
RECORD OF SOCIETY OF ACTUARIES

1993 VOL, 19 NO. 4A

SYSTEMS MANAGEMENT

Moderator: ROGERW. SMITH
Panelist: GARY THOMAS
Recorder: ROGERW. SMITH

• Why is it so difficultto forecastdeliverytimes and resourcerequirements?
• ShouldI "build" or "buy?"
• What project management techniqueshave worked for you?
• Why do systems developmentprojects often go out of control?
• What is the systems development life cycle?
• Why does testing always prove inadequate?

MR. ROGERW. SMITH: Gary Thomas is the presidentof Wessick Research. Gary
has been a software consultant in insuranceand bankingfor ten years. He has spent
the last several years as an employeebenefits consultant, specializingin postretire-
ment health and corporateusesof life insurance.

I am presidentof PolySystemsin Chicago. My company has been providingsoftware
solutionsfor 20 years. We're here to talk about systems management issues. Gary
and I have a bed example that we'd liketo illustrateas a systems development
project gone sour. Then we will follow up with comments on the management
process and some ideas for improvingthe management of a systemsdevelopment
project. Gary will start with his bad example.

MR. GARY THOMAS: I'd liketo sharewith you an experience I had during the mid-
1980s at a medium-sized insurancecompany on the East Coast. _was hired
originallyas a computer consultantto help on a projectto consolidatethe various
group administrativesystems via a centralized, mainframedatabase.

The existing systems had been developedand modified over many years. As a
result, they suffered from the inevitable "spaghetticode," and many data items
served multiple, hiddenpurposes. Although the systemswere documented, much
undocumented information was carriedaroundin people'sheads. Programmainte-
nance was becoming an increasingheadache. The decisionwas made to scrap these
systems and rewrite them from scratch, rather than attempt to patch them over one
more time. A two-phase approachwas selected, with the firstphase consistingof
the database and billing,inquiry,and policymaintenancefunctions,together with
hookupsto the existingpolicy issue, commissionsand claimssystems.

All software developmentprojects at this company were requiredto adhere to a
well-defined, life-cyclemethodology. For those of you not familiarwith this concept,
it is a fairly common approachused by many corporationsin some form or another.
The idea is to break the designand developmenteffort into severalstages, with each
stage going into a little more detailthan the one before it. The completion of each
stage marks a checkpointat which cost projectionsare refined and revisionsdebated.

I guessthe entire project lasted for about three years, and it got bigger and bigger
until eventuallythere were as many as 60 or 70 programmers, analysts, designers,
and support staff. We were starting to slipfurther and further behindour deadlines.

2175



RECORD, VOLUME 19

Communication problems were becoming acute, and senior management began to
get restless. Several attempts were made to reduce the scope and salvage what we
could, but for all intents and purposes, it was dead. About a year later the whole
thing was mothballed. Subsequently, I decided it was going to be the last big
software project I was ever going to work on, and I quit and became an actuary.

I've listed about six or seven factors that contributed to the demise of this project.
They were by no means unique to this project or even this particular company. I'm
sure that you will recognize many of them from your own experiences.

The first thing I should say is that sometimes I think we are overambitious in what
we expect from our management information systems (MIS) departments. Most
software development projects are generally nonroutine, in contrast to bridgebuilding
and tunnel-digging for example, where all parties have a good idea of what the
finished product is supposed to look like. In addition, software design is still an
evolving art, with new tools, techniques and methodologies continually appearing. As
a result, even when there is full agreement on what is being delivered, it has been
notoriously difficult to come in on time and within budget. In addition, the purchasers
of the software have historically lacked the computer know-how to play any more
than a passive role in the process, once it is under way. In retrospect, it was an
impressive achievement that the project got as far as it did.

Even with a phased approach, this project was, in retrospect, ambitious. The rapid
growth in staff created management problems. Furthermore, over half of the new
staff were, like myself, contract computer specialists, and they had less insurance
knowledge and less of a long-term stake in the project than an internal person might
have had. One reason that there were so many external contractors on this project is
that software specialists tend to be compensated based directly on their technical
skills. The technical skills that are in demand are continually shifting and can take a
long time to acquire. Consequently, it is not always practical to develop them in
house. Contract programmers can also bring a breadth of experience that can be
difficult to acquire in a single-company environment.

The more ambitious your goal, the more potential there is for entanglement. In trying
to develop four or five distinct systems all working from the same database, we
found it was a full-time job simply coordinating the database design changes.
The further along we got, the more we saw of these change requests; and corre-
spondingly, the more resistance we would see from the other design teams, as they
faced the prospect of having to recode what they thought they had already finished.

Another difficulty with large projects is that as the delivery dates are pushed off into
the future, the requirements are likely to shift. The reasons you wanted the system in
the first place are going to change. Your external environment is going to change.
Even the types of products that the system will support will change.

Management difficulties were exacerbated by a lack of clear authority, making it
difficult to resolve conflicts and misunderstandings. Responsibility was split between
project teams from the MIS department and a business analysisdepartment, whose
role was to put together requirements and mafiage the project. At this particular
company there was a lack of trust between these two departments and an ignorance

2176



SYSTEMS MANAGEMENT

of the other's fields of expertise. Both departments were ultimately responsible, but
neither had real authority.

Large projects require good communication. I said earlier that most programmers are
not compensated based on their knowledge of the insurance industry or the banking
industry. As a consequence, you find that the systems people have little idea of
what the requirements actually mean. They have a tendency to get hung up on the
precise wording of a request, when what they should be doing is stepping back and
asking themselves what is really needed, as opposed to what is being asked for.
Conversely, many nonprogrammers tend to be ignorant of the concerns of their MIS
departments. The resulting communication problems can strain even the best
relationships. Communication can be a problem even within MIS departments
between applications developers and the telecommunication and database experts.

The life cycle methodology adopted by this company for systems development was,
in part, an attempt to formalize the development process and minimize the potential
damage resulting from miscommunication. In retrospect, we might have followed it
too rigidly. If the MIS department was approached, it had a tendency to answer,
"we can't tell you what we'll do unless you tell us exactly what you want." The
inevitable reply was, "we don't know what we want because we don't know what
you can do." Back and forth this would go.

If a company adheres too rigidly to a life cycle methodology for systems develop-
ment, you find that once you reach a certain checkpoint, people are very reluctant to
go back and redesign or rethink something that has previously been agreed to. It
looks too much like a costly admission of error. I don't believe that this approach
works very well with nonroutine projects. As I said earlier, I think most software
development projects are nonroutine. After all, if your software requirements were
routine and standardized, it would be much cheaper and easier to go out and buy a
package.

Finally, these problems were compounded by the cynicism of many people connected
with the project. A significant number of people doubted that the project would be
completed. This prophecy became self-fulfilling.

MR. SMITH: I want to talk about a project that I have some first-hand knowledge of
and projects that I have some second-hand knowledge from observations.

Let's take a step back. The example I have comes from about ten years ago. I have
prepared some of the relevant facts about the technological environment from that
time.

The year that this project took place was 1983. Now the personal computers (PC)
marketplace was evenly shared by three vendors. Radio Shack models were affec-
tionately known as "trash 80s." These have been replaced. At that time the PC
environment was low-powered. The development tools were definitely primitive in
contrast to where they are today.

2177



RECORD, VOLUME 19

The hardware we had back then was definitely, by today's standards, very low-
powered. There's probably a couple of you in this room who have wristwatches
with greater processing capacity than some of those machines back then.

We wanted to do something that sounded ralalJvelysimple. We had a mainframe
programthat had been around for a longtime. It computed cash values,reserves,
and asset shares. We wanted to do what that program did. This was not an overly
ambitious thing to do.

A few of the thingsthat we saw later reallyfocused on some of the very first
decisionsthat were made, which were made quickly and with very limited knowl-
edge. We may not have even realizedall the assumptionsthat we were making, and
as a result, allour adjustments did not questionthese initialdecisions.

These criticalquestions seemed harmlessenough. We had to select a machine
environment. We needed to select programminglanguages. We had to decide how
the user would interact with the system.

Hera's what we decided. These numbers may surprise you, but back then they were
reasonable. The project team decidedthat we had to run with just a little bit of
memory, 128(k), although I am not surewhy. Maybe anythingmuch biggerthan
that was too rare or too expensive.

It also had to work with two floppy disks. Hard drives were very rare. They may
have been unavailablein many instances. We wanted to stick with commonly
availabletechnology.

Pascalwas selected as the language. I have no idea why. We alsodecided that
screenswere a must.

What did we experience as the project unfolded? We discoveredthat we were
restricted from usingthe natural designof the algorithmswe wanted to use to
compute the numbers. We quickly realizedthat the decisionon the memory was just
too limiting, it just wasn't going to work.

Similarly, the two floppy disks you were also too limiting. We were used to dealing
with largerquantitiesof data comingfrom a mainframe environment. The capacity of
two floppieswas too much of a toy system.

Writing screensback then was a ground-upactivity. You really needed to develop
everything by yourself.

What happened after we realizedthese restrictions? The projectteam decided to get
very clever. There were many programmingtechniques that could be employed to
get around some of these limitations. When you're dealingwith brand new technol-
ogy, it's really not a good ideato get clever interms of programming techniques. We
had people that came from mainframeenvironmentsand were used to things like
memory overlays.

2178



SYSTEMS MANAGEMENT

Understanding what should be done was difficult because the people who were
asked to correct the course were peopleassigned to the project. These were
technical people who were confident in their abilitiesand really wanted to prove that
their ideascould work, ratherthan whether it's the best commercial decision. We
continuedto slugour way through the technical problems.

As a result, we found ourselvesdoing portionsof the system over and over again.
We were forced to write difficultdata-handlingtechniquesto squeezeall the capacity
out of the machine. These were written severaltimes, Duringthe development, we
encounteredvery unpleasantthingsabout the compiler technology we were using.
We had to go back and redo many aspects of the project.

We would get an idea, develop, do the work, hit a brick wall, try to get past the wall,
realizewe couldn't get over the brickwall, and finallyretrenchand try somethingelse.

From these bad examples I came away with several guiding principlesthat have
shaped many of my decisions since then. Number one, when you lay out a project
or a systems development project, you need to insist that the hardware environment
is sufficiently robust to do the job for you. Rather than plunging into something
totally new and unproven, I will try to get something simple working first.

I will be wary of new technology. I don't think there is anybody who has worked in
systems very long who hasn't been bitten by some aspect of new technology.

MR. THOMAS: You can see from both of our war stories that these problems
occurred about ten years ago. Since then, plummeting hardware costs have altered
the dynamics of where and how software is to be selected, developed,and used.
Tools are certainlymuch better now. wr_:hthe computer industry changingat such a
rapid pace, we will not continueto face these same challengesin the future as newer
tools and methods emerge. I'd like to explore how some of the challengeshave
changed from the mid-1980s and where I see improvementfor the future.

The communication problemsthat seem to plague most developmentprojects are
primarily a result of specialization. I think that this situationis improvingprimarily
because more and more businesspeople have become computer literate. The PC has
clearly been the catalyst here. The PC has triggered an explosionin third-party
software providers,who clearly could not survivewithout a knowledgeof the
businessin which they are operating. We will continue to see more and more people
who are comfortable working in both spheres.

Toolsare constantly improving,both in terms of power and in ease of use. This
allows allof us to work at a higher levelof abstraction. Powerful spreadsheets,pro-
grammable databases,and visual programmingtools allow us to push much of the
programmingneeded for ad hoc analysisaway from MIS departments and into the
hands of the users.

I spoke earlier about the systems development life-cycle methodology and the rigidity
with which it is often applied. A phased approach to implementation helps some-
what, but it still does not address the central problem, which is that software require-
ments are usually fairly amorphous. I was fortunate to be given the opportunity at

2179



RECORD, VOLUME 19

the same company to initiate a development project using a rapid, prototyping
approach. In this case, we put togethersomething simpleand took it out to show to
the potential users, glitches and all. We got their feedback and went back and
improvedit, repeatingthis processseveral_mes. All the while, we were elici'dngour
own internalfeedback basedon evaluadonsof different hardware platforms, data-
bases, and programmingtools. In a fairly short l_me, we had agreementon a core
system and implemented it.

This kind of constantfeedback buildsconfidence. You're no longer putl/ng people off
for three to six months before you let them see what you've done. This approach
provides real, as opposed to artificial,monitoring. If the project starts to go off track,
it's a lot easierto make it right. It's alsoeasierto cancel the project, and this is
sometimes the best alternative. After all, once a large sum of money has been sunk
into a project,nobody wants to see it fail. They'll do all they can to salvagesome-
thing from it.

Prototypingalso allows you to experiment with newer technology at much lower risk.
Roger mentioned that new technologyis something that you reallyhave to be careful
with, particularlywhen investinglarge amountsof time and money. Forour particular
prototyplng project,we were lookingat relat/onaldatabases and minicomputersfor
the first time and were not surewhat we would be able to accomplish.

I'd like to talk about some specificimprovementsin software developmenttools. One
of the primary advancesin software in recent yearshas been in databases. Ten
years ago it was not possibleto put up a database without extensive input from a
database expert. In addit/onto considerationsof how the data model should be
structured, you had to worry about internalindices,performancetuning, and access
pattems. It was a major project just getting the database up and running, let alone
developingthe actual application.

Over the last ten years, the relationaldatabase model, exemplifiedby Oracle,DB2 and
Sybase, has become ubiquitous acrossall hardware platforms. It allows you to test
your logicaldata model independentlyof the underlyingphysicalimplementation. In
fact, because of the highdegree of uniformityamong the variousvendors, it is
possibleto designand test a database model under Oracleand then go on to
implement it under DB2, for example.

Relationaldatabasescan be viewed as a group of data tablestogether with a set of
commands for manipulatingand ex_actJngdata across multipletables. The architec-
ture is quite elegant in contrast to older databases,which requiredcomplex navigation
paths through the data. Becauseyou can often extend a table without havingto
rewrite your existingprograms, these databases are idealfor prototypingand incre-
mental development.

Data retrievalis faidy straightforward,with many vendors providingquery-by-example
screens, which allow computer-literate businessusersto directlyaccess data them-
selves and design simplereports. This also frees up the MIS department, allowing
them to concentrate on what they do best.

2180



SYSTEMS MANAGEMENT

Another factor in the proliferationof relardonaldatabasesis the adoptionof SQL,
which is a common languagefor accessingand updatingdata. Entiresystems can
now be ported from one database packageto another, with little more than a
_mpile.

Another software technique that I've used a lot in the last severalyears is object-
oriented programming. I believethis is a huge advancein the methodology used to
developsoftware. It allows you to manage complexity,which is reallythe core
problem.

From a base libraryof object class definitions,you can create your own general-
purposeobject classes. Eachclassdefinitiondescribesits internaldata together with
its internal proceduresfor operating on that data. Classdefinitionsserve as templates
for the variousobjects that make up your system. Becauseeach object is completely
self-contained, in a building-blockfashion,you can buildobjects from other objects
without worrying about how they work internally. Examplesof object classesinclude
tables, files, windows, collections,matrices, integer,and characterstrings. Once you
get over the steep learningcurve, you can start developingsome sophisticated
software without too much effort.

These objects are modular; therefore you don't have to worry about programming
changes to one object classcausing unforeseenrepercussionselsewhere. Many of
the proceduredefinitionstake up lessthan ten lines of code; this makes them much
easierto test. Once you've tested a procedurewithin an object and you're satisfied
that it's correct and you're satisfiedwith your classdesign, then that piece of code
will stay correct forever. You can bank it. In an age when we are continuallytrying
to work at higher levelsof abst_'action,that's very helpful.

Another advantage of the modular approachis that you can easilyextend and
improve existing applications. That's historicallybeen one of the biggest headaches
of many MIS departments. Because of the cost of replacingsoftware systems, they
can often live for 10 or 15 years, undergoingnumerousmodifications,each one more
painfulthan the one before.

Object-oriented programming is particularlysuited to prototypingand iterative develop-
ment. You can get something up and runningvery quickly. It may not do what you
ultimately want, but it will give you an idea of how it's going to look in the end.

Itera6ve development allows you to developsoftware with much smallerteams, and
because you can shorten your development time, it meansthat there are fewer
worries about management, communication,systemsdevelopment lifecyclemethodol-
ogies. More and more companies are starting to adopt this methodology.

MR. SMITH: I'd liketo talk about some of the steps that I would recommend in
managing a developmentproject. Sometimes it seems that a developmentproject
has no beginningor end. The long-termnature of a development project makes it
difficult to manage. There's a seriesof questionsthat I would recommend that you
ask up front and pushto get written answers for each of them.

2181



RECORD, VOLUME 19

A good written plan is essential. If more than one person is involved in the project,
communication will be important. Peoplewill have different ideas on the project or
what the system that you're developing should do. Sometimes the necessary whys
get the short treatment in the development process, and you don't examine the
reasons for developing a system.

Many aspects of the user's needs affect the design. How often will it run? Who's
going to use it? How sophisticated is the operator? Will it run everyday or once a
year? All these questions affect the design effort.

I like to build a plan as the next part of the development cycle. At this point it's
important to write down all the formulas that you're going to use. Identify
all the various data relationships. I see more people get into more trouble by not
paying enough attention to how the data needs to come together in a system.

1think another aspect is deciding how you are going to test. The systems that I see
in development and in production are becoming far more complex than my simple
example. Often I find it very difficult to look at an overall process and to understand
how to test it and see that the numbers are coming out. It's a good idea to think of
a test plan up front.

Next, try to identify the technologies that are going to be used. To do this well, you
should be constantly monitoring the new technologies. We are constantly reviewing
new products to see which ones will work for us.

There is one thing that I don't attempt to do. I don't know if you noticed, but I do
not like to prepare a hard schedule. From my earliest experiences, even back before I
was active in software development, I have seen managers struggle with schedules.
Everybody wanted to get that schedule down. How many people in this room have
seen a systems development schedule that has extended a couple of years? Is there
anybody here who has not seen one of those?

My feeling on those schedules that extend a couple of years into the future is that
they might be the silliest thing you could possibly do with a systems development
project. I truly have a lot of trouble defining what I'm going to be doing 18 and 24
months from now. I see a lot of people do it, or attempt to do it, and write it down.
One of my early systems experience took place before 1983. I was on the user
team that installed a new administrative system at a life insurance company.

The first thing we did was build a two-year schedule. We assembled the project
teams, v_rKhinsix months, all the original project leaders had been fired. The original
schedules were adjusted only as necessary. The bureaucracy that had developed just
for maintaining the schedule was really quite extensive. We became a slave to the
schedule. Nobody stepped back and admitted that a schedule might not be possible.

During the execution of the project, it seemed like a tough project. After the project
was complete, however, the software vendor referred to our company as a flag-ship
installation the way to do it. I decided if that was the best way to do it, I didn't want
to be around one of the worst ways to do it.

2182



SYSTEMS MANAGEMENT

So whet do we say about schedulesor goals? I feel very strongly that you need to
have targets. They need to be written and communiceted frequently. The risk is that
people believe them when they shouldnot.

Keep the longer-termgoalssoft. I then liketo decomposeprojectsinto workable
units such as things that should be completedwithin one or two weeks. Create hard
schedulesfor smallercomponents. Examplesof the smallerstepsare writing specifi-
cations,designingformulas, arrangingscreens, or writing the calculationcode.
Whatever the component might be, try to sit down and agree that an individualis
goingto get it done in the next week. Sit down every Monday and do this with
everybody on your developmentstaff.

Whet are you going to get done next week? Whet do you think might be done?
Agree that the work step is large enough for a week's effort. If it seems like some-
body is holdingback or not taking off a big enoughbite, then you need to encourage
them to do more. This will tell you how well the project is progressing.

By getting agreement from the people doing the work, you can tell if something is
fallingbehind. You should be able to project progressa week at a 5me. In this way
you will be able to adjust if you get behind. You will be able to see the problems,
and you can put additionalresourceson them. Maybe that person isn't quite right for
the job. Perhapsyou've asked him to do a littlebit too much. Many people will
optimisticallyoverestimatewhat they think they can get done. That may not seem to
be bed, but you can't have peopletelling you that they can get something done in a
week when it's going to take them months.

This is the techniquethat I liketo use. I find it more realisticthan saying we'll be
done in a year. You must be able to determine whether you are on schedule or not.
Long-rangeschedulingis especiallydifficult if the project involvesa lot of inventionor
usesbrand-new technology.

One element of systemsdevelopmentthat is quite important and more difficult is
testing. You need to designthe testing as you design the system. You need to
figure out how the system willbe tested before you beginto develop.

As pieces of the system are built, you shouldtest the individualpieces. Build on
components that you are absolutely sure will work. Once the components work, you
can proceed to the next level.

I don't know if the next step appearsin any of the classicalsystems development
techniques. Part of the test plan has to be how to decide if the system is reedy. I
have frequently seendevelopmentteams test things repeatedly without a sense of
what is enough. They just want it to be absolutely perfect.

In one of our recentefforts, I went to our testing unit. They were comparingsome
reservescalculationsfrom new software with those from an old program. I asked
how the testing was proceeding. I was told that overallthings looked "pretty good,"
but that there were a few problems. I asked whet the problemswere. The group
was trying to match five-year,renewable-term-reservecalculationsusinga

2183



RECORD, VOLUME 19

continuous-premium assumption, but wanted to use a curtate expense allowance.
We were within a few pennies, but we were not matching exactly.

I'm reallynot sure if there is a lot of demand for the continuous-premium,curtate
expense-allowance-termproduct. I was not concernedabout this very smalldiffer-
ence for a product combinationthat probablydoes not exist.

Quality control is quite important, but it's alsopossibleto overtest unnecessarily. You
have to approachtesting and quality controlwith a plan that shouldincludea point at
which the software is ready for release. You want the system to work well, but it is
impossibleto be completely sure that there are no bugs of any kind. Lookingfor the
last bug can seriouslydelay the software's release.

t'd liketo shift gearsand discuss what I liketo callthe schedulekillers. One of the
most common schedule killersis the abilityof a projectto enlargeon you. The longer
that a projecttakes, the more likely it is to expandto some extent.

In the sessionpriorto this one, the speakerswere talking about some product design
with bonus features. Ted Becker was on the panel. That discussionreminded me
that regulatorsand new regulationscausethe specificationsto change.

Technology is another factor that changesschedules. It is always shifting. How
many operating systems are out there right now for desktop or departmental ma-
chines? There are OS/2, MS DOS, a couple of versionsof Windows, and a couple
forms of UNIX. Which ones will be the most common or popularfive or ten years
from now?

Where is technology goingto take us? If you go back fn/e years and look at the job
of supportingprinters,you would find a great deal of diversity. You would have a
complete interfaceto every printerthat was out there. There is more standardization
now so the effort you invested in supportinga multitude of printers would be wasted.

Be wary of technology traps. I bet that many of you have stories that you can share.
New technology is very enticing and inviting. We spendso much time examining
new tools, both hardware and software. This is definitely a necessary overhead or a
necessary investment. There are so many ideas that look good on the surface, but
when you test them with your application, you find that there are shortcomings or
major problems.

I don't evaluate hardware by just looking at standard performance benchmarks.
Everybody quotes their million instructionsper second(MIPS), million load operations
per second(MLOPS), and SPEC marks. However, when I run my application,I see
more variations in my application'sperformance that cannot be explainedin terms of
the hardware vendor's benchmarks. I have been surprisedwhen two machinesthat
have similarpublishedperformance benchmarksexhibitsignificantvariationson a real
application.

Another aspect of new technology is something I calla time bomb. By this I mean
that there is one feature or one problem that is a real showstopper for you. You just

2184



SYSTEMS MANAGEMENT

can't get aroundit. These are things you obviouslywant to find just as soon as
possibleso you can avoid going down a particularpath.

Other things can happen to you as well. Sometimes company management can
make decisionson technology that are arbitraryand do not work out well. There is
not much that you can do about this.

What other things can come up? Let's say that even after you have successfully
completed all aspects of a development project, you find that the system just doesn't
run fast enough. I can think of examplesof systems where this kind of thing
happened. I'm thinking of some administrativesystem examples in which a new
system with very good theoreticaltoolswas brought. New technology was utilized,
but it just wasn't fast enough for some reason, The system couldn't do enough
work in a short amount of time. The system was very slickand did a wonderfuljob,
but it just didn't do it fast enough. That can be very difficult to anticipateup front.
The only way to avoid this is to prototype the system on a small scale. Findout
what the limitationsmight be before you have invested seven figures in a systems
developmentproject.

The developmenttime itself can cause unforeseenproblems. Frequentlyit can take
more than a couple of years to developa large-scalesystem. You develop it with a
certain hardware platform in mind. By the time you are finished,you might be forced
to move to a new computer or hardware platform. It might not be possibleto make
this migrationso easily.

One of the difficultieswith actuadel software is that we're not a large enoughplayer
for a lot of general-purposesoftware or hardware vendorsto get excited about. They
will not see market potential in developingthe perfect machine for actuaries. Maybe
that will changeat some point.

Inthe meantime we need to hitch our wagons to where the hardware and software
vendorsmight be going. For example, if you use a name-branddatabase product,
then your systemsdevelopment will be affected by the future directionof that
particular database product. Changes in third-party software can affect your
development project and possibly set back your schedules.

I'd like to wrap up in terms of what I think is the best or at least a good way of
managinga systems project. You need long-term goals. You need to review them
on a regularbasis. You need to have an idea of when a delivery would make sense
to the user. It would not be helpfulto deliversoftware when your userscannot
implementor use the software because of their particularbusinessschedules.

I don't liketo schedule things too far in advancebecause it can work against you.
Frequentlyyou don't know what you don't know. Working with short-term goals is a
better way to proceedwith a project. Get it in good, bite-size,meaningful pieces,
thingsthat can be accomplishedin a relativelyshort time. This is where the most
active management shouldtake place. This is where the accountabilityand all the
resourceadjustment should logicallytake placeon these shorter-term projects. Of
course, you need a view that is heeded towards that long-termgoal.

2185



RECORD, VOLUME 19

As I have said, technology is always changing. We spend quite a bit of time l_/ing to
stay on top of what is new and what is on the drawing boards. It's probably
impossibleto do this completely. I remember the first time I picked up a PC maga-
zine, probably ten years ago. I actually felt intimidatedbecause I didn't even under-
stand moat of the ads. These are the types of things that you need to really stay on
top of. There are a lot of new directionsin processing,hardware, and peripheral
devices.

There's also a lot to keep up to-date with in support software. Database products,
operatingsystems, and developmenttools each offer new features and, at the same
time, introduce new limitations. Sometimes it is tough to know whether new
software is a net benefit or not.

When I select a particularhardware platformor a software operatingsystem, I always
like to have my next move in mind. They say that good football coaches are two or
three plays ahead. You need to do this as well. Know what that next step is. This
way you won't wake up surprisedone day.

Finally, you need some way to validate all the assumptions that you're making and
understand what the assumptionsare. Some of the comments that Gary made
about prototyping, rapid development techniques, and object-oriented programming
can validate those assumptions. Then you can successfully and adequately complete
projectsand get them finished,

FROM THE FLOOR: You talked a bit about a project that failed because of the
constraintsof not having a powerful enoughsystem. A successfulsystem can run
into the same problem. I found that if somethingworks, people come out of the
woodwork with new ideas and new ways of producingoutput from it. Very often
you start out with a platformthat might be sufficient, and then you realizethat you
don't have enough power to meet all the requirementsthat are needed. You want to
anticipate, to look ahead to your next step, as you were just saying a few minutes
ago. You might try to buy the most powerful machine you can, but somewhere
along in the process you'll run into somebody who's going to try to negotiate you
down. A good strategy to counter this is to ask more than you really need. But
unlessyou feel that you need the best, you can't ask for the best. What other types
of arguments have you found that work with management or controllerswho are
tryingto limit costs. Their very logicalargument is, what do you need this for? You
only need 1 x X. But you feel that you might eventuallyneed 2 x X, or 3 x X.

MR. THOMAS: I have never directly experiencedthat problem becauseI spent much
of my career working in mainframe shops, where the hardware was alreadythere.
Our perspectivehad always been that the hardware was an integralpart of any
software solution that we provided,and therefore these decisionshad to come from
within MIS. The proliferationof networks and cheap, powerful PCs is now divorcing
the hardware purchasedecision from the particularneedsof an application.

MR. SMITH: There are many reasons why people might want to be reined in. It
could be a turf issue, and it couldbe cost, but it shouldbe quite evident and straight-
forward in the cost-benefit analysis. The questionof your need for that much
hardware or that much processingspeed can be a difficultquestion to answer. It's

2186



SYSTEMS MANAGEMENT

rarely a question of "have to have." Nobody is going to die if you don't have it. You
need to determine what makes the most business sense and try to make a case that
a process should take a certain amount of time and no longer.

Generally what I find is that the cost of staff just dwarfs what hardware might cost.
I normally look for the cost savings that will free up many hours of labor or make cost
savings possible. If you have a tough controller, convince that person that you need
the hardware to get the financial numbers a bit quicker.

MR. THOMAS: One other comment on that point is that with hardware performance
advancing rapidly, you should try to look past your current limitations. You intend to
use your new system for a number of years. Perhaps you could purchase hardware
that can be subsequently upgraded when it is much cheaper, ff you don't absolutely
need all the power now.

MR. SMITH: I have seen examples of what you mentioned. As soon as you get
something up that works and it's operating, it's amazing how all the restrained
demand bubbles up to the surface. All these things that nobody ever asked for
previously because it was pointless are now investigated.

MR. LARRY A. CURRAN: This question is primarily for Gary Thomas, and it has to
do with your comments about object-oriented programming. I believe you said
you've been using it for several years. Is that right?

MR. THOMAS: Yes, that's correct.

MR. CURRAN: Could you tell me if you use it on all projects, or is this a hit-or-miss
thing?

MR. THOMAS: No, I've used it to put together a life insurance cash-flow projection
and pricing program. As you can imagine, it's faidy complex. That's really something
that I didn't start until within the last year. I spent two years or so before that really
just experimenting with the technology. It wasn't something where I just dove right
in and became immediately productive.

MR. CURRAN: Do you do formal object modeling as part of your object oriented
approach?

MR. THOMAS: No, it's been informal, actually. Once I was familiar with the
technology, I had a good idea of what most of my objects were going to look like.
Most of the time you are just creating simple extensionsto the class libraries provided
by the language vendors.

For example, Smalltalk comes with some 200 or so classes together with several
thousand methods for operating on these objects. It can take a long time to get
familiar with these libraries. And that's where the steep learning curve comes in.
Once you've mastered that and you've experimented with a few class designs
yourself, you get a little better. Initially, it is very much a hit-and-miss affair. I've put
together some fairly complex objects that I've had to subsequently tear down and
redo. Eventually you get much faster at it. But it takes a long time.

2187



RECORD, VOLUME 19

MR. CURRAN: Smalltalk is the language you're using then?

MR. THOMAS: I do use Smalltalk, but my language of choice is Actor. Smalltalk
and Actor are the only two languages I'm familiar with that are purely object-oriented.
I know that C + + is object-oriented, although many people just use it for conven-
tional programming. It probably runs a little faster than Actor and Smalltalk, although
the syntax is not as elegant.

MR. CURRAN: One final question. You said that more and more people are now
using object-oriented technology. Is this just a feeling you have or have you actually
talked to several people in the insurance industry that are using it?

MR. THOMAS: I don't know of any insurance companies that use it beyond a little
experimentation. It's probably best not to go in feet first until you've tried it out on
some small pilot projects. The spreadsheet vendor, Bodand, recently staked its future
on it, and the results are only just beginning to pay off. A number of banks and
investment houses are using Smalitalk.

One of the main problems with Smalltalk in the past was its sluggish performance.
That's become much less of an issue now. I know of one bank that's running
Smalltalk on some monstrous machine with over 130 megabytes of memory and
acres of disk space. So I don't think they're seeing performance problems there at all.

FROM THE FLOOR: I'd like the speakers' suggestions on not getting tied to target
dates that are very far out. I'm struggling a bit to apply this in my environment. I
work in product development, and we're coming up with a new product and trying to
install it on the system. If it's a vadable product and I have a goal to release it May 1
and hold a sales meeting to introduce the product at a certain date, I don't see good
ways to avoid those long projects, very tight deadlines, and very long deadlines. Do
you have any suggestions for me?

MR. SMITH: Well, I would say that if you're absolutely forced to, you may not be
able to avoid them. I think that you definitely need to have that large project decom-
posed into the workable pieces. Do it to the largest extent possible and manage each
one of those very dgidly. As something slips, you ought to have some knowledge of
this in advance. You should then be able to judge whether the longer-term deadline is
in jeopardy, and perhaps you need more resources to be brought in to work on the
effort.

There's no perfect solution. Sometimes things can proceed very rapidly. You might
think it will take a week, and I've seen things happen in a day that fell into place.
Other things don't do that. I would say that the decomposition would be very
important in that.

MR. THOMAS: You need to set pdorities on which features of the system you really
do need immediately and which ones can be pushed off a little, or maybe simplified or
cut back.

MR. JEFFREY T. ROBINSON: In that regard, how do you keep from slipping from a
year to two, when you don't have a long term goal. I often find that I start with

2188



SYSTEMS MANAGEMENT

when the thing is due and then work backwards. It soundsvery appealingto have
these shortgoals. But you need to look at when you have to have the job finished.
And most people underestimatethat time. How do you know how longthe job
should take if you don't reallythink from the total scope down to little segments?

MR. SMITH: Well, I think the answer is that you don't know how longthe total job
is going to take. I think that you need a target and you need a goal. You need
something to shoot for. I stillsay that the hard scheduleis not practical,but I agree
that you need some goal and some target out there.

MR. ROBINSON: UsuallyI'm the person that is shot because I haven't met that goal.
But I think I've never been involvedin a project where I've left enoughtime to do it.
And you know that's a whole other thing, just buildingin some time. And I see
people who say that they do, and it's as if they commit heresy. How long is a
project goingto take? They say three years. Of course, when they finish after two
years, everybodysays why can't you do It in one? Generallyyou can't. But I think
you have to set that long-termgoal, and then just kind of see where you're going to
go. But the short piecesare nice, because you can generallymeet those deadlines,
whereas you can't meet the rest. Gary, you mention on one projectyou used many
contract programmers. Let's say you used consultants. Wouldn't you think that you
could controlthose people more readilythan you couldcontrol other employees wi_in
the organization? Because, in general,you have the payrollor the purse strings over
those people. If the contract programmersdon't perform, you can get rid of them.
Whereas if your data processingdepartment doesn't perform, generallythey're
unaccountable.

MR. THOMAS: Consultants generally have very marketable skills and are able to find
new contracts. It dependson the economy. In 1987 it was a tough market. But in
general, contract programmerswith the right kind of skillsfound work anywhere.

If they find a company they're comfortablewith, they'd love to stay there as long as
they possiblycan.

MR. ROBINSON: But do you thinkthe project leader generallyhas more control over
them than internalresources? That's really the question.

MR. THOMAS: Well, at this particularcompany, many of the projectleaderswere
also contractors. At one point they put a consultantin charge of the entire project on
a day-to-day basis. Presumably,you are paying good money to contractors because
they are adding value. You can certainly control them in the short term, if you feel
you could do without them. In the cases where you can't do without them, control
becomes a problem. But in those situations, there is probablysomedeeper underlying
problem. But I would agree that computer contractors tend to be highly responsive.

MR. ROBINSON: That was the specificword I needed. Often I find that you can't
reallyget an internal data processingdepartment to do, or move up, or speed up, or
slow down, because you just lack the authority. You're told they know what they're
doing.

2189



RECORD, VOLUME 19

MR. THOMAS: Well, the people outside the department don't understand all the
issues involved in putting software together. And as I said at the very beginning, it is
a lot more difficult than people think.

MR. ROBINSON: On the other hand, the data processing department, as you said
before, doesn't always understand the technology of, or the technical aspects of, the
insurance part of the job.

MR. THOMAS: Exactly. And that's a serious problem in an industry where most of
the systems really are highly technical.

MR. ROBINSON: For this very reason I don't like to see data processing people in
charge of these projects. They know the data processingaspects, but they don't
know how it integrates.

Roger, in your shop, which is reallya consultingfirm in a way, have you ever used
project contract programmers?

MR. SMITH: Rarely,just a couple of times. I can't think of many.

MR. ROBINSON: One more question for Gary. Can you give us a quick definitionof
what object-orientedprogrammingis, or how it differs from regularprogramming?
That would probablybe best.

MR. THOMAS: One common type of object that actuariesmight define would be
some kind of vector, for example, to representmortalitytables, survivorshiptables, or
a set of discountfactors. You would define a vector class to be derived from the

existingarray class, which comes complete with a set of procedures for initializing
itself, loading indata, enumeratingthrough its elements,and so on. By defining this
vector as a subclassof the array class,you can inheritall its data and behavior.
Perhapsyou would define some additionalbehaviorfor your new vector class, such
as multiplicationwith anothervector. This will now work for any pair of vector
objects,whether they representsurvivorshiptables, discountrates, inflationor
anything else. You only have to code that once in a place where you can easilyfind
it again. To generate survivorshiptables and discountfactors, you might define one
further method for this vector classthat would cumulativelymultiply its elements.

MR. ROBINSON: In traditional programmingyou would define each table separately?

MR. THOMAS: Yes. The traditional languageI'm most familiar with is common
businessoriented language (COBOL). It requiresyou to define all your data in one
place, with all the proceduresfor each table elsewhere. Eachtable has its own
initialization,loading, and access proceduresscattered allover the program. With
nested tables within tables, it gets very messy. And the more complex your program
gets, the bigger it gets, and the easier it is to make mistakes. V_fCdltraditional
programming methods, the first line of code is the easiest, and after that it gets
harderand harder. Conversely,with object orientation,it is quite difficult constructing
object class definitionsthat not only solve your immediate problem, but also will prove
useful far into the future. But once you've got a niceset of object classes, it is not
hard to put them together.

2190



SYSTEMS MANAGEMENT

MR. DANIEL A. CAMPBELL: We heard about global competitiveness and poor
competencies. My premise is that in order for insurance companies to be successful
over the next decade, they're going to have to have world-class skills in installing
systems, integrating those systems, and continuously adapting those systems as their
business changes. My question for the two of you is, what steps do you think
insurance companies are going to have to take, starting now, to be able to deliver
those world class skills in their organizations?

MR. THOMAS: In my view, the core competency of an insurance company is simply
the ability to design and market profitable products that satisfy customer needs. IBM
has found that it is not competitive in the software business. Ukewise, although
many of them do it well, I don't think that insurance companies are naturally in the
software development business. It can be justified now simply because of all the
unique products out there. But once we begin to see cheap software that is flexible
enough to accommodate all these variations, perhaps we will start to see more
companies reorganizingthemselves to fit the software rather than fitting the software
to the organization.

MR. CAMPBELL: Even if they don't develop systems intemaUy,they have to be
skilledat bringingin those packages that other software vendors supply. So that may
be a skillset that they need to be very adept at, installing,supporting, and helpingto
accommodate those packagesand tie them into the rest of their operation.

MR. THOMAS: That's a very important skill.

MR. SMITH: Well, I would say that companiesneed to be lookingat technology and
systems, whether they develop them or buy them. They need to get them to do a
couple of thingsfor them in order to become more competitive. Many systems are
aimed at expensecontrol,just doing a better job of acting as an insurancecompany.
This is one huge area of opportunitywhere companiescan become more competitive.

How many companies have the abilityto understand, l_ack, measure, and anticipate
the basicfundamentalsof their profitabilityin a very regular,quickway. This is
something I think is goingto be very necessaryto be a player.

2191




