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Abstract 
In this paper we compute the conditional and uncon- 

ditional probability of ruin for an individual who 
wishes to consume a fixed periodic amount from an ini- 
tial endowment invested in a portfolio earning a sto- 
chastic rate of return. The conditional probability of 
ruin is the probability that the net wealth becomes zero 
prior to the individual 's stochastic date of death. 
Unconditional is the probability that the wealth ever 
becomes zero. We solve this problem using insights 
from option pricing theory. Specifically, we show that 
the probability of ruin corresponds to the probability 
that a suitably parameterized Asian call option (a type 
of derivative security) will expire with value in-the- 
money. Under standard assumptions for the investment 
process, the unconditional probability of ruin is 
obtained analytically using well-known results leading 
to the Gamma distribution. The conditional probability 
of ruin is then approximated with moment-matching 
techniques using the same Gamma distribution. 
Finally, using realistic market values for equity and 
fixed-income investments, we apply our approximation 
to demonstrate that the conditional probability of ruin is 
minimized with a relatively high allocation to equity 
(the high-risk asset) until quite late in life. 

1. Motivation 
Once an individual retires, lifetime consumption is 

funded by money saved and invested during the work- 
ing part of the life cycle. The two classic finance prob- 
lems for a retired individual are (1) What level of 
consumption can the individual enjoy from invested 
wealth, including investment earnings, without running 
out of money during his or her lifetime? and (2) How 
should the retirement fund be allocated to different 
investment assets? 

If the date of death and the rate of return are known 
with certainty, this problem is easily solved, but, of 
course, these assumptions are not realistic. In this paper 
we compute the conditional and unconditional probabil- 
ity of  ruin for an individual (retiree) with a stochastic life 
span who is consuming a fixed real amount from a diver- 
sified investment portfolio. By the term conditional we 
mean the probability that the net-wealth process will hit 
zero while the individual is still alive, otherwise referred 
to as bankruptcy. By unconditional ] we mean the proba- 
bility that the process will ever hit zero. The unconditional 
probability would be of interest to endowments or indi- 
viduals with very strong bequest motives. In particular, 

]Perhaps abusing conventions. 
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we tabulate the probability of ruin as an explicit function 
of the stochastic growth rate and volatility of the portfolio 
vis-a-vis the consumption rate. We view this research as 
an extension of the literature on ruin probabilities in 
insurance, such as the work by Pentikainen (1980) and 
Panjer (1986), as well as many others. The main distinc- 
tion, of course, is that we focus on "ruin" from a personal 
perspective, and they do so on the company-firm level. In 
particular we assume that the (consumption) "claims" are 
deterministic and the (investment returns) "premiums" 
are stochastic. 

Interestingly, we demonstrate that the probability of 
ruin is equivalent to the probability that a suitably para- 
meterized Asian call option--a type of path-dependent 
derivative security--will expire in-the-money. The actual 
price of this Asian call option can be interpreted as the 
cost of ensuring the retiree's prespecified standard of 
living, which is also analogous to the cost of an appropri- 
ately defined life annuity. Finally, we use a Gamma dis- 
tribution approximation for life annuities with realistic 
market parameters for equity and fixed-income invest- 
ments to demonstrate that the conditional probability of 
ruin and the implicit cost of insurance is minimized with 
a relatively high allocation to equity until quite late in life. 
This analytical approximation can be used to confirm 
earlier simulation-based studies by Milevsky, Ho, and 
Robinson (1997), which documented the effect of asset 
allocation on ruin probabilities. 

The essence of our approach is the actuarial intuition 
that the probability of ruin can be formulated as the prob- 
ability that the stochastic present value---basically a life 
annuity or perpetuity--is greater than the initial wealth 
available to support the consumption. Thus, in our 
framework, an individual retires at age (x) with an initial 
wealth of Wo = w and a desired lifelong consumption 
stream of c real dollars per annum. In a deterministic 
world, with fixed time of death T and a fixed real interest 
rate r, the present value of the desired consumption 
stream is trivially calculated as 

S Te-'~ dt - c(1 - e -rr) PVT(c) = c ~ r (1) 

If the expression in Equation (1) is greater than the ini- 
tial wealth w, the retiree does not have enough to sup- 
port the desired consumption stream, and ruin occurs with 
probability one. Likewise, when T = ~o, Equation (1) 
becomes PV= (c) = c/r, which is the sum needed to fund a 
perpetuity of c dollars per annum. 

On the other hand, in a stochastic world, both the time of 
death and the rate of return on investment are stochastic. 

The stochastic analogue to the deterministic present value 
of consumption is the stochastic present value of lifetime 
consumption (SPV(c)) denoted by 

SPV~(c) = C~ro e-(~)' dt, (2) 

where the two sources of randomness, lF and/~,,  are 
incorporated explicitly into the computation. The right- 
hand side (r.h.s.) of Equation (2) is the actuarial defini- 
tion of a life annuity under stochastic discounting. In 
addition, the r.h.s, of Equation (2) can be identified as 
the scaled payoff from an Asian put option (see Section 
3 for more on this result). The higher the SPV, ceteris 
paribus, relative to the initial wealth-to-consumption 
ratio, the higher the probability of ruin. Once we have 
the probability density function (pdf) of the stochastic 
present value of lifetime consumption we can compute 
the probability that this quantity is greater than the ini- 
tial level of wealth w. We denote this by 

Pr~ "~ve P(SPVt(c)  > w) P(SPVr > w), (3) in ~ - -  ~-- 
C 

for the conditional case, and 

eruin " =  P(SPV=(c) > w) = P(SPV= > ww), 
c 

for the unconditional case. 
The remainder of this paper is organized as follows. 

Section 2 introduces the investment and mortality dynam- 
ics, using the techniques of continuous time financial eco- 
nomics, and then derives an expression for the probability 
of ruin. Section 3 describes the connection and analogy 
between our problem and Asian options. Section 4 devel- 
ops some techniques for computing the relevant probabil- 
ities using the Gamma distribution. Section 5 provides 
some numerical examples of the conditional and uncondi- 
tional probability of ruin using realistic capital market and 
mortality parameters. Section 6 concludes the paper. 

2. Investment and Mortality 
We start with the basic geometric Brownian motion 

(GBM) model of investment dynamics in which indi- 
vidual stocks (or asset classes) obey the stochastic dif- 
ferential equation (SDE) defined by 

dS] /Sj = ~tidt + (lidB~, (4) 

where B~ is a standard Brownian motion, ~t~ and t~ are the 
real (inflation-adjusted) mean and standard deviation of 
dSi/S i, and d(B ~, Bi), = 9~j is the correlation coefficient. An 
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investor (retiree) allocates and rebalances wealth among 
the universe of  investment assets, provided by Equation 
(4), and consumes a fixed real amount c, per unit of  
time. By construction, the real net-wealth process will 
obey the SDE 

dWr = (BeW~ - c)dt + ~pW~dB,, Wo = w, (5) 

where B, is a one-dimensional Brownian motion, c is the 
real fixed consumption rate, w is the initial level of  
wealth, and (lap, t~p) correspond to the portfolio mean and 
standard deviation as an implicit function of a static 2 
asset allocation vector ct. Specifically, the scalar-valued 
mean return is 

~tp= Ixa' = (~a,la~/, (6) 

and the scalar valued standard deviation (also known as 
volatility) of the portfolio is 

Op = \.,ot~ot = ~,,,'Z Z o~io,pijoj~, (7) 
i=l j=l 

where Ix is the vector of expected returns and ]~ is the 
variance-covariance matrix of the relevant assets in the 
market, all of  which are lognormally distributed. 

The net-wealth process defined by Equation (5) has a 
drift coefficient ~p Wt - c that may become negative if c 
is large enough relative to tap W,. This, in turn, implies 
that the process W, may eventually hit zero, in contrast 
to the classic geometric Brownian motion. Our intention 
is to compute the probability that W, will ever hit zero 
and compute the probability that W, will hit zero while 

2A richer model would allow for dynamic portfolio strategies 
in which the investor can react to market conditions by opti- 
mizing asset allocation proportions to achieve greater utility 
over time. Indeed, a full theory of continuous time dynamic 
programming has been applied to investment-consumption 
problems by Samuelson (1969), Merton (1993), Richard 
(1975), and many others; see Karatzas and Shreve (1992), chap- 
ter 5.8, for further references. However, our intention is to sim- 
ply (1) describe the analogy between the probability of ruin and 
Asian option pricing and (2) produce a reasonable, practical, 
and simple measure of sustainability as a function of consump- 
tion ratios and basic asset allocation proportions. Accordingly, 
we do not advocate that rational utility maximizing agents man- 
age their portfolios (statically) so as to exclusively minimize the 
probability of bankruptcy. See Browne (1997) for a dynamic 
policy that does indeed minimize the unconditional probability 
of ruin in an infinite horizon framework. 

the investor is still alive. Naturally, the former quantity 
will be an upper bound for the latter. 

Lemma 1 The stochastic process Bit, defined by 
Equation (5), can be written (solved) explicitly as 

W, = H,[w - cI~(Hs)-' ds ], (8) 

where the fundamental solution Hs is 

_ t  a~)s +c~pB~ 1. H~ = exp[(l'tp (9) 

See Appendix for proof. 

2.1 Mortality Function 
Following the actuarial literature and recent work on 

annuity pricing by Frees, Carriere, and Valdez (1996) 
we assume a Gompertz law for mortality. 3 In this model 
the probability of survival to age (x + t) conditional on 
survival at age (x) is denoted by tPx and defined equal to 

p(T > t I m, b, x) = ,p.~ 

exp{expI )E, ex./ /l } ,10, 

where m is the mode, b is the scale parameter, and ~F 
denotes the time-until-death random variable. For exam- 
ple, when the "mode" of life is m = 80 and the "scale" of 
life is b = 10, Equation (10) stipulates that the probability 
a 65-year-old, lives to age 85 is P(T _> 20 I 80, 10, 65) = 
0.2404. The probability that a 75-year-old lives to age 85 
is e(~ _> lO 180, 10, 75) =0.3527. (The chances of reach- 
ing age 85 increase the older you are.) The Gompertz 
model, with two free parameters, can be "fitted" to any 
mortality table, which we will do in Section 5. 

Substituting a value of t ---) 0o in Equation (10), with a 
finite value for m and b, results in exp {-oo } ~ 0, which 
confirms the natural boundary condition of human life 
(you can't  live for ever). Likewise, a value of m ---) ~ in 
Equation (10) results in exp{0} ~ 1, Vt, which we call 
"the endowment" case. Therefore, the notation tPx can 
be used, without loss of generality, to include the uncon- 
ditional (perpetuity) case as well. 

3The probability of ruin, and the methodology we describe, 
can be applied using any analytic mortality law or mortality 
table, as will become evident in the next section. 
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2.2 Statement of Problem 
We would like to compute the probability that the net- 

wealth process, defined by Equation (5), "hits" zero while 
the individual is still living and ever. Mathematically, 

p~t!~e.= p[ inf W, < O] 
n l l n  " t o _ < / < _  J" - -  

(11) 

and 

P,~n: = P[to_<ts=inf W, < O] (12) 

is the probability that the smallest value of  the process 
W~, over the random time period [0, T], or [0, ~,], is less 
than or equal to zero, which is the definition of ruin. 

Before we proceed to obtain an analytic expression for 
Pr~. and an approximation for p~!~ _~ , . ,  we state and prove 
the following useful lemma. 

Lemma 2 The stochastic process W. defined by 
Equation (5), obeys the following property: 

P[to~,_<,.inf Wt < O] = p[W,. < 0], V r  > O. 

Thus, Wt will not "cross zero" more than once. Once it 
enters the negative region, it stays there. 
See Appendix for proof. 

Relying on the lemma, which applies to any s, a sto- 
chastic s = T, as well as an infinite s = oo, we can restate 
the probability of ruin in Equations (11) and (12), using 
Equation (8), as 

p~!Ve.= p[ inf W~ < 0] = p[Wr < 0] 
n a n  • t0-<tg/" 

(13) 

and 

p~i.:= Prto<_,g.inf w, _< O] = p[W. < O] 

< JVo (-,) '.s] (14) 

The probability of ruin can be expressed as the proba- 
bility that the stochastic present value of lifetime con- 
sumption of one real dollar is greater than the initial 
wealth to consumption ratio w/c. 

The expression f r  (H~)-~ ds has been studied exten- 
sively in the actuarial literature. It represents the stochas- 
tic present value of an immediate life annuity. See the 
research initiated by Boyle (1976) and continued by 

Panjer and Bellhouse (1980, 1981) for additional analysis 
of the interaction between the investment and mortality. 

In Section 4 we compute the exact mean and variance 
of  the (annuity) random variable f r  (Hs)-i ds and the 
(perpetuity) random variable f~  (H,) -I ds. In addition, 
we will illustrate the well-known result that f~  (Hs)-' ds 
obeys a reciprocal Gamma distribution and therefore 
argue that fo r (H~)-' ds can be approximated by the 
reciprocal Gamma distribution using moment-match- 
ing techniques. 

3. Asian Options and the Cost of 
Insurance 

There is an interesting connection between the retirees 
probability of  ruin and a financial derivative security 
known as an Asian option. An Asian option is a path- 
dependent contingent claim whose payoff at maturity is 
based on the average price observed over the life of the 
option. The payoff from a regular call option is max [Sr- 
X, 0], where K is the exercise price and Sr is the price of 
the underlying security at maturity. The payoff from an 

I n Asian (fixed strike) call option is max [-~ ]Ei= m Si - K, 0], 
where n is the number of measurement-observation peri- 
ods and Si is the price of  the underlying security on those 
discrete measurement-observation dates. By inspecting 
the two types of boundary conditions (payoff structures), 
one can see that the price of an arithmetic Asian option 
will always be less than the price of a regular call option 
as a result of the averaging. Of  particular interest is the 
fact that when the number of measurement-observation 
periods is very large compared to the lifetime of  the 
option, we can approximate the payoff from (and defini- 
tion of) the Asian option using the integral instead of the 
summation sign. Thus, the payoff  from a continuous 
arithmetic Asian option is max [ -~ f St dt - K, 0]. In other 
words, the Asian option will pay off at maturity the sum+ 
f St dt - K, provided that ~ f St dt > K, the option expires 
in the money with intrinsic value. Otherwise, the payoff 
will be zero. Consequently, the probability that an Asian 
option will expire in-the-money can be stated mathemati- 
cally as Pr [ ~ f St dt > K]. Ceteris paribus, the higher the 
exercise price K, the lower the probability of expiring in- 
the-money. Purchasing an Asian call option is akin to 
insuring (betting) that the weighted (nonlinear) average 
return from the underlying asset, over the specified life of 
the option, will exceed a predetermined threshold delin- 
eated by the exercise price. 

In an analogous fashion this paper is concerned with 
the discounted average consumption from the portfolio 
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over the lifetime of the retiree. If this quantity is greater 
than the (suitably scaled) initial wealth, the individual 
will eventually be ruined. If the quantity is less than the 
(suitably scaled) initial wealth, the individual will avoid 
ruin. In a stochastic environment, we focus on the prob- 
ability of ruin. 

As per equations (13) or (14), the probability of ruin 
(both conditional and unconditional) can be rescaled and 
expressed, using Equation (9), as 

1 '  1 2 1, 
where t = ~,  for the unconditional case, and t = T, for 
the conditional case. Now, define a "new" variable K = 
w/tc, referred to as an exercise price, and a new variable 

I 2 l ip = --~.lp + ~-Op, referred to as an expected return. By 
symmetry of the Brownian motion, the term -opBt is 
equivalent to %B2, where B~ = -B,. We can therefore 
rewrite Equation (15) as 

P= pr[lt~:exp(rlps+opB;)ds> K] 

' Z s, 4 

where we define a new (pseudo) stock Z~ = exp{rlps + 
opB•), Z0 = 1. 

Remarkably, Equation (16) corresponds to the proba- 
bility that an (arithmetic) Asian option, with exercise K, 
will expire in-the-money, a As per the definition of K, the 
exercise price is the wealth-to-consumption ratio scaled 
by the time horizon. The longer the time horizon of the 
option (the longer one lives), the lower is the value of K. 
A lower exercise price on an Asian (or any) call option 
results in a higher premium and higher probability of 
exercise. An individual can, in theory, insure against out- 
living his/her money by purchasing an Asian call option 
with a stochastic exercise price and maturity date. 
Therefore, the actuarial cost of insuring against retire- 
ment ruin can be obtained by using any of the algorithms 
for pricing Asian options. See the work by Turnbull and 
Wakeman ( 1991), Keman and Vorst (1990), and Geman 
and Yor (1993) as well Milevsky and Posner (1998) for 
some well-known option pricing algorithms. In this 
paper we adopt the Milevsky and Posner approximation. 

It is important to note that we are not suggesting that 
individuals insure against ruin by purchasing Asian 

*The probability is under the real-world and not the risk-neutral 
measure. 

options. This would depend on risk preferences embodied 
by a utility function of consumption. Rather, the value of 
the Asian option would provide a good indication of 
the implicit cost of any particular (fixed) investment/ 
consumption strategy. In fact, buying such an insurance 
policy would reduce the initial wealth available for invest- 
ment and would thus require even more insurance to sup- 
port the same level of consumption. This iterative process 
would only converge once the individual selected a con- 
sumption level equivalent to purchasing a risk-free life 
annuity. 5 

4. Moments and Densities 
In this section we briefly sketch how to compute mo- 

ments of the stochastic present value of lifetime con- 
sumption (of one dollar). We conclude the section with 
an easy-to-implement expression for the conditional and 
unconditional probability of ruin. 

4.1 Moments of the SPV 
To simplify notation somewhat we denote the stochas- 

tic present value of lifetime consumption (of one dollar) by 

l - I  

I, = ~ (H,) ds, (17) 

where, without loss of generality, I_ is the stochastic 
present value of a perpetual consumption and I~, is the 
stochastic present value of lifetime consumption. 
Recalling the definition, from Equation (9), 

F/ 

and using the rules for conditional expectations, we 
obtain that 

E [I~,] = E[E[lr lff '£ ]], 

where ..T~ is the sigma field generated by the entire path 
of the Brownian motion. We are conditioning on the real- 
ization of the investment return. Using Fubini's theorem, 

5See the work by Yagi and Nishigaki (1993), Williams (1986), 
Sinha (1986), and Warshawsky (1988) for details on the opti- 
mal demand for life annuities which would reduce the proba- 
bility of ruin to zero, provided that w/c is exactly equal to a., 
the price of a $ l life annuity. 
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and the moment generating function for the normal ran- 
dom variable, one gets 6 

E[ I r l  = ~ e x p [ - ( g p  -(~:.)sl.P. ds. (18) 

For convenience, we define the function 

Y(~lm, b,x):= ~o eXp{-~},p~ds, (19) 

which, after substituting ,Px and changing variables, is 
equivalent to 

Y(~lm, b,x)::exp[exp(~-7~m-)+(x-m)~] 

where F(u, v) = fve -q  (~-l) dt denotes the incomplete 
Gamma function. By construction of Equation (19), the 
term Y({ I m,b,x) coincides with the Gompertz price of a 
life annuity under a continuously compounded force of 
interest ~. Without loss of generality, we use 

1 
/ira Y(~I m, b, x) = ~, (21) 

which makes Equation (20) applicable to the perpetuity 
case as well. Going back to Equation (I 8), the expecta- 
tion of the stochastic present value of lifetime consump- 
tion (of one dollar) is 

E[If] = V(gp - c2[m,b,x). (22) 

The same technique can be employed to obtain the sec- 
ond (central) moment: 

Y(gp -o2plm, b,x) 
E[I~] = - Y(21ap- 3a~lm'b'x) 

1 (23)  
[de - tjzp 

The variance of the stochastic present value is 

V[lt] = E[ I~ ] -  E2[It]. (24) 

Higher moments can be obtained with the same method. 
For the sake of completeness, we explicitly provide the 
first and second moments for the stochastic present 
value of perpetual consumption, as 

6 These results are confirmed by Boyle (1976) in discrete time 
and by Beekman and Fuelling (1990, 1991, 1992), who 
derived the first two moments of the annuity present value in 
continuous time using function space integral techniques 
under a variety of interest rate dynamics. 

E [ L I  = - -  

E[I2] = 

~p- ~ '  

(I.tp - O2p)(2g e - 3¢~ )" 

(25) 

4.2 Gamma Distribution 
Parker (1993) uses approximation techniques to derive 

a cumulative density function for the present value of a 
portfolio of annuities. Vanneste, Goovaerts, and LaNe 
(1994) use Laplace transforms. We use a slightly differ- 
ent method. In particular, we refer to Milevsky, (1997) 
and Dufresne (1990) for a proof that f*~ (Hs) -~ ds is 
reciprocal Gamma distributed. The Milevsky (1997) 
proof uses the scale function of the net-wealth process 
W~ in conjunction with (our) Lemma 1 to show that the 
probability of Wt ever crossing zero is equivalent to the 
probability that a suitably defined Gamma variate is less 
than c/w. This result serves as the impetus for approxi- 
mating 7 the distribution of the stochastic present value, 
f~ (14,) -1 ds, by the reciprocal Gamma distribution. The 
reciprocal Gamma distribution, as its name implies, is a 
random variable whose reciprocal obeys a Gamma dis- 
tribution. The probability density function (pdf) of the 
Gamma distribution is parameterized by two variables, 
g~ and g2, and is mathematically represented as 

p[Y < d] = G(dlgl,g2) = I d g(Ylg,,g2)dy 

e x p ( - l y ) y  (g,-') 

= Jo~ r(g,)g~' ay. ( 2 6 )  

The probability density function (pdf) of the reciprocal 
Gamma distribution is defined by X = 1/Y and is mathe- 
matically represented as 

p[1/Y <_ dl = p[X <_ d] = aR(dlg,,g2 ), (27) 

which, by a simple change of variables, equals 

x-'"+" 
Jo  gr(xlg,,g2):= v x g 2 j  ,ix. J0 r(g,)g~, 

(28) 

7In the context of Asian option pricing Milevsky and Posner 
(1998) use Monte Carlo simulations to demonstrate that 
moment matching the finite integral to the reciprocal Gamma 
distribution provides accurate values. 
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The expected value of the RG distribution is 

E[RG] - 1 
g2(g] - 1)' 

(29) 

and the variance is 

V[RG] = I 
(g2)E(g, - 1)2(g] - 1)" (30) 

Conveniently, we can express the parameters of the 
reciprocal Gamma distribution as a function of the mean 
and variance. Specifically, 

E[RG] 2 + 2V[RG] 
g~ = V[RG] (31) 

and 

V[RG] 
g2 = E[RG] (E[RG] 2 + V[RG])" (32) 

Using the mean and variance from the previous subsec- 
tion, we can thus compute the ruin probability as 

P~'~.,~:: p[l~>_ w]:[(/r)-' <_ c]= G(~l~l,o~2 ) (33) 

and 

P~,~.:= p[L> wl=[(L)-' < c]= G(ClgLg2 ), (34) 

where g l  and g2 are the Gamma parameters for the con- 
ditional case 

E[Ir] 2 + 2V[It] 

v [ t ~ ]  ' 

v[tr] 
E[I,](E[It]  2 + V[Ir] )' 

(35) 

and g-i and g-2 are the Gamma parameters for the uncon- 
ditional case 

E[L] 2 + 2V[L] 
e ,  = V [ / . ]  ' 

v[L] 
g2 = E [ L ] ( E [ L ] 2  + V[L])" 

(36) 

4.3 Discrete Mortality Tables 
For those who prefer to work with discrete mortality 

tables, we present expressions for E[lf] and E[12], which 
can be used in Equation (35) to obtain the values of gl 
and g2 needed for Equation (33). They are discrete-time 
versions of Equations (22) and (23), using a summation 
instead of an integral in Equation (19). Specifically, 

N 2 i E[lr}= i~_lexp{-(g. -°p)~}iPx(~ ) (37) 

and 

2),} 
i = l e x p - ~ . ~ p - 1 3 p  i2 iP~ 

N 2 i 
E[I~I =-~i='exp{-(2t ' tp-  30")i?}ipx (38) 

where iPx is the conditional probability of survival from 
month x to month (x + i), and N is the number of months 
in the mortality table. 

5. Numerical Demonstration 
In this section we provide some numerical examples 

of the conditional ruin probabilities, using Canadian 
mortality and capital market estimates. Specifically, we 
focus on the situation of 2+1 assets in which there is 
one risk free asset (r) and two risky assets (gh o])-- the 
equity market--and (I.t2, 02)--the bond market--with 
correlation coefficient p. The appropriate risk-return 
vectors and matrices are 

p. = [r,l.t,,g2], (39) 

and 

E =  02 , 
p a : j  

(40) 

respectively, where 

(It = [ ( l  --  I]t 1 -- 0~2), 0(,1,0(2] (41) 

is parameterized by two independent variables for con- 
venience. Thus, Equation (6) becomes 

ktp = l~a ' = (1 - (I1 - et2)r + tXl~t~ + OC2I.L2 (42) 
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TABLE 1 
PROBABILITY OF RUIN FOR FEMALE AGED 65~ 

w / c  = 14, EQUITY VS. BONDS VS. T .  BILLS 

E~B 0% 20% 40% 60% 80% 100% 

0% [1.00].548 [ 1.00].518 [1.00].495 [1.00].479 
20% [.999].426 [ 1.00].399 [.9991.380 [.996].371 
40% [.991].342 [.981].319 [.957].306 [.921].300 
60% [.884].299 [.849].281 [.811].269 
80% [.755].284 [.719].267 

100% [.673].285 

[.9991.472 [.993].470 
[.979].370 

while Equation (7) becomes 

(~p ---- \,'~(21tZOt t • ~/'O~(Yl 2 "l- l~2(y 222 +2~tOt2P(~l(Y2. (43) 

We will revisit the 2+1 asset case in the section with 
numerical examples. 

5.1 Mortality Data 
We fit a Gompertz distribution using a nonlinear opti- 

mization routine in S-plus to the Life Tables, Canada 
and Provinces  1990-1992 (Statistics Canada) and 
obtain the parameter estimates of m = 81.95, b = 10.6 for 
males and m = 87.8, b = 9.5 for females. For example, 
the probability that a 65-year-old male lives to age 85, 
using Equation (10), is p (T  _> 20 I 81.95, 10.6, 65) = 
0.3226; likewise, the probability that a 65-year-old 
female lives to age 85, using Equation (10), is p(T _> 20 
[ 87.8, 9.5, 65) = 0.5199. 

Although analytic mortality laws are currently not in 
vogue in the actuarial community (see Bowers et al. 
1986), we prefer to use an analytic Gompertz formula- 
tion because of its analytic tractability and our heuristic 
agenda. 8 Indeed, the concept underlying this paper can 
be applied using any mortality table. 

5.2 Capital Markets Data 
Ibbotson Associates, a consulting firm located in Chi- 

cago, provides forecast data for long-term Canadian 
investment returns. All the rates of return are continuously 
compounded. In this example we focus on three asset 
classes: the classic cash, bonds, and equities division: 

8In fact, real-world use of this technique should involve a 
dynamic adjustment to a group annuity mortality table such 
as the Johansen (1995) update of the 1983 I.A.M. table. 

• A deterministic real risk-free rate of r = 2%, 
• A government bond index with real parameters ~tl = 

3.5% and Ol = 11%, and 
• An equity index with real parameters ~t2 = 8% and 

c2 = 19%. 
Our numerical example assumes that the correlation 

coefficient between the real rate of return on the bond 
fund bond fund and the real rate of return on the equity 
fund is zero. 

5.3 Numerical Results 
We can substitute the data into Equations (38) and 

(39) to obtain estimates of the unconditional and condi- 
tional probability of ruin for a male or a female of a 
given age with an initial wealth and desired fixed level 
of consumption. In other words, we can estimate the 
sustainability of a given standard of living (conditional) 
or an endowment in perpetuity (unconditional, unrelated 
to gender or age). 

Table 1 demonstrates a single application: a female, 
aged 65, with a real wealth to consumption ratio, w/c = 
14. The absolute values of initial wealth and desired real 
consumption are irrelevant; only the ratio matters. The 
investment allocations are varied by increments of 20%. 
In the headers we show the proportion of the funds in 
bonds (B, or txl). Down the stub column we show the 
proportion in the equity fund (E, or ot~). It is implicitly 
assumed that 1 - ct~ - tx 2 is allocated to the risk-free rate, 
short sales are not allowed, and hence we only display 
the upper-triangular region of the table. (There is nothing 
in our general methodology that precludes short sales or 
leverage.) The number in the square brackets is the 
unconditional probability of ruin P~in, and the number 
next to it is the conditional probability of ruin __P~iVeruin. AS 
intuition dictates, Pr~i~ is always greater than pati~. 
However, we remind the reader that while the former is 
precise, the latter is only an approximation. 
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For example, a 60% allocation to bonds with a 20% 
allocation to equity and (the remainder) 20% allocation 
to cash will result in a I-tp = 0.041 and Op = 0.07615 as 
per Equations (42) and (43). This, in turn, will result in 
a value of E[If] = 13.596 and ~/V[Ir] = 5.5308, as per 
Equations (22) and (23). In other words, the expected 
value of the discounted stochastic lifetime consumption 
of one dol lar-- the PV of the a n n u i t y I i s  equal to 
13.596, which is slightly lower than the initial wealth- 
to-consumption ratio of 14. The volatility of the present 
value is 5.5308. Intuitively, we see that there is a strong 
possibility of conditional (and obviously unconditional) 
ruin. Finally, we compute the parameters ~ = 8.0428 
and g2 = 0.010443 using Equation (35). These numbers 
are plugged into the cumulative density function of the 
Gamma distribution evaluated at the reciprocal of the 
wealth-to-consumption ratio, to arrive at G(~4 I 8.0428, 
0.01 0443) = 0.3712, which is a conditional probability 
of ruin of 37.12%. Thus we conclude that the w/c = 14 
standard of living is sustainable, under the above men- 
tioned allocation, with 62.88% probability. The lowest 
conditional probability of ruin occurs (very roughly) 
with an allocation of 80% equity, 20% bonds, and 0% 
cash and is equal to 26.7% 

Table 2 displays the results for a 65-year-old male with 
w/c = 14. As one would expect intuitively, the conditional 
probabilities of shortfall are uniformly lower for all asset 
allocations as a direct result of the shorter life span. The 
unconditional probabilities remain the same since we 
have not modified the capital market parameters. 

Once again, the lowest probability of ruin occurs with 
a high allocation to equity and very little in bonds. 

Other values can easily be generated using a spread- 
sheet and the "optimal allocation"--in the ruin proba- 
bility minimizing sense--can be located by visual 
inspection or by differentiating Equations (33) and (34) 
and finding a vector tx* that satisfies first and second- 
order conditions. 

5.4 Alternative Perspective 
Appealing to the notion of value-at-risk, an alternative 

use of this framework is to fix a certain ruin tolerance level 
e, and then locate the maximum lifetime consumption c* 
that can be achieved as a function of asset allocation. 

Mathematically, 

max c 

subject to 

Pr[ inf { ~  < 0}]W0] -< E, 
L0<_s</" ' 

where ~ is the asset allocation vector. For example, a 
65-year-old female with an initial wealth ofw = $100,000, 
can consume up to c = $5,000, per annum and still have a 
probability of ruin that is less than or equal to e = 5%, pro- 
vided she maintains a 50% allocation to equity and 50% 
allocation to bonds. 

6. Conclusion 
In this paper we introduce a method to estimate the 

conditional and unconditional probability of ruin for an 
individual (retiree) with a stochastic life span who is con- 
suming a fixed real amount from a diversified investment 
portfolio. Conceptually, we show that the probability of 
ruin is equivalent to the probability that a suitably param- 
etrized Asian call option will expire in-the-money, thus 
allowing the use of derivative pricing technology to com- 
pute the relevant probabilities. 

Finally, we apply our formula--using Canadian data--  
with realistic market values for equity and fixed income 
investments to show that for an individual male or female 
the conditional probability of ruin is minimized with a 
relatively high allocation to equity until quite late in life. 

TABLE 2 
PROBABILITY OF RUIN FOR M A L E  AGED 65 ,  

w / c  = 14, EQUITY VS. BONDS VS. T.  BILLS 

EkB 0% 20% 40% 60% 80% 100% 

0% [1.001.325 [1.001.307 [1.001.295 [1.001.291 
20% [.999].250 [1.00].234 [.999].225 [.9961.223 
40% [.991].206 [.981].193 [.957].186 [.921].185 
60% [.8841.188 [.849].177 [.811].170 
80% [.755].186 [.719].176 

100% [.673].195 

[.999].292 [.993].230 
[.979] .228 
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Appendix: Proof of Lemmas 1 and 2 
The stochastic differential equation (5), which defines 

the dynamics of W,, can be solved to yield 

t _[ 4, 
where the fundamental solution Hs is 

1 oep)s +t~pB~}. (45) H~ = exp{(~tp-~ 

This can be confirmed by applying Ito's lemma, 

1 O2f(t, Bt) dt, (46) d W , = O f ( ~ t B ' ) d t + ~ d B ,  + ~ ~x 2 

to the function f(t ,x) defined by Equation (8) and 
demonstrating that it leads to the SDE in Equation (5). 

From a qualitative point of view, Equation (8) con- 
tains two parts, an exponential function, H~ which is 
always greater than zero, multiplied by the term in 
square bracket, whose sign is indeterminate. Therefore, 
the process Wt, will be less than or equal to zero (ruin) at 
some future time t*, if  and only if the term in square 
brackets is less than or equal to zero. In other words, 

t* -1  
W,. <O ¢:~ w < c ~  (H,) ds. (47) 

On the other hand, the integral f~" (Hs) -~ ds is monoton- 
ically nondecreasing with respect to the upper bound of 
integration t*. This means that once c fr* (Hs) -~ ds 
becomes greater than w, it stays greater than w. Con- 
sequently, we arrive at our result that the probability Wt 
crosses zero, prior to some time t*, is equivalent to the 
probability that W,, < 0. More precisely, 

p[  inf {W, < 0} = Pr < (H,) ds 
L0_<t<t* 

= Pr [w, ,  <_ 0]. 

This completes the proof. 
Q.E.D. 

(48) 
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