RECORD OF SOCIETY OF ACTUARIES
1993 VOL. 19 NO. 4A

SYSTEMS MANAGEMENT

Moderator: ROGER W. SMITH
Panelist; GARY THOMAS
Recorder: ROGER W. SMITH

Why is it so difficult to forecast delivery times and resource requirements?
Should | "build" or "buy?"

What project management techniques have worked for you?

Why do systems development projects often go out of control?

What is the systems development life cycle?

Why does testing always prove inadeguate?

MR. ROGER W. SMITH: Gary Thomas is the president of Wessick Research. Gary
has been a software consuftant in insurance and banking for ten years. He has spent
the last several years as an employee benefits consultant, specializing in postretire-
ment health and corporate uses of life insurance.

| am president of PolySystems in Chicago. My company has been providing software
solutions for 20 years. We're here to talk about systems management issues. Gary
and | have a bad example that we’d like to illustrate as a systems development
project gone sour. Then we will follow up with comments on the management
process and some ideas for improving the management of a systems development
project. Gary will start with his bad example.

MR. GARY THOMAS: I'd like to share with you an experience | had during the mid-
1980s at a medium-sized insurance company on the East Coast. | was hired
originally as a computer consultant to help on a project to consolidate the various
group administrative systems via a centralized, mainframe database.

The existing systems had been developed and modified over many years. As a
result, they suffered from the inevitable "spaghetti code,” and many data items
served multiple, hidden purposes. Although the systems were documented, much
undocumented information was carried around in people’s heads. Program mainte-
nance was becoming an increasing headache. The decision was made to scrap these
systems and rewrite them from scratch, rather than attempt to patch them over one
more time. A two-phase approach was selected, with the first phase consisting of
the database and billing, inquiry, and policy maintenance functions, together with
hookups to the existing policy issue, commissions and claims systems.

All software development projects at this company were required to adhere to a
well-defined, life-cycle methodology. For those of you not familiar with this concept,
it is a fairly common approach used by many corporations in some form or another.
The idea is to break the design and development effort into several stages, with each
stage going into a little more detail than the one before it. The completion of each
stage marks a checkpoint at which cost projections are refined and revisions debated.

| guess the entire project lasted for about three years, and it got bigger and bigger

untit eventually there were as many as 60 or 70 programmers, analysts, designers,
and support staff. We were starting to slip further and further behind our deadlines.

2175

RECORD, VOLUME 19

Communication problems were becoming acute, and senior management began to
get restless. Several attempts were made to reduce the scope and salvage what we
could, but for all intents and purposes, it was dead. About a year later the whole
thing was mothballed. Subsequently, { decided it was going to be the last big
software project | was ever going to work on, and | quit and became an actuary.

I've listed about six or seven factors that contributed to the demise of this project.
They were by no means unique to this project or even this particular company. I'm
sure that you will recognize many of them from your own experiences.

The first thing | should say is that sometimes | think we are overambitious in what
we expect from our management information systems (MIS) departments. Most
software development projects are generally nonroutine, in contrast to bridgebuilding
and tunnel-digging for example, where all parties have a good idea of what the
finished product is supposed to look like. In addition, software design is still an
evolving art, with new tools, techniques and methodologies continually appearing. As
a result, even when there is full agreement on what is being delivered, it has been
notoriously difficult to come in on time and within budget. In addition, the purchasers
of the software have historically lacked the computer know-how to play any more
than a passive role in the process, once it is under way. In retrospect, it was an
impressive achievement that the project got as far as it did.

Even with a phased approach, this project was, in retrospect, ambitious. The rapid
growth in staff created management problems. Furthermore, over half of the new
staff were, like myself, contract computer specialists, and they had less insurance
knowledge and less of a long-term stake in the project than an intemal person might
have had. One reason that there were so many extemnal contractors on this project is
that software specialists tend to be compensated based directly on their technical
skills. The technical skills that are in demand are continually shifting and can take a
long time to acquire. Consequently, it is not always practical to develop them in
house. Contract programmers can also bring a breadth of experience that can be
difficult to acquire in a single-company environment.

The more ambitious your goal, the more potential there is for entanglernent. In trying
to develop four or five distinct systems all working from the same database, we
found it was a full-time job simply coordinating the database design changes.

The further along we got, the more we saw of these change requests; and corre-
spondingly, the more resistance we would see from the other design teams, as they
faced the prospect of having to recode what they thought they had already finished.

Another difficulty with large projects is that as the delivery dates are pushed off into
the future, the requirements are likely to shift. The reasons you wanted the system in
the first place are going to change. Your external environment is going to change.
Even the types of products that the system will support will change.

Management difficulties were exacerbated by a lack of clear authority, making it
difficult to resolve conflicts and misunderstandings. Responsibility was split between
project teams from the MIS department and a business analysis department, whose
role was 1o put together requirements and manage the project. At this particular
company there was a lack of trust between these two departments and an ignorance

2176

SYSTEMS MANAGEMENT

of the other’s fields of expertise. Both departments were ultimately responsible, but
neither had real authority.

Large projects require good communication. | said earlier that most programmers are
not compensated based on their knowledge of the insurance industry or the banking
industry. As a consequence, you find that the systems people have little idea of
what the requirements actually mean. They have a tendency to get hung up on the
precise wording of a request, when what they should be doing is stepping back and
asking themselves what is really needed, as opposed to what is being asked for.
Conversely, many nonprogrammers tend to be ignorant of the concerns of their MIS
departments. The resulting communication problems can strain even the best
relationships. Communication can be a problem even within MIS departments
between applications developers and the telecommunication and database experts.

The life cycle methodology adopted by this company for systems development was,
in part, an attempt to formalize the development process and minimize the potential
damage resulting from miscommunication. In retrospect, we might have followed it
too rigidly. If the MIS department was approached, it had a tendency to answer,
"we can’t tell you what we'll do unless you tell us exactly what you want.” The
inevitable reply was, "we don‘t know what we want because we don’t know what
you can do.” Back and forth this would go.

If a company adheres too rigidly to a life cycle methodology for systems develop-
ment, you find that once you reach a certain checkpoint, people are very reluctant to
go back and redesign or rethink something that has previously been agreed to. it
looks too much like a costly admission of error. | don’t believe that this approach
works very well with nonroutine projects. As | said earlier, | think most software
development projects are nonroutine. After all, if your software requirements were
routine and standardized, it would be much cheaper and easier to go out and buy a
package.

Finally, these problems were compounded by the cynicism of many people connected
with the project. A significant number of people doubted that the project would be
completed. This prophecy became self-fulfilling.

MR. SMITH: | want to talk about a project that | have some first-hand knowledge of
and projects that | have some second-hand knowledge from observations.

Let’s take a step back. The example | have comes from about ten years ago. | have
prepared some of the relevant facts about the technological environment from that
time.

The year that this project took place was 1983. Now the personal computers (PC)
marketplace was evenly shared by three vendors. Radio Shack models were affec-
tionately known as "trash 80s." These have been replaced. At that time the PC
environment was low-powered. The development tools were definitely primitive in
contrast to where they are today.

2177

RECORD, VOLUME 19

The hardware we had back then was definitely, by today’s standards, very low-
powered. There's probably a couple of you in this room who have wristwatches
with greater processing capacity than some of those machines back then.

We wanted to do something that sounded relatively simple. We had a mainframe
program that had been around for a long time. It computed cash values, reserves,
and asset shares. We wanted to do what that program did. This was not an overly
ambitious thing to do.

A few of the things that we saw later really focused on some of the very first
decisions that were made, which were made quickly and with very limited knowl-
edge. We may not have even realized all the assumptions that we were making, and
as a result, all our adjustments did not question these initial decisions.

These critical questions seemed harmless enough. We had to select a machine
environment. We needed to select programming languages. We had to decide how
the user would interact with the system.

Here’s what we decided. These numbers may surprise you, but back then they were
reasonable. The project team decided that we had to run with just a little bit of
memory, 128(k), although | am not sure why. Maybe anything much bigger than
that was too rare or too expensive.

It also had to work with two floppy disks. Hard drives were very rare. They may
have been unavailable in many instances. We wanted to stick with commonly
available technology.

Pascal was selected as the language. | have no idea why. We also decided that
screens were a must.

What did we experience as the project unfolded? We discovered that we were
restricted from using the natural design of the algorithms we wanted to use to
compute the numbers. We quickly realized that the decision on the memory was just
too limiting. It just wasn’t going to work.

Similarly, the two floppy disks you were also too limiting. We were used to dealing
with larger quantities of data coming from a mainframe environment. The capacity of
two floppies was too much of a toy system.

Writing screens back then was a ground-up activity. You really needed to develop
everything by yourself.

What happened after we realized these restrictions? The project team decided to get
very clever. There were many programming techniques that could be employed to
get around some of these limitations. When you're dealing with brand new technol-
ogy, it's really not a good idea to get clever in terms of programming techniques. We
had people that came from mainframe environments and were used to things like
memory overlays.

2178

SYSTEMS MANAGEMENT

Understanding what should be done was difficult because the people who were
asked to correct the course were people assigned to the project. These were
technical people who were confident in their abilities and really wanted to prove that
their ideas could work, rather than whether it's the best commercial decision. We
continued to slug our way through the technical problems.

As a result, we found ourselves doing portions of the system over and over again.
We were forced to write difficult data-handling techniques to squeeze all the capacity
out of the machine. These were written several times. During the development, we
encountered very unpleasant things about the compiler technology we were using.
We had to go back and redo many aspects of the project.

We would get an idea, develop, do the work, hit a brick wall, try to get past the wall,
realize we couldn’t get over the brick wall, and finally retrench and try something else.

From these bad examples | came away with several guiding principles that have
shaped many of my decisions since then. Number one, when you lay out a project
or a systems development project, you need to insist that the hardware environment
is sufficiently robust to do the job for you. Rather than plunging into something
totally new and unproven, | will try to get something simple working first.

I will be wary of new technology. 1 don't think there is anybody who has worked in
systems very long who hasn’t been bitten by some aspect of new technology.

MR. THOMAS: You can see from both of our war stories that these problems
occurred about ten years ago. Since then, plummeting hardware costs have altered
the dynamics of where and how software is to be selected, developed, and used.
Tools are certainly much better now. With the computer industry changing at such a
rapid pace, we will not continue to face these same challenges in the future as newer
tools and methods emerge. I'd like to explore how some of the challenges have
changed from the mid-1980s and where | see improvement for the future.

The communication problems that seem 1o plague most development projects are
primarily a result of specialization. | think that this situation is improving primarily
because more and more business people have become computer literate. The PC has
clearly been the catalyst here. The PC has triggered an explosion in third-party
software providers, who clearly could not survive without a knowledge of the
business in which they are operating. We will continue to see more and more people
who are comfortable working in both spheres.

Tools are constantly improving, both in terms of power and in ease of use. This
allows all of us to work at a higher level of abstraction. Powerful spreadsheets, pro-
grammable databases, and visual programming tools allow us to push much of the
programming needed for ad hoc analysis away from MIS departments and into the
hands of the users.

| spoke earlier about the systems development life-cycle methodology and the rigidity
with which it is often applied. A phased approach to implementation helps some-
what, but it still does not address the central problem, which is that software require-
ments are usually fairly amorphous. |1 was fortunate to be given the opportunity at

2179

RECORD, VOLUME 19

the same company to initiate a development project using a rapid, prototyping
approach. In this case, we put together something simple and took it out to show to
the potential users, glitches and all. We got their feedback and went back and
improved it, repeating this process several times. All the while, we were eliciting our
own intemal feedback based on evaluations of different hardware platforms, data-
bases, and programming tools. In a fairly short time, we had agreement on a core
system and implemented it.

This kind of constant feedback builds confidence. You're no longer putting people off
for three to six months before you let them see what you've done. This approach
provides real, as opposed to artificial, monitoring. if the project starts to go off track,
it's a lot easier to make it right. It's also easier to cancel the project, and this is
sometimes the best altemnative. After all, once a large sum of money has been sunk
into a project, nobody wants to see it fail. They'll do all they can to salvage some-
thing from it.

Prototyping also allows you to experiment with newer technology at much lower risk.
Roger mentioned that new technology is something that you really have to be careful
with, particularly when investing large amounts of time and money. For our particular
prototyping project, we were looking at relational databases and minicomputers for
the first time and were not sure what we would be able to accomplish.

I'd like to talk about some specific improvements in software development tools. One
of the primary advances in software in recent years has been in databases. Ten
years ago it was not possible to put up a database without extensive input from a
database expert. In addition to considerations of how the data model should be
structured, you had to worry about internal indices, performance tuning, and access
patterns. It was a major project just getting the database up and running, let alone
developing the actual application.

Over the last ten years, the relational database model, exemplified by Oracle, DB2 and
Sybase, has become ubiquitous across all hardware platforms. |t allows you to test
your logical data model independently of the underlying physical implementation. In
fact, because of the high degree of uniformity among the various vendors, it is
possible to design and test a database model under Oracle and then go on to
implement it under DB2, for example.

Relational databases can be viewed as a group of data tables together with a set of
commands for manipulating and extracting data across multiple tables. The architec-
ture is quite elegant in contrast to older databases, which required complex navigation
paths through the data. Because you can often extend a table without having to
rewrite your existing programs, these databases are ideal for prototyping and incre-
mental development.

Data retrieval is fairly straightforward, with many vendors providing query-by-example
screens, which allow computer-literate business users to directly access data them-
selves and design simple reports. This also frees up the MIS department, allowing
them to concentrate on what they do best.

2180

SYSTEMS MANAGEMENT

Another factor in the proliferation of relational databases is the adoption of SQL,
which is a common language for accessing and updating data. Entire systems can
now be ported from one database package to another, with little more than a
recompile.

Anather software technique that I've used a lot in the last several years is object-
oriented programming. | believe this is a huge advance in the methodology used to
develop software. It allows you to manage complexity, which is really the core
problem.

From a base library of object class definitions, you can create your own general-
purpose object classes. Each class definition describes its internal data together with
its intemal procedures for operating on that data. Class definitions serve as templates
for the various objects that make up your system. Because each object is completely
self-contained, in a building-block fashion, you can build objects from other objects
without worrying about how they work intemally. Examples of object classes include
tables, files, windows, collections, matrices, integer, and character strings. Once you
get over the steep leaming curve, you can start developing some sophisticated
software without too much effort.

These objects are modular; therefore you don’t have to worry about programming
changes to one object class causing unforeseen repercussions elsewhere. Many of
the procedure definitions take up less than ten lines of code; this makes them much
easier to test. Once you've tested a procedure within an object and you're satisfied
that it's comrect and you're satisfied with your class design, then that piece of code
will stay correct forever. You can bank it. In an age when we are continually trying
to work at higher levels of abstraction, that’s very helpful.

Another advantage of the modular approach is that you can easily extend and
improve existing applications. That's historically been one of the biggest headaches
of many MIS departments. Because of the cost of replacing software systems, they
can often live for 10 or 15 years, undergoing numerous modifications, each one more
painful than the one before.

Object-oriented programming is particularly suited to prototyping and iterative develop-
ment. You can get something up and running very quickly. It may not do what you
ultimately want, but it will give you an idea of how it's going to look in the end.

Iterative development allows you to develop software with much smaller teams, and
because you can shorten your development time, it means that there are fewer
worries about management, communication, systems development lifecycle methodol-
ogies. More and more companies are starting to adopt this methodology.

MR. SMITH: I'd like to talk about some of the steps that | would recommend in
managing a development project. Sometimes it seems that a development project
has no beginning or end. The long-term nature of a development project makes it
difficult to manage. There’s a series of questions that | would recommend that you
ask up front and push to get written answers for each of them.

2181

RECORD, VOLUME 19

A good written plan is essential. If more than one person is involved in the project,
communication will be important. People will have different ideas on the project or
what the system that you're developing should do. Sometimes the necessary whys
get the short treatment in the development process, and you don’t examine the
reasons for developing a system.

Many aspects of the user’s needs affect the design. How often wili it run? Who's
going to use it? How sophisticated is the operator? Wil it run everyday or once a
year? All these questions affect the design effort.

| like to build a plan as the next part of the development cycle. At this point it's
important to write down all the formulas that you're going to use. Identify

all the various data relationships. 1 see more people get into more trouble by not
paying enough attention to how the data needs to come together in a system.

| think another aspect is deciding how you are going to test. The systems that | see
in development and in production are becoming far more complex than my simple
example. Often | find it very difficult to look at an overall process and to understand
how to test it and see that the numbers are coming out. [t's a good idea to think of
a test plan up front.

Next, try to identify the technologies that are going to be used. To do this well, you
should be constantly monitoring the new technologies. We are constantly reviewing
new products to see which ones will work for us.

There is one thing that | don’t attempt to do. | don’t know if you noticed, but | do
not like to prepare a hard schedule. From my earliest experiences, even back before |
was active in software development, | have seen managers struggle with schedules.
Everybody wanted to get that schedule down. How many people in this room have
seen a systems development schedule that has extended a couple of years? |s there
anybody here who has not seen one of those?

My feeling on those schedules that extend a couple of years into the future is that
they might be the silliest thing you could possibly do with a systems development
project. | truly have a lot of trouble defining what I'm going to be doing 18 and 24
months from now. | see a iot of people do it, or attempt to do it, and write it down.
One of my early systems experience took place before 1983. | was on the user
team that installed a new administrative system at a life insurance company.

The first thing we did was build a two-year schedule. We assembled the project
teams. Within six months, all the original project leaders had been fired. The original
schedules were adjusted only as necessary. The bureaucracy that had developed just
for maintaining the schedule was really quite extensive. We became a slave to the
schedule. Nobody stepped back and admitted that a schedule might not be possible.

During the execution of the project, it seemed like a tough project. After the project
was complete, however, the software vendor referred to our company as a flag-ship
installation the way to do it. | decided if that was the best way to do it, | didn’t want
to be around one of the worst ways to do it.

2182

SYSTEMS MANAGEMENT

So what do we say about schedules or goals? | feel very strongly that you need to
have targets. They need to be written and communicated frequently. The risk is that
people believe them when they should not.

Keep the longer-term goals soft. | then like to decompose projects into workable
units such as things that should be completed within one or two weeks. Create hard
schedules for smaller components. Examples of the smaller steps are writing specifi-
cations, designing formulas, arranging screens, or writing the calculation code.
Whatever the component might be, try to sit down and agree that an individual is
going to get it done in the next week. Sit down every Monday and do this with
everybody on your development staff.

What are you going to get done next week? What do you think might be done?
Agree that the work step is large enough for a week’s effort. If it seems like some-
body is holding back or not taking off a big enough bite, then you need to encourage
them to do more. This will tell you how well the project is progressing.

By getting agreement from the people doing the work, you can tell if something is
faling behind. You should be able to project progress a week at a time. In this way
you will be able to adjust if you get behind. You will be able to see the problems,
and you can put additional resources on them. Maybe that person isn't quite right for
the job. Perhaps you've asked him to do a little bit too much. Many people will
optimistically overestimate what they think they can get done. That may not seem to
be bad, but you can’t have people telling you that they can get something done in a
week when it's going to take them months.

This is the technique that | like to use. | find it more realistic than saying we'll be
done in a year. You must be able to determine whether you are on schedule or not.
Long-range scheduling is especially difficult if the project involves a lot of invention or
uses brand-new technology.

One element of systems development that is quite important and more difficult is
testing. You need to design the testing as you design the system. You need to
figure out how the system will be tested before you begin to develop.

As pieces of the system are built, you should test the individual pieces. Build on
components that you are absolutely sure will work. Once the components work, you
can proceed to the next level.

| don’t know if the next step appears in any of the classical systems development
techniques. Part of the test plan has to be how to decide if the system is ready. |
have frequently seen development teams test things repeatedly without a sense of
what is enough. They just want it to be absolutely perfect.

In one of our recent efforts, | went to our testing unit. They were comparing some
reserves calculations from new software with those from an old program. | asked
how the testing was proceeding. | was told that overall things looked "pretty good,"
but that there were a few problems. | asked what the problems were. The group
was trying to match five-year, renewable-term-reserve calculations using a

2183

RECORD, VOLUME 19

continuous-premium assumption, but wanted to use a curtate expense allowance.
We were within a few pennies, but we were not matching exactly.

¥m really not sure if there is a lot of demand for the continuous-premium, curtate
expense-allowance-term product. | was not concemed about this very small differ-
ence for a product combination that probably does not exist.

Quality control is quite important, but it's also possible to overtest unnecessarily. You
have to approach testing and quality control with a plan that should include a point at
which the software is ready for release. You want the system to work well, but it is
impossible to be completely sure that there are no bugs of any kind. Looking for the
last bug can seriously delay the software’s release.

I'd like to shift gears and discuss what | like to call the schedule killers. One of the
most common schedule killers is the ability of a project to enlarge on you. The longer
that a project takes, the more likely it is to expand to some extent.

In the session prior to this one, the speakers were talking about some product design
with bonus features. Ted Becker was on the panel. That discussion reminded me
that regulators and new regulations cause the specifications to change.

Technology is another factor that changes schedules. [t is always shifting. How
many operating systems are out there right now for desktop or departmental ma-
chines? There are 0S/2, MS DOS, a couple of versions of Windows, and a couple
forms of UNIX. Which ones will be the most common or popular five or ten years
from now?

Where is technology going to take us? If you go back five years and look at the job
of supporting printers, you would find a great deal of diversity. You would have a
complete interface to every printer that was out there. There is more standardization
now so the effort you invested in supporting a multitude of printers would be wasted.

Be wary of technology traps. | bet that many of you have stories that you can share.
New technology is very enticing and inviting. We spend so much time examining
new tools, both hardware and software. This is definitely a necessary overhead or a
necessary investment. There are so many ideas that look good on the surface, but
when you test them with your application, you find that there are shortcomings or
major problems.

| don't evaluate hardware by just looking at standard performance benchmarks.
Everybody quotes their million instructions per second (MIPS), million load operations
per second (MLOPS), and SPEC marks. However, when | run my application, | see
more variations in my application’s performance that cannot be explained in terms of
the hardware vendor’'s benchmarks. | have been surprised when two machines that
have similar published performance benchmarks exhibit significant variations on a real
application.

Another aspect of new technology is something | call a time bomb. By this | mean
that there is one feature or one problem that is a real showstopper for you. You just

2184

SYSTEMS MANAGEMENT

can’t get around it. These are things you obviously want to find just as soon as
possible so you can avoid going down a particular path.

Other things can happen to you as well. Sometimes company management can
make decisions oh technology that are arbitrary and do not work out well. There is
not much that you can do about this.

What other things can come up? Let's say that even after you have successfully
completed all aspects of a development project, you find that the system just doesn't
run fast enough. | can think of examples of systems where this kind of thing
happened. I'm thinking of some administrative system examples in which a new
system with very good theoretical tools was brought. New technology was utilized,
but it just wasn't fast enough for some reason. The system couldn’t do enough
work in a short amount of time. The system was very slick and did a wonderful job,
but it just didn’t do it fast enough. That can be very difficult to anticipate up front.
The only way to avoid this is to prototype the system on a small scale. Find out
what the limitations might be before you have invested seven figures in a systems
development project.

The development time itself can cause unforeseen problems. Frequently it can take
more than a couple of years to develop a large-scale system. You develop it with a
certain hardware platform in mind. By the time you are finished, you might be forced
to move to a new computer or hardware platform. It might not be possible to make
this migration so easily.

One of the difficulties with actuarial software is that we're not a large enough player
for a lot of general-purpose software or hardware vendors to get excited about. They
will not see market potential in developing the perfect machine for actuaries. Maybe
that will change at some point.

In the meantime we need to hitch our wagons to where the hardware and software
vendors might be going. For example, if you use a name-brand database product,
then your systems development will be affected by the future direction of that
particular database product. Changes in third-party software can affect your
development project and possibly set back your schedules.

I'd like to wrap up in terms of what | think is the best or at least a good way of
managing a systems project. You need long-term goals. You need to review them
on a regular basis. You need to have an idea of when a delivery would make sense
to the user. It would not be helpful to deliver software when your users cannot
implement or use the software because of their particular business schedules.

| don't like to schedule things too far in advance because it can work against you.
Frequently you don’t know what you don't know. Working with short-term goals is a
better way to proceed with a project. Get it in good, bite-size, meaningful pieces,
things that can be accomplished in a relatively short time. This is where the most
active management should take place. This is where the accountability and all the
resource adjustment should logically take place on these shorter-term projects. Of
course, you need a view that is headed towards that long-term goal.

2185

RECORD, VOLUME 19

As | have said, technology is always changing. We spend quite a bit of time trying to
stay on top of what is new and what is on the drawing boards. It's probably
impossible to do this completely. | remember the first time | picked up a PC maga-
zine, probably ten years ago. [actually felt intimidated because | didn’t even under-
stand most of the ads. These are the types of things that you need to really stay on
top of. There are a lot of new directions in processing, hardware, and peripheral
devices.

There's also a lot to keep up to-date with in support software. Database products,
operating systems, and development tools each offer new features and, at the same
time, introduce new limitations. Sometimes it is tough to know whether new
software is a net benefit or not.

When | select a particular hardware platform or a software operating system, ! always
like to have my next move in mind. They say that good football coaches are two or
three plays ahead. You need to do this as well. Know what that next step is. This
way you won’t wake up surprised one day.

Finally, you need some way to validate all the assumptions that you're making and
understand what the assumptions are. Some of the comments that Gary made
about prototyping, rapid development technigues, and object-oriented programming
can validate those assumptions. Then you can successfully and adequately complete
projects and get them finished.

FROM THE FLOOR: You talked a bit about a project that failed because of the
constraints of not having a powerful enough system. A successful system can run
into the same problem. | found that if something works, people come out of the
woodwork with new ideas and new ways of producing output from it. Very often
you start out with a platform that might be sufficient, and then you realize that you
don’t have enough power to meet all the requirements that are needed. You want to
anticipate, to look ahead to your next step, as you were just saying a few minutes
ago. You might try to buy the most powerful machine you can, but somewhere
along in the process you’ll run into somebody who’s going to try to negotiate you
down. A good strategy to counter this is to ask more than you really need. But
unless you feel that you need the best, you can't ask for the best. What other types
of arguments have you found that work with management or controllers who are
trying to limit costs. Their very logical argument is, what do you need this for? You
only need 1 x X. But you feel that you might eventually need 2 x X, or 3 x X,

MR. THOMAS: | have never directly experienced that problem because | spent much
of my career working in mainframe shops, where the hardware was already there.
Our perspective had always been that the hardware was an integral part of any
software solution that we provided, and therefore these decisions had to come from
within MIS. The proliferation of networks and cheap, powerful PCs is now divorcing
the hardware purchase decision from the particular needs of an application.

MR. SMITH: There are many reasons why people might want to be reined in. It
could be a turf issue, and it could be cost, but it should be quite evident and straight-
forward in the cost-benefit analysis. The question of your need for that much
hardware or that much processing speed can be a difficult question to answer. It's

21886

SYSTEMS MANAGEMENT

rarely a question of "have to have.” Nobody is going to die if you don’t have it. You
need to determine what makes the most business sense and try to make a case that
a process should take a certain amount of time and no longer.

Generally what | find is that the cost of staff just dwarfs what hardware might cost.

| normally look for the cost savings that will free up many hours of labor or make cost
savings possible. If you have a tough controller, convince that person that you need
the hardware to get the financial numbers a bit quicker.

MR. THOMAS: One other comment on that point is that with hardware performance
advancing rapidly, you should try to look past your current limitations. You intend to
use your new system for a number of years. Perhaps you could purchase hardware
that can be subsequently upgraded when it is much cheaper, if you don’t absolutely
need all the power now.

MR. SMITH: | have seen examples of what you mentioned. As soon as you get
something up that works and it's operating, it's amazing how all the restrained
demand bubbles up to the surface. All these things that nobody ever asked for
previously because it was pointless are now investigated.

MR. LARRY A. CURRAN: This question is primarily for Gary Thomas, and it has to
do with your comments about object-oriented programming. | believe you said
you‘ve been using it for several years. [s that right?

MR. THOMAS: Yes, that's correct.

MR. CURRAN: Could you tell me if you use it on all projects, or is this a hit-or-miss
thing?

MR. THOMAS: No, I've used it to put together a life insurance cash-flow projection
and pricing program. As you can imagine, it’s fairly complex. That's really something
that | didnt start until within the last year. | spent two years or so before that really
just experimenting with the technology. It wasn’t something where | just dove right
in and became immediately productive.

MR. CURRAN: Do you do formal object modeling as part of your object oriented
approach?

MR. THOMAS: No, it's been informal, actually. Once | was familiar with the
technology, | had a good idea of what most of my objects were going to look like.
Most of the time you are just creating simple extensions to the class libraries provided
by the language vendors.

For example, Smalltalk comes with some 200 or so classes together with several
thousand methods for operating on these objects. It can take a long time to get
familiar with these libraries. And that’s where the steep learming curve comes in.
Once you've mastered that and you’ve experimented with a few class designs
yourself, you get a little better. Initially, it is very much a hit-and-miss affair. 1've put
together some fairly complex objects that |'ve had to subsequently tear down and
redo. Eventually you get much faster at it. But it takes a long time.

2187

RECORD, VOLUME 19
MR. CURRAN: Smalltalk is the language you’re using then?

MR. THOMAS: | do use Smalitalk, but my language of choice is Actor. Smalltalk
and Actor are the only two languages I'm familiar with that are purely object-oriented.
| know that C+ + is object-oriented, although many people just use it for conven-
tional programming. [t probably runs a little faster than Actor and Smalitalk, although
the syntax is not as elegant.

MR. CURRAN: One final question. You said that more and more people are now
using object-oriented technology. Is this just a feeling you have or have you actually
talked to several people in the insurance industry that are using it?

MR. THOMAS: | don’t know of any insurance companies that use it beyond a little
experimentation. It's probably best not to go in feet first until you've tried it out on
some small pilot projects. The spreadsheet vendor, Borland, recently staked its future
on it, and the results are only just beginning to pay off. A number of banks and
investment houses are using Smalltalk.

One of the main problems with Smalitalk in the past was its sluggish performance.
That's become much less of an issue now. | know of one bank that’s running
Smalitalk on some monstrous machine with over 130 megabytes of memory and
acres of disk space. So | don't think they're seeing performance problems there at all.

FROM THE FLOOR: I'd like the speakers’ suggestions on not getting tied to target
dates that are very far out. I'm struggling a bit to apply this in my environment. |
work in product development, and we're coming up with a new product and trying to
install it on the system. If it's a variable product and | have a goal to release it May 1
and hold a sales meeting to introduce the product at a certain date, | don’t see good
ways to avoid those iong projects, very tight deadiines, and very long deadlines. Do
you have any suggestions for me?

MR. SMITH: Well, | would say that if you're absolutely forced to, you may not be
able to avoid them. | think that you definitely need to have that large project decom-
posed into the workable pieces. Do it to the largest extent possible and manage each
one of thase very rigidly. As something slips, you ought to have some knowledge of
this in advance. You should then be able to judge whether the longer-term deadline is
in jeopardy, and perhaps you need more resources to be brought in to work on the
effort.

There's no perfect solution. Sometimes things can proceed very rapidly. You might
think it will take a week, and I've seen things happen in a day that fell into place.
Other things don’t do that. | would say that the decomposition would be very
important in that.

MR. THOMAS: You need to set priorities on which features of the system you really
do need immediately and which ones can be pushed off a little, or maybe simplified or
cut back.

MR. JEFFREY T. ROBINSON: In that regard, how do you keep from slipping from a
year to two, when you don’t have a long term goal. | often find that | start with

2188

SYSTEMS MANAGEMENT

when the thing is due and then work backwards. [t sounds very appealing to have
these short goals. But you need to look at when you have to have the job finished.
And most people underestimate that time. How do you know how long the job
should take if you don’t really think from the total scope down to little segments?

MR. SMITH: Well, | think the answer is that you don’t know how long the total job
is going to take. | think that you need a target and you need a goal. You need
something to shoot for. | still say that the hard schedule is not practical, but | agree
that you need some goal and some target out there.

MR. ROBINSON: Usually I'm the person that is shot because | haven't met that goal.
But | think I've never been involved in a project where I've left enough time to do it.
And you know that's a whole other thing, just building in some time. And | see
people who say that they do, and it's as if they commit heresy. How long is a
project going to take? They say three years. Of course, when they finish after two
years, everybody says why can’t you do it in one? Generally you can’t. But | think
you have to set that long-term goal, and then just kind of see where you're going to
go. But the short pieces are nice, because you can generally meet those deadlines,
whereas you can't meet the rest. Gary, you mention on one project you used many
contract programmers. Let's say you used consultants. Wouldn't you think that you"
could control those people more readily than you could controf other employees within
the organization? Because, in general, you have the payroll or the purse strings over
those people. If the contract programmers don‘t perform, you can get rid of them.
Whereas if your data processing department doesn’t perform, generally they're
unaccountable.

MR. THOMAS: Consuitants generally have very marketable skills and are able to find
new contracts. ft depends on the economy. In 1987 it was a tough market. But in
general, contract programmers with the right kind of skills found work anywhere.

if they find a company they’re comfortable with, they'd love to stay there as long as
they possibly can.

MR. ROBINSON: But do you think the project leader generally has more control over
them than internal resources? That's really the question.

MR. THOMAS: Weli, at this particular company, many of the project leaders were
also contractors. At one point they put a consultant in charge of the entire project on
a day-to-day basis. Presumably, you are paying good money to contractors because
they are adding value. You can certainly control them in the short term, if you feel
you could do without them. In the cases where you can’t do without them, control
becomes a problem. But in those situations, there is probably some deeper underlying
problem. But | would agree that computer contractors tend to be highly responsive.

MR. ROBINSON: That was the specific word | needed. Often [find that you can’t
really get an intemnal data processing department to do, or move up, or speed up, or
slow down, because you just lack the authority. You're told they know what they're
doing.

2189

RECORD, VOLUME 19

MR. THOMAS: Well, the people outside the department don’t understand all the
issues involved in putting software together. And as | said at the very beginning, it is
a lot more difficult than people think.

MR. ROBINSON: On the other hand, the data processing department, as you said
before, doesn't always understand the technology of, or the technical aspects of, the
insurance part of the job.

MR. THOMAS: Exactly. And that’s a serious problem in an industry where most of
the systems really are highly technical.

MR. ROBINSON: For this very reason | don’t like to see data processing people in
charge of these projects. They know the data processing aspects, but they don't
know how it integrates.

Roger, in your shop, which is really a consulting firm in a way, have you ever used
project contract programmers?

MR. SMITH: Rarely, just a couple of times. | can’t think of many.

MR. ROBINSON: One more question for Gary. Can you give us a quick definition of
what object-oriented programming is, or how it differs from regular programming?
That would probably be best.

MR. THOMAS: One common type of object that actuaries might define would be
some kind of vector, for example, to represent mortality tables, survivorship tables, or
a set of discount factors. You would define a vector class to be derived from the
existing array class, which comes complete with a set of procedures for initializing
itself, loading in data, enumerating through its elements, and so on. By defining this
vector as a subclass of the amray class, you can inherit all its data and behavior,
Perhaps you would define some additional behavior for your new vector class, such
as multiplication with another vector. This will now work for any pair of vector
objects, whether they represent survivorship tables, discount rates, inflation or
anything else. You only have to code that once in a place where you can easily find
it again. To generate survivorship tables and discount factors, you might define one
further method for this vector class that would cumulatively multiply its elements.

MR. ROBINSON: In traditional programming you would define each table separately?

MR. THOMAS: Yes. The traditional language I'm most familiar with is common
business oriented language (COBOL). It requires you to define all your data in one
place, with all the procedures for each table elsewhere. Each table has its own
initialization, loading, and access procedures scattered all over the program. With
nested tables within tables, it gets very messy. And the more complex your program
gets, the bigger it gets, and the easier it is to make mistakes. With traditional
programming methods, the first line of code is the easiest, and after that it gets
harder and harder. Conversely, with object orientation, it is quite difficult constructing
object class definitions that not only solve your immediate problemn, but also will prove
useful far into the future. But once you've got a nice set of object classes, it is not
hard to put them together.

2190

SYSTEMS MANAGEMENT

MR. DANIEL A. CAMPBELL: We heard about global competitiveness and poor
competencies. My premise is that in order for insurance companies to be successful
over the next decade, they're going to have to have world-class skills in installing
systems, integrating those systems, and continuously adapting those systems as their
business changes. My question for the two of you is, what steps do you think
insurance companies are going to have to take, starting now, to be able to deliver
those world class skifls in their organizations?

MR. THOMAS: In my view, the core competency of an insurance company is simply
the ability to design and market profitable products that satisfy customer needs. IBM
has found that it is not competitive in the software business. Likewise, although
many of them do it well, | don’t think that insurance companies are naturally in the
software development business. It can be justified now simply because of all the
unique products out there. But once we begin to see cheap software that is flexible
enough to accommodate all these variations, perhaps we will start to see more
companies reorganizing themselves to fit the software rather than fitting the software
to the organization.

MR. CAMPBELL: Even if they don't develop systems intemally, they have to be
skilled at bringing in those packages that other software vendors supply. So that may
be a skill set that they need to be very adept at, installing, supporting, and helping to
accommodate those packages and tie them into the rest of their operation.

MR. THOMAS: That's a very important skill.

MR. SMITH: Well, | would say that companies need to be looking at technology and
systems, whether they develop them or buy them. They need to get them to do a
couple of things for them in order to become more competitive. Many systems are
aimed at expense control, just doing a better job of acting as an insurance company.
This is one huge area of opportunity where companies can become more competitive.

How many companies have the ability to understand, track, measure, and anticipate

the basic fundamentals of their profitability in a very regular, quick way. This is
something | think is going to be very necessary to be a player.

2191

