to the risk-neutral Esscher 
measure, 

V(t) = E,[e -~¢'-') II(S,(n') , . . . ,  So('r)); h*] 

= E,[e -~`, ')Sj(-r) I-I(S,(¢) . . . . .  S,("r))/Sj(r); h*] 

= E,[e -~''-° Ss(¢); h*] 

× E,[H(S,('r) . . . . .  S,("r))/Sj(r); h* + lj] 

= e -*j¢'-° Sj(t) E,[II(S,('r) . . . . .  

S,('r))/~('r); h* + lj]. (10.2) 

Thus, 

V(t) 

e*J' Sj(t) 

1 
E'[e*T----~(-r) H(St("r)' '" ., S,('r)); h* + lj], (10.3) 
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from which it follows that, with respect to the Esscher 
measure of parameter vector h* + lj, the process 

e*J' Sj(t)' 0 <_ t < "r (10.4) 

is a martingale. In particular, with respect to this 
measure, the processes 

e*,' Sj(t) J (10.5) 

and 

{e  *~' &(t)~ 
e *,--S ~(t) J (10.6) 

are martingales (and conversely these conditions deter- 
mine the parameter vector h*). To explain the denom- 
inator e*,'Sj(t), we consider stock j as a standard of  
value or a numeraire. We imagine that there is a mutual 
fund consisting of  stock j only and all dividends are 
reinvested; all other securities are measured in terms of 
the value of this mutual fund. See also Geman, E1 Ka- 
roui, and Rochet (1995). 

Now, we assume that the payoff function II is 
homogeneous of  degree one. It follows from 

1 - I ( s i , . . . ,  s , )  

= sj I-l(sJsj, . . . ,  sj_fsj, 1, sj+,/sj . . . . .  s,@) (10.7) 

that (10.3) becomes 

v(t) 
e*; S~(t) 

I1" 

: , , ,  + ( :0 .8)  
/ \e*,* Sj('r) '" "' e*," Sj('r)J' 

The fight-hand side is a conditional expectation, with 
respect to the Esscher measure of  parameter vector 
h* + lj, of  a function of  the ( n -  1)-dimensional random 
vector 

( x , ( ¢ )  - x j ( ¢ ) ,  . . . ,  x j _ , ( ¢ )  - x A ¢ ) ,  

Xj+I (*T  ) - -  X j ( e r )  . . . .  , X,('r) - Xj(-r))'. ( 1 0 . 9 )  

Consider the special case that {X(t)} is an n-dimen- 
sional Wiener process, with It=(I-tl, ~t2 . . . . .  I.t,)' and 
V=(or,j) denoting the mean vector and the covariance 
matrix of X(1), respectively. It is assumed that V is 
nonsingular. Because 

E( ' )] M(z, t) = exp t z'it + ~ z V z  , z ~  R", (10.10) 

we have, for he R", 

E[ez'Xm; h] 

= g ( z  + h, t)/M(h, t) 

{e 1 l} = exp t z'(it  + Vh) + ~ z V z  , z ~  R", (10.11) 

showing that, under the Esscher measure of  parameter 
vector h, {X(t)} remains an n-dimensional Wiener pro- 
cess with modified drift vector 

t t + V h  

and unchanged diffusion matrix V. It follows from 
(9.12) that, for k= 1, 2 , . . . ,  n, 

1 , 
i~ - +k = 1;(I 1, + Vh*) + : I ~ V I  k. (10.12) 

Thus, 

~* = E[X(1); h*] (10.13) 

= IX + Vh* (10.14) 

( 1 1 
= B1 - ~b I + ~tr,,, (~2 "l'- :0"22  ' 

1 ~' 
• . . ,  ~,° + : 0 " , , L  (1o.15) 

Z / 

where 

1 = (1 ,  1, 1 , . . . ,  1)'. (10.16) 

[Recall (8.33).] Also, 

E[X(1); h* + lk] 

= tt + V(h* + lk) 

= It* + V lk 

( 1 1 
= ~1 - ~b, - O' lk -~- : O ' 1 1  , (~)2 - -  O'2k "01- : O ' 2 2 ,  

l t, . . . .  + .  - ~.k + : ~ ° .  • ( 1 0 . 1 7 )  

For an n-dimensional Wiener process {X(t)}, (10.9) 
is a normal random vector under the Esscher measure 
of  parameter vector h*+l j ,  and it follows from (10.17) 
that its mean does not involve the force of  interest g, 
and, of course, its ( n -  1)-dimensional covariance ma- 
trix, which is the same for all h, does not depend on 
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8. Thus V(t), the price of a derivative security with a 
payoff function which is homogeneous of degree one, 
does not depend on 8. For example, consider the Eur- 
opean Margrabe option, which has the payoff function 

Let 

I I ( s , ,  s O  = (s,  - s~)+. 

v-' = Var[X,(l) - X2(1)] 

= 0"11 - -  20"12  + 0"22 , (10.18) 

1 ln(e ~blTSl(0)] (10.19) 
~('r) = ~ \e_,2,$2(0)1, 

and • denote the standardized normal distribution 
function. Then (9.26) becomes 

E(e ~[S,('r) - ~(T)]+; h*) 
_ 

which does not depend on 8. For nondividend-paying 
stocks (+~=~b2=0), formula (10.20) has been given by 
Margrabe (1978). Fischer (1978) has also derived 
(10.20) with +1=0 as a European call option formula; 
for him, ~(r )  is the stochastic exercise price at time r. 

This independence of the interest rate is not valid in 
general. Consider the shifted compound Poisson model 
discussed earlier, where 

X,(t) - Xm(t ) 

= k £ (a,j - a m j ) N j ( t  ) - ( c  i - C m ) t .  (10.21) 
/ =  I 

It follows from (9.19) that, under the Esscher measure 
of parameter vector h*+lm, the process Nj has param- 
eter value h*e ~"~,. The risk-neutral parameter values 
{X*}, which are the solution of  (9.18) [or (8.16)], de- 
pend on ~. To see how the interest rate ~ gets canceled 
away as k--->0 [with h and G varying according to (8.5) 
and (8.7)], we apply (8.33) with the interest rate, re- 
placing its difference with the dividend-yield rate and 
(8.34) to obtain 

E[X,(1) - Xm(l); h* + 1,,] 

= k ~ (a,:, - amj)h*e '~, - (c i - c,,,) 
j = l  

= k £ (a o - a,,j)h*(1 + ka,,j + . . . )  - (c, - c,,) 
i=  I 

( (~ rnnl (~ mm I . - , , 8 - + ,  + - - + 

(10.22) 

The last expression is identical to the one obtained 
from (10.17). 
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