
RECORD OF SOCIETY OF ACTUARIES

1993 VOL. 19 NO. 2

TRENDS IN TECHNOLOGY

Moderator: STEPHENJ. STROMMEN
Panelists: LARRY A. CURRAN

MARK T. MCANDREWS
MA'_" TUCKER

Recorder: STEPHENJ. STROMMEN

New technologicaltrends are emergingevery day. But after an extendedperiod of
confusion due to the multiplicityof competing directions,some currenttrends have
been broughtinto focus. To that extent, development usingthese technologiescan
be undertakenwith confidence. The three panelistsrelate recent personalexperiences
when emergingtrends in hardware, software, and methodologieshave been clarified.

MR. STEPHEN J. STROMMEN: We'll be talking about ways of usingtoday's
technologyin order to further actuarial applicationsand actuarial projects. We have
three panelistswho each have been very closelyinvolvedwith that kind of work.
The first panelistis LarryCurran who has been with Northwestern Mutual Life
InsuranceCompany for over 30 years. He is responsiblefor the actuarial systems
division(ASD) and is an officer who is responsiblefor the groupthat supports
actuarial applications. Larry will be talking about the use of systems from the
viewpoint of someone in a large life insurancecompany.

Matt Tucker will be speakingnext. He has been at Tillinghast for over 20 years. Mr.
Tucker is responsiblefor the actuarialaspects of TUlinghast'sactuarialsoftware. He
will be coveringthe use of technologyfrom the viewpoint of an actuary in a large
consultingfirm. He has some interestingtopics, one of which is a way of allowing
actuarialconsultants essentiallyto developsoftware without programming. He also
has some views and experienceusingother than Intelmicroprocessors,which I think
will be interesting.

Mark McAndrews is with Chalke, Incorporated. He has been there for two years and
works closely with the liabilitysideof its projectionsoftware. Mark will be talking
about object-orientedoperatingsystems, one of today's hottest buzzwords.

MR. LARRY A, CURRAN: I'm going to cover severaltopics, most of which are
somewhat interconnected. My topics relate to how we're making technology work
for us in the actuarialdepartment at Northwestern Mutual, and I probablywill not be
getting into exactly what the technologiesareto any great detail.

The ASD is part of the actuarialdepartment and consists of approximately 20 people.
This divisionhas been growingslowly over the years. These people are systems
professionals. They have math backgrounds. Most of them are math majors in
college,generallywith coursesup through at least calculus. Until recentlythat was
our primary requisite - someone with a strong background in math. In the last few
years we've become more concerned that these people have systems background as
well because, with the rapid change intechnology,we found the startuptime is too
slow if they don't have this type of background.

The trainingfor the companyis done by the informationservices (IS)department.

1129

RECORD, VOLUME 19

The ASD people really are pretty well set with their counterparts in IS. The
advantages of having a group of professionals within the actuarial department are
really greet. The primary advantage, of course, is that you have direct control over
your IS resources, and of course, these people tend to respond very well to the
demands of the actuarial department because this department does their evaluations
and pays their salaries. They know whet to do. However, they also have very close
ties with the IS department. The IS people are the first people they meet in the
company. They go through training with them; they retain close contacts with them;
and they have a very good working relationship with them.

Communication with actuaries is very good; they work right alongsideof the ASD.
Because of their math background, the ASD understands the nature of the actuaries
task, and it gives them the opportunity to translate whet the actuaries say to the IS
people.

The ASD provides support to the actuarialdepartment with regardto valuation,
actuarialstudies, reinsuranceadministration,our 401 (k) savingsplans,and our
retirementplans. These people support the areas of client-computingwithin the
actuarialdepartment. They provide technicalsupport for automatic premium loan
(APL). They alsoprovideservicesto the IS department - a rates and values routine,
which I'll be talking about later in more detail. They alsoprovideon-linevalues in the
form of dividendsto policyowner services,or any other insurancedepartment, and
they do a great deal of systems checkingfor the IS department, primarily inthe area
of sales illustrations.

Rate routines are somethingthat, for severalyears, I thought were uniqueto
Northwestern Mutual. I've noticed that several of the companies that now are
developing administration systems use a form of rate routines rather than factor files.
We started out with the rate routines back in the 1950s when we first got into
computing because we didn't think of any other way to do it. We had a rather
simplified product line at that time, and we were able to fit the rate routines quite
easily into our system. Over the years we've found that it's provided us tremendous
flexibility. It allows the actuary to develop any kind of product. There are no
restrictions. We're not restricted by factor files at ell Particularly in dividends, when
it came time to vary dividends by interest rate, it was easy; if there was no change
to a factor file. All we had to do was make a few minor programming changes, and
we had the new rate in there. Similarly, when we went through some major update
programsthat affected large blocksof business, it again was very simple to
accomplishthis in a relatively short period of time.

Thingshave been expanding inthe last few years, and we've taken on a little more,
too. Now, we calculate alsothe actual dividendsand multiple-useroutinesthat are
used throughout the company, and we'll be expandingmore into other types of value
calculations,likecash valuesand so on.

We started using PCs in the mid-1980s, and at first, we weren't sure if they were
going to be of any use to us. We found they were good for word processingand a
few spreadsheets,but we reallydidn't have much use for them. Inthe mid-1980s
we were going through the developmentof a new seriesand found that our pricing
programs were using extensive centralprocessingunit (CPU) time on the mainframes.

1130

TRENDS IN TECHNOLOGY

We were getting a lot of pressure from the IS people, who didn't understand what
we were doing and why we didn't take these programs and put them in production
by running them once a week. They thought we were testing, and of course, in a
sense, we were, but not in the way they thought. We had a lot of mainframe
capability at the time. IS said to not ever do this again.

They let us get PCs, and we got STSC APL at that time. First, we downloaded the
APL programs from the mainframe. That's when we discovered why the run times
were so long: we were recalculating everything every time for no reason at all. We
did a little bit of cleaning up on it at the same time.

In the last year we've decided to make better use of what is coming out of our
pricing programs in terms of the overall support of the actuarial department. One
thing we decided is to use the outputs from the pricing programs as an automated
way to check what we are doing in the rate routines. At this point in the company,
nothing is calculated by hand - in fact, it couldn't easily be calculated by hand.
Everything is done in floating point, and our checking procedures are very effective at
this point.

What we're looking for in the future - I'Uhave to admit we're a ways from it yet -
would be for the pricing programs to provide some type of feed into the adminis-
trative systems. By this I mean getting at possibly product rule tables being set up
and the pricing programs providing the feeds to them. How far we can go is still an
open question. But we have some people who are pretty serious about looking into
it.

Regarding PC rate routines with sales illustrations, we had factor files again and lost
our flexibility. We decided in the late 1980s that we could fit the rate routines on a
PC, and it tumed out we were correct. We replaced 79 diskettes with seven
diskettes, which was one of our selling points. The actuarial department's selling
point (kind of a side benefit) was us providing flexibility that IS was losing. This
brought a lot of PC expertise to the ASD which became one of the leaders in the
company in terms of understanding utilization of PCs.

We didn't think much of the idea of local area network (I_AN)when the company put
it in as a test site. We had a lot of problems with it. But, once it functioned, we
realizedthat it was impossibleto live without one. In the beginning,allwe did was
share software. Now, we're getting into sharinginformationas well, and it provides a
gateway to the mainframe, which is far more efficient than anythingwe've had
before. It gives us a very effective way of downloadinginformationfrom the main-
frame in a relativelyquick manner.

Forus, Windows is the new hot word. It's drivena lot by clientdemand. Anyone
who has seen Windows does not want to use anythingelse. We're planningon any
software that's to be developed within the actuarial department for PCs will be done
for Windows. We find tool selection for that development to be very important. The
company has selected Visual Basic as the overall tool. We think that we probably will
be using Object Windows. We will be moving more towards object-oriented
technology, and we think that might be a good selection. We're not really all that set
on anything at this time except Windows, which is the standard for the actuarial

1131

RECORD, VOLUME 19

applications at this point. We just cannot see developing things for DOS any more;
we don't think that we'll be using it that much longer.

The languages that we use in the actuarial department include, of course, APL. We
have some actuaries using Basic. But, APL is the standard language and seems to
serve our purposes quite well. The systems division has traditionally used PL/1,
which is the official programming language of Northwestern Mutual. However, when
we went into the PC environment, we used C. The people using C thought it was
the greatest language that they had ever seen. BUt many people thought it was
rather a strange language,and I'm one of those who has had some difficulty
adjusting to it. However, it turned out to be a very good choice because this is a
language that is going to allow us now to crossplatforms. We can develop
applicationson the PC, bringthem up to the mainframe, and run them there. We
have a SSAS C compiler on the mainframe. Currently,we're testing a C + + for the
mainframe; C + + is the languagethat we will be usingfor our object-oriented
technology.

A month ago, object-orientedtechnology was declaredthe standard for the ASD. I
expected to run into considerableobjectionsfrom some long-term people, but much
to my surprise,the reactionfrom everybody within the divisionwas extremely
positive. Peoplehuddledaroundtrying to figure out how they couldget in on it, what
they could do, and it was a very good sign. I think it's well-suited for actuarial
applicationsbecause we need to share what we do in terms of our use of codes that
could be reusable. I don't reallywant to get into object-orientedtechnology,which is
a separate topic, but one of the thingsthat it's done for us has been to have
breathed a new life into the systems division. It has alsocreated some effective
partnershipsthat we didn't have before. We've establishedsome strong partnerships
with IS in terms of lookingat what each other is doing,sharingour code, and so on.
We've just formed a partnershipwith tax and financialplanning,of which Steve
Strommen is a part, that I think is quite strengthenedbecause of getting into object-
orientedtechnology.

Preparationsfor object-orientedtechnology are extensive, which I think is the
drawback. We don't have a good way yet of trainingpeople in object-oriented
technology at our company. We learnthrough experience. In terms of the language,
we simply send people out at $1,300 a crack to train them on C+ +. We've had a
couple people who have been working extensively in object-orientedtechnology for
about a year, and I asked them if they're experts. Their eyes just kind of glaze over,
and they say, "Well, we know a little." That worriesme, but I don't know if anyone
admits to being an expert. I think in fact they aretellingthe truth, they are still not
experts.

We've found it to be very important to have an IS partnershipto get the actuarial
work done. I'd liketo say that I'm the one who reallycreated this, but unfortunately,
that's not true. I think the IS partnershipwas developedprimarilythrough the
systems professionalswithin the actuarialdepartment. By working with their
counterparts, they've helped get the message acrossthat what the actuariesdo is an
important part of the company's operation. We've reachedthe point where we do
much sharingof personnel resources. One of my top people spends 50% of histime
working within the IS department, helpingwith data modeling,strategic planning,

1132

TRENDS IN TECHNOLOGY

technology planning, and in turn, they provide us with free interns for the summer or
any other type of help that we might want in terms of professional assistance.

We also have been invited in on some projects. We're considered now to be the
multiple-use experts, and we are heavily involved in developing multiple-use routines
for the IS department. Our object-oriented technology, of course, is being coordinated
very closely with them. They're looking to us to provide a little leadership on that.

Of the topics covered, I think in terms of how technology can work best for the
actuarial area. The most important is to form a strong IS partnership, which is
difficult to do. In our case having an ASD was very helpful in getting to that point. I
think the rate routines have provided us an edge that is hard to match, and we've
been very pleased with that. But, of all the things I covered, I think that the IS
partnership is perhaps one of the most important things.

MR. MA'I-I" TUCKER: I'd like to start with a quote from George Bernard Shaw, not a
name that you probably associate with technology: "You see things and you say
why, but I dream things that never were and I say why not." I think that should be
the creed that people in technology should take. Unfortunately often that's not
exactly their view. Often they're like all the rest of us in preserving the status quo,
and certainly in technology, status quo only lasts for a fleeting moment.

I began in software more than 30 years ago before, probably, many of you were
born. I wrote my first program in 1959 at the University of Texas in my last year in
school on a machine you've probably never heard of, an IBM 650. It was a rather
exotic computer. It used a language called SOAP. I'm sure no one has ever heard of
it - Symbolic Optimized Assembler Programming II - actually version two. It was a
really good one. This machine had 2,000 characters of 10-word memory locations,
and it was not RAM as you would think of it today. In fact, the memory of this
computer was stored on a drum that rotated inside the computer. The optimization
part of it actually placed your instructionson the drum so that, as it rotated, your next
instructionwould be close to where it could be read into memory when it was
needed. It was pretty interesting, I suppose, at the time.

I think it's safe to say that things have changed a little bit since that time. The three
topics that I'll be discussing briefly are: (1) the evolution of computers in a consulting
firm as I have experienced; (2) a description of a computer-based tool kit for
developing actuarial software and our initial experience in using such a tool kit; and
(3) hands-on experience at porting software to different hardware and operating
systems environments.

In the early 1960s, access to computers for actuaries was somewhat limited. In fact,
most of the calculations were done by staffs of actuarial technicians who had desktop
calculators. In this case, deektop meant that it covered the entire desk; they were
quite loud, too. These people would pound on these calculators all day to do all the
calculations, asset-shares checking, cash-value calculations. They used real
spreadsheets; you would go and look at the spreadsheet, and it would have little red
dots indicating somebody had calculated the number a second time to make sure it
was right.

1133

RECORD, VOLUME 19

In the mido1960s, we acquired our own mainframe computer. We actually had
rented time at night usinga mainframe computer immediately priorto that. We used
Cobol and Fortran. There weren't a lot of languagesavailableat that time. But, in
the late 1960s, we began usingtime-sharingservices,which finallygave actuariesa
direct access to computers.

In the mid-1970s, our firm acquiredit's own time-sharing computer and used leased
telephone linesto connect officestogether. All of the actuariesin the firm had access
to a computer, and some actuallyused it. We developed software and used
FORTRAN as a programming language and APL, which were the two primary
languages. Software was still typically actuarial software, cash-value calculations, and
models. In the late 1970s, universal life began to emerge, and my firm had some
hand in that. Our software expanded to allow for the new product with some of the
complexities of that product. In that time, the hot topic of the day was structured
programming - top-down development. Actually, some of those ideas have survived
as opposed to some other buzzword situations where not much has survived. We
applied these concepts to our software development process.

Acceptance of the PC in the mid-1980s was a rather slow process in our firm, as I'm
sure many of you have experienced. It was even somewhat volatile from time to
time. Many people were quite comfortable with the apparent sense of control that a
central computer gave them. I don't mean that in a negative sense because most
people felt like the central computer would assure a high quality of software and
consistent presentation to consultants and clients. In fact, the PCsof the mid-1980s
were seen as Pandora's boxes, so to speak, resulting in a loss of control of this
quality of the software. In spite of those feelings, we began experimenting with PCs
and actually, of course, applied our structured-programming techniques to developing
software on the PCs. Those of you who developed software on PCs back then will
know that in many cases it seemed like a step backward because the tools on the PC
were not very stable and not very advanced, in comparison to the programming
language capabilities that were availableon mainframes or time-sharing systems.

I'm going to discuss now briefly the actuarial development tool kit. In the mid-1980s,
as we began to redevelop our software, we took that as an opportunity to step back
for a moment and look at what we had done. After cringing awhile, we said, well,
maybe we'll do a few things different this time. So, we decided at that time that we
would use a little different approach for our models. Previously we had used what I
would call a traditional actuarial approach in that our software in models would
process each cell through the timespan of the model and add those results to
accumulations. When you finished processing all the cells, you had the answers to
your models. We decided that perhaps we should rethink that, and in fact, we
decided to now construct our models to better mimic reality, and that would be to let
time pass through each cell concurrently. We realized that would strain the limits of
memory of computers. But, we certainly hoped that PCs would stay ahead of us,
and certainly PCs have changed since the mid-1980s.

We also saw that we would need to streamline the development process so that we
could react more quickly to situations where changes have occurred, and did we
foresee anything like the changes that we have now? Of course not. But, we did
decide that we needed to develop this software development platform to give an

1134

TRENDS IN TECHNOLOGY

actuary direct access to actually developing a system by interact'wely designing
screens, making menus, writing formulas, and creating reports all within one
environment.

Software is simply the process of transforming some data from one form into another
form, and if it's all that simple, why is it so difficult to develop software? Well, in
actuarial work this most often means transforming the data, measuring exposure and
probabilities with some financial impact through formulas into the results that we're
interested in examining or looking at. Actuarial software takes input exposures and
probabilities, applies time value of money formulas, and produces the financial effect
of those calculations. Now, obviously that's a slight oversimplification. But, that's
essentially what we do most of the time.

At the dawning of the computer age, just a few decades ago, actuaries were really
anxious to get at the power of these computers. However, along with computers
came programmers. They too often spoke and still speak a language that's foreign to
us actuariee as our language is foreign to them. To get access to their capabilities of
computers we obviously had to speak with programmers, and they had to speak with
us. We had to explain our mathematical wodd, which at the time was foreign to
many of the programmers. It's maybe not as foreign to software developers now or
programmers. As computers evolved, however, we did get access through time-
sharing, and then we got to learn programming languages, in addition to our actuarial
studies. We still dealt with programmers to get information from administrative
systems. But, Larry touched on a situa'donthat certainly sounds very good in terms
of a relationship between an actuarial department and the IS department. It's not
always that way.

Other areas that programmers and actuaries actually agree on is testing. Testing
traditionally was a collaborative effort between programmers and actuaries. All too
often I would hear something that ended like this, "But I thought you were testing
that." So, it was never clear as to who would test what. The programmers thought
they were through if the program ran to termination or end of job. The actuaries had
a little different requirement for the program actually operating. They both certainly
agree at how much they love to do documentation, a favorite of everyone, You've
probably heard stories about programs that were amazing. But, they had to be
rewritten when the author passed on either to a promotion, another job, or literally.

Finally, software that's created must be maintained. Actuariesand programmers
agree here, too. They're especiallyfond of maintainingsoftware and even more of
maintainingsoftware that's created by someone else, their predecessor.

So, we began developingthis actuarialsoftware developmenttool kit to actually help
us developour own actuarialsoftware. We used the very complex software model
mentioned before, input/transform/output, simplesoftware. The basisof this tool is
an input engine, a calculation process, and an output engine. The input and output
engines we decided would have to be data driven or database driven. This would
allow the software development tool kit to create the data necessary for these input
and output engines. It allows the software to actually have dynamic menus, dynamic
data-entry screens and very flexible reporting options. The engines are written in C,

1135

RECORD, VOLUME 19

as is all of our software. We selected that because of its portability and the fact that
it was a compiled language and would run as fast as we could make it run.

We also needed to be independent of computer platforms as much as possible
without spending a lot of time and money doing that. The input database engine
contains lists of the input variables that are created within the tool kit. It describes
the characteristics of all of the data residing in the program and where the data reside
in the program so that other parts of the program can access the data, where the
data appear on screens or menus. When they do or do not appear on screens, we
actually use masking technologies to make the screens dynamic from the user's point
of view. We have several data items that are included in the system, the typical
being numeric scalers multidimensional tables. These are all standard items that are
supported by the input engine, and the actuary developing the software need only
select the type of item he or she wants and then put in the text associated with that
item and so forth.

Option lists are another type of data item we have. In our environment the option list
allows the user to select the type of information he or she wants based upon an
option list that in shortened English displays the information the user can select or the
particular options he or she wants. For example, the answers to a question would be
yes or no in most cases. Maybe is not something we'd put in there. The type of
reserves for a deferred annuity would be "issue-year commissioners annuity reserve
valuation method (CARVM)" or "change in fund CARVM," and that's the text that
would actually appear on the screen and in the tool kit.

The screens and menus are all drawn with the screen-painting process built into this
tool kit. If you add fields to the input or menus to the screens, that's immediately
added to the database. It's immediately available for inclusion in formulas, as I'll
describe in just a moment, or it's available for the output database.

The output driver, engine, is very similar to the input, just the flip side. Again, you
draw the output report and select the items that you want on that output report, and
it generates the necessary data for the output engine.

The transform generator, of course, is our formula development part of the system.
So, we decided to make it look very similar, at least, to a text editor or word
processor in the way it works. You can put your formulas in. You can put
comments and documentation all in the same sets of formulas, and you can have
multiple sets of formulas open on your screen at the same time. As you add
variables to the calculation process, they are added to a calculated variable database
and are immediately available to be used for the report process, too, or other places in
your actuarial formulas. We also have a library of standard actuarial functions, as well
as any functions that the actuary might create for use in his or her systems, and you
can just select those functions and use them in your modules or your formulas.

The system can actually translate those formulas into C language modules. We then
compile and link them into a program or a library, depending upon the particular
desires at that point in time. Our system also provides for an interpretive language so
that at run time users can make their final adjustments to the formulas, or they can
actually look at modifications to the formulas so that, at the time that they run,

1136

TRENDS IN TECHNOLOGY

without having to go back and generate the system again, they can make
modifications to the formulas. This interpretative language looks strangely similar to
the same language that you write your formulas in. Everyone would be surprised at
that.

We've been using this tool kit in its entirety for a little over a year now in our
software development activities. Additional items included in the tool kit are the direct
production of documentation, doing the creation of the menus and screens, and you
can provide on-line help. You can document what you're actually putting on the
screen. When the target system is generated, then that documentation is available
through a help process that's included in the input engine. So, as you create your
screens, you can write the documentation, and it's automatically available to the user
when he or she runs the system. The tool kit prints the formulas in a format that's a
little more readable in the way that you actually enter them. You're limited obviously
in entering them to a screen. But, a printed page gives you a few more columns of
data and so forth.

There are several cross-reference lists available from the system for both input and the
calculated variables, so you can get a complete cross-reference of where data items
are used in case you want to check out what's happening to a variable in one
particular area in the formulas. We include also a regression-testing process, which
allows a new version of the system to be compared with a previous version of the
system by the computer. This highlights the differences between the two versions,
and so, you can quickly look at what changes have been made in the system, both
intended and unintended. The tool kit also provides version control, such that at any
point in time we can actually generate a previous version of the system directly from
the tool kit by telling it we want a previous version, and we specify which that is.
The version control is also used to make sure that, as a new version of the system
comes out, previous data from previous versions of the system are compatible with
the current system.

So, in summary, we seem to be headed, at least in our firm, to allowing direct
development of the systems by the actuaries. There's limited involvement by
programming staff. In theory some day maybe the computers will talk directly with
our minds. I'm not sure that's good. But, the actuaries then can spend their time
and brainpower solving actuarial problems and not having to get too involved, at least,
we hope, in the software development aspects. The tool kit provides for multiple
platform support, and I'll talk about that in just a moment. The actuary should have
complete control of the system in this environment. In addition, this took kit provides
control and documentation of that. This tool kit also provides a consistent look to
software, and as upgrades come along, it can be applied to preexisting systems, so
that you get the capabilities of newer features that are available.

You probably haven't noticed, but there is a fair amount of hype in the area of
hardware and software out there. So, we decided we needed to get a real handle on
what was real and what Wasn't, at least in terms of our own software and what kind
of speed improvements we could really expect as opposed to the benchmarks that
you see published by all the vendors of everything. While we certainly haven't
exhausted all the options, I think we only succeeded in exhausting ourselves at this
point - and our funds.

1137

RECORD, VOLUME 19

We've looked at several different things. The first I'll talk about is what I've called the
replacement processor option, which involves installing a board on the PC as a
specializedprocessor, which in all likelihoodhas it's own memory on the board that
you install in the PC. We actuallytested one processor, the Intel RI860, a RISC
processor. We actually tested two of them. We have two differentversionsof the
chip. It, of course, needs its own C compileras you'll see in allthe other
environments. Each environmentneeds its own compiler. But, it was written in
ANSI compliancy,and we had little difficultyin usingour software directlyand porting
it to it. We use as a benchmarka 486_50 DX2 with 128K of external memory
cache, and we had a suite of tests of our software to actuallytest different
environmentsof it. I'll just giveyou the overall results.

The 1860 with 16 megabytes of RAM cost about $4,000. It may be cheaper now
becausethe vendor has a newer chip out. It's been out actuallyfor a while. That's
the usualcycle. As soon as a new one comes out and gets available, the others go
down in pdce. This particularchip or environment seemed to run oursuite of
programs about 25% faster. We had expected greater improvement, but that's all
that we ended up with.

The second area we looked at was numericalprocessorsthat replacedthe numerical
processorchip on the 386s, which is a 387 chip or is built into the 486 machines
directly in the 486 chip. We actuallytested two versionsof the chip. It's the Weitek
Coprocessor. Here we were disappointedeven more in the sensethat we only got
about a 5% or 10% improvementon our benchmark over the 486/50. The chips,
however, cost somewhere around $500 to $700, and there are newer and faster
versions that they tried to sell us. But, at this point we decided not to buy it.

Finally, we looked at Unix Work Stations. The pricing has come down on Unix, and
they are pretty competitive. We have one in house, a Sun SparcStation. It's a 30
megahertz Sparc 10, I believe, connected to our Novell Network. After compiling it
on the Unix C compiler, we found that we had a performance of slightly less than 2
1/2 times faster on the Unix system, and this system cost about $10,000 by the
time you get the operating system and everything to actually run the computer. If
you haven't dealt with work stations, it's a totally different world, and Unix is
definitely a different world. You certainly can't go to your favorite computer store
and find a Unix work station or anything to support Unix.

Again, sure enough, hype bound, the vendor promised us that its $75,000 box was
15 times faster than the one we were using. So, we began to dig around a little bit
before we actually plumped down any money for this box, and we found out that
machine was actually an 8-processor machine with 50 megahertz chips. Our original
box that we have is a 30 megahertz machine and the floating point benchmark the
vendor used all 8 processors to show a 15 times improvement. So, if we revised our
software to use parallel processing and used all8 processors, we could get 15 times
improvement. BUt, if you ran it on only one processor, it would be only about twice
as fast as our machine or five times faster than the DX2/50.

But, there are work stations coming out that are one processor machines in the 100
and 200 megahertz range already. The Alpha machines that you may have read
about from DEC are in that ballpark. Their pricing is similar to the pricing of this

1138

TRENDS IN TECHNOLOGY

8-processor machine. We have a Hewett Packard machine on order. That's

something you'll go through if you order work stations. It takes a long time to get
one, and it's supposed to be, according to hypo, a really fast-floating point machine
and we'll find out within the next month or two. This particular machine is about a
$15,000 box.

So far, whet are the conclusions that we've come to? Basically, our conclusion is the
best you can hope for is to get what you pay for.

MR. MARK T. MCANDREWS: In the early to mid-1980s there was somewhat of a
concern raised by the computer press and some of the users in the computer user
community. That concern was that one software vendor would be able to
completely integrate the suite of applications and thus be able to dominate the
software industry. The two leading candidates were Lotus with its Symphony
product and Ashton-Tate with some sort of combination of its database and word-
processing software. These concerns proved to be unfounded.

I think the failure of this to materialize was not due to the lack of integration, at least
on Symphony's part, but that the applications in each piece of an integrated
application were being compared to the best available stand-alone applications. The
people weren't reedy to make the tradeoffs to take a less powerful word processor to
get the integration or to take a less powerful spreadsheet in order to have the
integration. So, I think that was the failure of the market there. The motivation
behind it, though, was that the increased productivity users would have, if they had
truly seamlessly integrated software, would allow a vendor to dominate the market.

I think we're on the verge of having that integrated software, and I think the glue that
holds it together will be object-oriented operating systems. The object-oriented
operating systems that are available on the market today include Windows, 0S/2,
Macintosh, and Next. Now, the Macintosh and Next are not available on Intex Intel
architecture at this point. Next is working on that. So my comments will deal mostly
with Windows and OS/2. I have a bit of a benefit here in that I get to talk about and
describe the dream, rather than what I've actually done.

I would like to describe briefly two of the major facilities of object-oriented operating
systems, object linking and embedding (OLE) and dynamic link libraries or (DLLs).
Those give you the primary functionality that I think will be important. We're reaching
a critical mass in the marketplace. So, I think in the next year or two years you're
going to start seeing a lot of applications that exploit these and give us a great deal of
productivity. I'll also finish up with a practical example of how actuaries will actually
use these tools to increasetheir productivity.

Before I can define OLE, I need to take a step back and give at least a high level
definition of objects. One of the principals behind object-oriented programming is the
principal of encapsulation. Simply stated, that says that we can't really divorce the
data from the programs. It needs to be viewed as a comprehensive whole, thus a
word-processing program and the document it's working on would be considered as
an object or a spreadsheet program, and the data it contains would be an object. I
think an example here might clear things up. The definition of OLE then, would be
the ability of one object to be tied to or completely contain another object.

1139

RECORD, VOLUME 19

As a couple of examples, one problem that often occurs is in word processing when
you use multiple fonts in a document, and then the document needs to be passed to
other users for review or modifications. If those other users don't have all the fonts

available, you end up with the spacing being messed up and page breaks where you
don't expect them. When the document gets back to the person who initially created
it, there's different fonts than the author had originally sent it out with. So, one of
the uses of OLE is the ability to embed the font within the document. Thus, for the
users of the word-processing program, once they have a document that had fonts
embedded, even though they didn't have those fonts available in their machine
previously, fonts would be available within that document. Another use would be
currently using math columns and mathematical capabilities of most word-processing
programs. It's a bit clumsy and limits you in the mathematical calculations you can
perform. What you really want to do, in most cases, is present spreadsheet-type
data in a word-processing document.

What OLE allows you to do is, when you get to the point where you would have to
be creating those columns in the word-processing document, you can open the
spreadsheet from within the application. You can start it up. You can enter data.
You can load an existing spreadsheet and just display a portion of it. You can format
columns, change their width, and apply the formatting characteristics of the
spreadsheet. Then, exit the spreadsheet and continue with the word-processing
document. This allows you to really use the best tool for the job without having to
jump through all kinds of hoops to have that available to you.

One of the benefits of OLE is that this integration really occurs at the operating
system level, rather than at the application level. Currently, in DOS applications many
of the word processors allow you to link to a variety of the popular spreadsheets.
The problem is that the spreadsheet that it's linking to has to be recognized by the
word-processing program, since it's handled by the application. If there's a new
spreadsheet that's developed or new versions of things that change file formats, you
may not have those same links in place. If it's handled at the operating system level,
you not only work with all OLE-compliant spreadsheets, but also you have any that
may be developed in the future. You're also not limited just to spreadsheets, but you
could also include graphics programs from Harvard Graphics or numerous other
things. So, you could drop anything that is OLE compliant into a word-processing
document, or you could drop word-processing documents into a spreadsheet.

The key benefit here is this really shifts the focus from one of the tools you have
available and how you get your results out of that, to the result you have in mind.
You can use the best tool that's available for the job. Another benefit is that the links
are dynamic, and they're two way. In current DOS software that links a spreadsheet
and word-processing software, it's often a one-way link. Or if it is a two-way link,
when numbers are updated in the spreadsheet, they get updated there, but you're not
going to see them flow through the word-processing document until the next time
you load it. v_r_hOLE you could have two sections of a spreadsheet displayed in a
word-processing document, one section containing assumptions and the second
section containing results. If you changed an assumption, you would actually see the
recalculations occur and the results flow through in your word-processing document
without exiting and recalculating spreadsheets. That's a tremendous benefit.

1140

TRENDS IN TECHNOLOGY

I want to distinguish between linking and embedding of objects. It's rather a technical
difference, and the practical effect is you have the benefits in either case. Linking
allows you to create links to existing objects, like spreadsheets and graphics
packages, without actually incorporating them in the document you're creating. The
benefit here is that you reduce duplication on a disk. The reason you may choose to
embed something is for something that you want to be truly portable, that you want
to give to other users. If you embed the object, then a copy of the object exists both
in the original document and as an embedded reference. So, you have duplication of
the object, which will take more disk space. But, you have a totally portable
document as well.

The second area I wanted to discuss is DLLs. DLLs are simply a collection of
compiled routines. They run the gambit from simple utilities to full-blown applications.
The key to DLLs is that they do not need to be available at compile time for a
program. They only need to be available at run time, thus, the dynamic. Some
examples of this would include the equation editor provided with Microsoft's word-
processing product. It's a third-party product, implemented as a DLL. Since it's
implemented as a DLL, it's available in their word-processing software, the editors that
come with Windows. It's available from spreadsheets. It's available in graphics
packages, any place that can serve as an OLEserver because this is actually an
instance of something that is both OLE as well as a DLL.

DLLs are often compared to source-code libraries, the difference being with source-
code libraries you have a single copy of the source code but multiple instances of it
when it actually is compiled in multiple programs, v_rrthDLLs you have a single copy
of the object code, which is then loaded at run time, so that you actually only have
one copy of the object code laying around, which conserves disk space and memory
at execution time because the DLLs are intelligent in the way they're loaded. You
never had a second copy of the DLL running in memory. If you have multiple
applications accessing the same DLL, they all use the same code.

There's a new standard coming with Windows NT that creates some more flexibility
in the DLLs. Currently they're rather limited in the data they can contain because of
this common-code segment. The new standard will allow a data portion with each
application or instance of the DLL, but still maintain the common code, which I think
will increase their useability and flexibility even more.

Another use with DLLs during this transition from DOS-based to object-oriented
systems is that often a calculation engine can be developed as a DLL and then the
interface developed in both a DOS and a Windows version. Rather than a source-
code library that gets compiled into both versions, you can have a DLL that can be
loaded at run time. That's just been made possible recently with some of the
compilers that now are bundled with DOS extenders that allow them to run the DLLs
from DOS. DLLs currently aren't executed from DOS without some sort of
management program running them.

Another example might be some of Larry's rate routines as he moves to object-
oriented programming. I'm not familiar with their structure, but that's something else
that might be able to be implemented as a DLL, and if they're used in multiple

1141

RECORD, VOLUME 19

occasions, you'd reduce the number of instances of the object code and have
something that took fewer resources when it actually came to run time.

One of the benefits of DLLs is that you can use any available language that suits your
purpose. Currently getting programs written in different languages to talk to each
other, while certainly possible, is a bit tedious. When you're working with DLLs,
that's all handled at the operating system level, rather than at the application level.
So, ff you have pieces of code that are written in Basic, Pascal, Fortran, C, C + +, as
long as they're DLL compliant, they can all talk to each other rather seamlessly.

This leads me into my example. The example I'm going to use is one of Regulation
126 cash-flow testing. The document that you want to produce is probably best
suited to a word-processing document, although much of your data may be numeric
in nature. But, I think the way I would start it out would be to rough out an outline
of the document. 131assume that the calculations software I've used has created a

database of output in some standard database format, Dbase or Paradox. I would
then use a third-party DLL report writer to access the database and create proforma
financials and some nicely formatted reports.

There may be some areas where we've done additional manipulations and spread-
sheets. Use OLE to open up a spreadsheet display, input variable assumptions.
There might be another OLE object in there that's again, a spreadsheet displaying
results from the assumptions, it could be graphic support, which would again be an
OLE object that shows graphically some of the results. You may document some of
these using an equation editor, which could be actually an OLE object within either of
the spreadsheets, the graphics package or just from the word processor itself.

As I said in my beginning, I think we've reached a critical mass in the marketplace for
object-oriented operating systems, and we're starting to see more development using
the tools available to integrate software that's available in objeot-oriented operating
systems. It gives us a seamless integration. It shifts our focus from the tools
available to the result desired and allows us to use the best tool available for the job.
I think these benefits will greatly increase the productivity of actuaries using object-
oriented operating systems.

MR. GEORGEL. ENGEL: Larry, I have a question for you. One of our problems is
access to programmers because of them being in a separate IS department and
having other projects for other people, etc. At a former company we had a system
similar to what you have. One of the problems we had, though, was that we had
skilled professional programmers who felt like they weren't really part of IS, and they
weren't really part of the actuarial department and we had a high rate of turnover
because of that or at least that's what we think it was attributable to. I'm wondering
ff you had any of that experience or if you have some kind of career path for these
people, or what you do to help keep people in the department?

MR. CURRAN: That's a good question. We actually have had very good experience
with turnover in the last several years. We've had no one leave. We do have a
career path that will take a person up through the equivalent level that we will have a
recent FSA or new FSA go. After that, the ASD career path really is closely tied with
the IS department. We use an identical career path up to that point, the same as the

1 142

TRENDS IN TECHNOLOGY

IS department does. We use the same titles. Job descriptions vary a little bit. But,
our ties are so close we actually work with the IS department. When we do a
promotion, we run it by the IS people to see if it matches how they would do it. So
far we've had good luck along these lines, and we think with the close ties with IS -
we've had several invitations for our top people to go over to IS and we at some
point will allow this to happen so that they will have a career path leading through
officer - that we're pretty well set.

MR. PAUL A. CAMPBELL: Larry, I would like to ask you a question and the other
two could comment as well. Are you aware at this time following the origination of
your ASD that a lot of companies in the industry have followed the same format, or
do you feel that yours is still somewhat unique in it's structure? Second, how would
you suggest that computer science education for undergraduate students can make
sure they will fit neatly into today and tomorrow in the systems?

MR. CURRAN: I'm not aware of what other companies are doing in this regard. My
general impression, though, is that it isn't enoughbecause I hear a lot of comments
on both sides. I've heard some comments here about the difficultyof working with
IS. A few years ego I attendeda Life Office Management Associationconvention.
That was really primarilyfor IS people. Someone was, at that point, talking to me
about the rate routines and showinga great deal of interest,and allof a sudden the
person found out I was in the actuarialdepartment and he literallyturned around and
walked away. Obviously I couldn't know anything beingin an actuarialdepartment.

In terms of training,the thingsthat we're really lookingfor now is to have the
universitiesprovidetrainingin object-orientedtechnology. We're more interested in
that at this point than I think anythingelse.

MR. MCANDREWS: My rather limited experiencehas been that the set up that Larry
describedis unusual, if not unique. Of the companies I'm familiarwith, none of them
have this particularstructure. It's a much more traditionalstructure, IS on one side,
the actuaries on the other.

MR. BRYN T. DOUDS: I have a couple comments on this topic about should we
have a systems staff in the actuarialdepartment. We tended to always be very
separate because of the control issues. You're going to have one staff develop a
programand a different staff undera differentmanager test it. It's kind of like dotting
the numbers. Although recentlywe've begunworking with APL, and we've found
that none of our systemsprofessionalswould touch it becausethere's no careerpath
fundamentally. So, we now have some of our own programmers,and we actually
took actuarial type of staff with a strongmath background,and they're at least willing
to work with the APL. Could you comment on that a little further?

MR. CURRAN: Well, actuallyour actuarial students do work with APL, but about the
only systems they work closelywith are the pricingprograms. In terms of for
valuations,being largersystems, we felt that the traditional languageswere more
appropriate. We found that the actuarialstudentsdid not care normally for rotation
stints within the systems division. Firstof all,we requireda two-year rotation to get
the benefit out of it, and they felt that they were losingtrack of where they were
going at that point. SO, we gave up on that and just strictly brought in math people.

1143

RECORD, VOLUME 19

One thing that we have been very careful about is, we try to bring people in the
systems division who do not have an interest in becoming an actuary. We don't
want it to be a back doorway of getting into the actuarial career path. The testing
that we do in the ASD is basically the same as IS. It's as though we were in the IS
department and physically located somewhere else.

MR. ROLAND R. ROSE: I have a question for Larry. I'm curious about how the
duties are split in your development and maintenance of illustration systems?

MR. CURRAN: Well, that's an interesting question. Originally the sales illustration
systems were done by the ASD within the actuarial department, vkrrththe advent of
the PCs it was decided that the real PC expertise was in IS, and so the sales
illustrations moved over there and took about half of the then systems division with
them. But, part of the rather complex agreement is that all testing of sales illustration
systems would remain within the actuarial department, and we actually maintained
some programs that would basically calculate sales illustrations that we would use to
do the testing. Things are kind of evolving. Much of the calculation for sales
illustration is shifting back into the actuarial department at this point. In fact, there's a
move pretty much all over the spectrum for calculations that have to do with values
or cash value or anything to now done in the actuarial department in multiple-use
routines. But, the sale illustrations are done in IS. Checking is done in actuarial.

MR. THOMAS L. BAKOS: I wonder if Matt could get Larry off the line here. You
commented on testing various different kinds of equipment. Do you test PCs other
than the IBM standard PC? Do you have any comment on clones?

MR. TUCKER: The standard PC that was recommended within our firm by the
central computing resource group is an IBM PC. We have about 25 PCs in our office.
We have one IBM PC. We have used clones since day two, not necessarily day one
in our group, and we have a wide variety of clones. We have Dells, Gateways, some
brands you've never heard of, I'm sure, Compaqs, Everex, all different sorts of
brands, some of which are maybe not in business any more. That's one of the
dangers of the clones. We've actually only run into a problem once with a clone, and
that was a clone that was a no-name brand. The company took it back, actually.
There was a problem with the mother board. But, we've had excellent experience
with clones. We do run a Novell Network, and we've had no difficulty with putting
them on a network, even though central computing said it wouldn't support any of
our questions. So, we didn't have any.

MR. EDWIN R. SCHRUM: I just wanted to comment on that audit concern about
APL. We've had no problems with our APL, which we're heavily involved in. We
run all our program changes and our pricing model - which is deemed to affect
profitability - through a second APL program. That seems to be satisfactory. I'd
hate to think anybody would avoid APL just for audit concerns because our auditors
are very comfortable with that.

MR. ROY MURPHY: I've got a comment that I'd like to make about a fairly new
product category that has come up lately, and that's the whole concept of
multidimensional spreadsheets and how they are as modeling tools. I've been using
one particular package for about a year and have managed to replace practically allof

1144

TRENDS IN TECHNOLOGY

the traditional spreadsheet work that I do with this package called CA Compete from
Computer Associates. I just wanted to mention what I thought some of the
advantages of this kind of thing were and maybe get some other people in the
profession thinking about doing work like this.

Lots of times we're doing work with sales that are defined by many different
variables. You can place each one of those in a dimension and then reflect a lot of
different factors of the data you want to model in one place and then build fairly
English-like formulas that refer to things by the item name rather than by cell
references, it makes the work easier to document, easier to check and understand,
and the products make it easier to change the reporting. So, from the same data you
can show reports that are actual versus planned or show the same data flipped
around another way to show a series of things over time. I really would encourage
anyone here who's got a little bit of money in their software budget to maybe spend
$99 on Lotus Improv, which is available for a limited time at that price, and keep an
eye out for an upcoming version of CA Compete, which is supposed to advance its
capabilities. Just give this product category a chance and give it a try.

MR. STROMMEN: I might make one comment on that. At Northwestern Mutual,
the marketing department people recently discovered Lotus Improv, and they're
putting a lot of their sales data by product, by age, by general agent and that kind of
thing into that kind of spreadsheet format so they can flip it and look at it, and
summarize it any which way. They're very enthusiastic about it.

MR. CHARLES ROBERTDOLEZAL: You talked quite a bit about actuarial applica-
tions. Our company is in the process of picking a new administration system, and
I'd like you to comment on some of the PC-LAN-based systems that are out there.

MR. MCANDREWS: I think the best response I can give you is a quote from Mark
Twain, and that's "When all else fails tell the "mJth." I really don't have any exposure
to that.

MR. STROMMEN: Is there anybody in the audience with exposure to LAN-based
administrative systems who might be able to help him out? If not, I have another
question. The speed and capacity of PCs seems to be doubling every year, and
actuaries always seem to want the high-end PCs. As a practical matter in your
organizations how often do you find that people are upgrading their hardware?

MR. TUCKER: Every day. Basically, we have a wide variety of PCs that we still use
all the way from 386 20 megahertz machines. We might have some 16 megahertz
machines up to 486 DX2/66 and that's basically what we do. We move the
machines around as we get newer machines. But, basically we upgrade as we see
fit and as budget allows. We don't usually go out and buy the newest one that's hot
off the shelf because the price is usually jacked up pretty high. But, we don't wait
too long either before we get into the newer and faster PCs.

MR. CURRAN: It is basically the same thing here. We get our computers, however,
through the company store, and we upgrade through there. We tend to make sure
that the people with the most crItical need have the fastest machines, but they're
generally not the state-of-the-art. However, within our area now we do have

1145

RECORD, VOLUME 19

probably 10 to 15 Dell 486 model 50s. We use those in the systems division for
some of the actuarial students who are doing some intensive pricing where they're
running into time problems. Pretty much, though, whenever we hit a situation where
we can justify it, we get it, whether we budget it or not. So, our luck has been
pretty good.

MR. SCHRUM: I just wanted to comment on your strategy of how often you replace
machines. Our company has a strategy in the individualactuarial that we buy state-
of-the-art machines. Right now we're buyingthe 486/66. We go on a pass-down
principle: our biggest programming students will use it for only one year. V_rrthnext
year's budget, we'll buy some Pentiums for those students becauseit seems, as the
machines get better, we always seem to be pushingthem. We pass it down within
our department for the second year, and maybe a third year. Right now I can say
that we have 286 machinesthat I purchasedfive years ago that customer service
thinks are the best word processorsthey ever had. I literally swiped their $500 a
year computer budget by handingthem what I consider junk. If I pass around my
junk, I can justify getting what I call realequipment.

1146

