
RECORD OF SOCIETY OF ACTUARIES

1994 VOL. 20 NO. 3B

COMPUTER LANGUAGES

Moderator: L. TIMOTHY GILES
Panelists: MARK A. CAVAZOS

KENNETH KOFFLER*
FLOYD R. MARTIN
DENNIS R. TOBLEMAN

Recorder: L. TIMOTHY GILES

This sessionwill allow you to vent views and prejudicesregardingthe advantagesand
disadvantagesof usingseveralcomputer languagesfor actuarialwork. Normallythe
languageswe have experiencewith are the ones we feel are the best. But do we
reallyknow the strengths and weaknesses of languageswe haven't used much and
don't reallyknow? And when shouldspreadsheetsbe used?

MR. L. TIMOTHY GILES: Meeting at 8:00 a.m. on the subjectof computer lan-
guagesis likedrinkingbourbon before breakfast. This is an interactiveforum; an
actively moderated sessionwith significantaudienceparticipation. I learnedA
Programming Language (APL) about 20 yearsago, and I learned spreadsheetsabout
ten years ago. I am defensiveabout APL. I don't want to learnanythingelse.
Recentlyour company decided to get a new life insuranceadministrationsystem to
move off the mainframe and onto the PCs that we all had. I was part of the
investigatinggroup and it was awful. We interviewedabout four companiesand two
of them kindof stood out. One had a server, I didn't know if that was good or bad,
and it had a modern, fourth-generationlanguage. I don't even remember the name of
it, but I do remember it couldn't do squareroots and we just droppedthat one. But
another one was written in Magic, and the developersbragged about it. I brought
this magazine, Insurance & Technology, which has this big ad on the back cover that
attacks Common Business-Oriented Language (COBOL) and advocatesMagic. Now
Magic, that's a company, says it was the winner of the internationaldevelopers
competition for the secondyear in a row. Magic had a total of four winningteams in
the top 15, more than any other product. COBOL's top finisherwas a distant 40. I
don't know anything about that competition. Maybe it's like a county fair where
everybody'stomato gets a ribbon. BUt I thinkthat's the hook; that got my attention.

Now I'm goingto introduceour panel, and they're each going to stake out a position
and defend a language. They'll do that in about five minutes, andthen we hope that
there are some of you out there who willdefend a language. We're not going to
cover all the languagesso we hopethat some of you will stick up for some of the
others. The people who designed this sessionwanted it to be kind of confrontational.
Floyd (Ray) Martin is a health actuary with Tillinghastin St. Louis. He's going to talk
about FORTRAN. Dennis Tobleman is a health actuary with American National.
Mark Cavazos is a pension actuary from Dallas. Ken Koffler is here from Magic, Inc.
Ken is not an actuary, but he's going to talk about fourth-generation languages in
general and about his own language in particular.

*Mr. Koffler,nota memberof the sponsoringorganizations,isa SystemsEngineerat Magic
Software in Dallas, TX.

811

RECORD, VOLUME 20

MR. FLOYD R. MARTIN: I'm going to talk a little bit about my experience with
FORTRAN. Some people still do programming in FORTRAN. Whenever I mention
that, some people are surprised to hear that FORTRAN is still alive and well. My first
experience with programming and computers began between my junior and senior
year in high school. I was at an academic camp that summer, and we had to do
some programming. The language they had available for us was FORTRAN. We had
to use the old punch card machines. Does anybody remember those punch cards?
An operator would feed them through and run your program. You'd usually get
about ten pages of syntax error sheets after submitting and then you would have to
do it again. But I found it very enjoyable and I found FORTRAN to be fairly logical
and work in a logical manner. When I was in college, I then had some courses in
computer science, and I was exposed to some higher-level languages. I think one
was called Lisp, which is a word-arrangement-type language. However, for most
applications, I found FORTRAN to be very useful and very manageable for the things I
needed to do.

I used FORTRAN to do some graphics. I actually plotted graphs of the world. I
made models of the Enterprise using FORTRAN. I also did some statistical studies of
Monte Carlo simulations; that was my first taste with FORTRAN. It seemed to me in
college that FORTRAN was one of the more accessible languages at t:hat time. It
might be the era that I'm from, but I found it to be very accessible on the college
mainframes.

Then when I started in my first actuarial position, FORTRAN was available on a time-
sharing system through an external mainframe. The company had its own main-
frame, but it still ended up buying services from an external mainframe for doing a lot
of the actuarial work. Back then, you still had to do line-by-line entry in FORTRAN.
You entered a line, you got an output line. You entered information, you got an
output line. It kind of kept you moving up on the paper. Before they had time-
sharing on monitors, this was all done on paper so you accumulated quite a bit of
paper. When we later got a PC in that office, we were able to do more of a rolling
on the screen for data entry and so forth. But it was still the line-by-line-type data
entry so you just kept scrolling.

In my current position, FORTRAN was available again on the mainframe, and later the
company acquired PCs and I began using FORTRAN on PCs again. There were some
subroutines and functions made available that allowed for menu-type entries and
some screen manipulations, so you no longer had this scrolling data entry or output.
You could now create menus on the screen, select items out of the menu, and get
reports up that would start at the top of the screen and fill the whole screen. BUt
when they came out with the VGA monitors, they weren't supported by these
subroutines and I almost had to learn another language. I started looking into C, and I
even got a translator that would translate my FORTRAN programs into C. I just
about went over the edge and then FORTRAN came out with some new software
that had many neat graphic capabilities so i was able to bypass that problem, it
would support the VGA monitors, which then helped a lot because everybody was
going to VGA, and I needed to have that capability in the programs that I was
writing.

812

COMPUTER LANGUAGES

I considered learning again other languages, but the time involved, the learning curve
involved, has been prohibitive when I take into account other things I could be doing,
both with the work I'm at or even spending my own personal time. So as long as
FORTRAN has done the things that I've needed, I have not felt the need to spend the
time to learn another language. Although it would be interesting, it just hasn't been a
priority for me. I think when you learn a new language, you need to have a constant
usage of it, you need to be exposed to it daily, t would even probably have to take a
college-type course, and that would require spending a lot of dedicated time working
with that language. If you're learning a new language, you have to spend a lot of
time with it to become proficient. As time went on, more of my work though has
gone toward using spreadsheets on a day-to-day basis. I use FORTRAN for more
complex data manipulation, things that would take quite a bit of work to develop on a
spreadsheet that I could quickly write out in FORTRAN, such as reading in data and
spitting out the appropriate numbers. But for most of my day-to-day number
crunching, I use the spreadsheet.

In conclusion, I think that FORTRAN is still a very viable, very powerful language. 1
think it has been enhanced a lot from the old original FORTRAN syntax. There are
many new functions and new subroutines available for using FORTRAN. A compiler
is specifically dedicated to the 32 bit, so it will not work on lower machines.
Microsoft is still supporting FORTRAN, and I think that it's still a very useful language.
The time involved for me to go and learn another programming language would just
be prohibitive. Again, the spreadsheets have become very useful to me, and on a
day-to-day basis, I use spreadsheets almost entirely. I use FORTRAN for major
projects and things that would not be appropriate for a spreadsheet environment.

MR. DENNIS R. TOBLEMAN: I've used APL for about 20 years. I've used it under
mainframe environments on CMS, OS, and MVS. More recently, I've used it almost
exclusively in a PC environment. The PC-APL tends to be superior, in my opinion,
because the company that supports it has done a lot more to produce many periph-
eral and auxiliary programs. Of course, it's its main stock in trade. IBM-APL is the
other mainframe APL nowadays. They never have developed it to the same extent.

I'd like to tell you a few of the things that I think are APL's particular talents. First, as
an actuary, we tend to like things expressed in mathematical constructs. The
symbols and the program syntax resemble math equations, if you can overcome the
fact that APL does execute from fight to left. That's something that causes some
people many problems. Second is the ability to do vector and matrix manipulation. If
I'm seeing a page of rates, it's nice to be able to think in terms of working with a
page of rates or a number of pages, a vector at a time, plan-specific for instance.
Nested arrays is something that I haven't used a lot personally, but it gives you the
ability to have unequal subsets of data within a common variable. It's a very nice
feature, very unusual.

The file access is good in APL. I'm talking primarily now about the PC environment
APL, but in particular, the thing I like is the ability to create files with keyed index and
being able to say, I want the record with this key. I've always liked that, even
though it's a little bit inefficient and time-consuming. I think the most important
consideration is man-hour time and productivity. And as the power of the PC
continues to advance, it covers up a lot of the sins for my bad coding.

813

RECORD, VOLUME 20

Next and something that is very important and specific to APL is the fact that it is an
interactive language. That means several things, but sometimes I like to get into the
APL environment and just kind of play around with numbers and use it kind of in a
sophisticated calculator mode.

Second, if you do write a program and you run it and have an error, it will stop at
wherever it encountered the error. It will freeze right there and point to the place
where you have the problem. It will give you the option of trying to fix things,
because you can see the value of all the temporary variables that have been created
up to that point in time. You can fix it and go on, and that's a very nice feature.

Third is something I think that people tend to underuse a lot. I know a lot of you are
good APL programmers, but that's the stop function capability. Often I'm not sure if
my own program is doing what I want. The stop function stops on any given line
that you choose. You can just play around with the variables, the arrays, etc., that
have been created up through that point in time. It helps keep you from racking your
brain saying, well now, if I do this outside matrix multiplication, for instance, or
whatever, am I going to have the rows and the columns in the right format or not?

Finally something that's fairly new to APL is its WINDOWS product. It takes advan-
tage of the 386 and 486 chips to give you a little extra processing speed. I've had
only a few weeks to use it. Of course you all know what WINDOWS compatibility
means. Believe me, it's a very nice thing to work in APL, send it down and call in
your spreadsheet. You can now interchange more freely between spreadsheet and
APL, and a couple of spreadsheets are supported. I personally like doing calculations
in APL, I maybe spend half the time getting the program to do what I want and then
the other half getting it to print out what I have. Maybe I'm too particular with my
headers and the like, but the ability to export your data variables to a spreadsheet
environment is very nice. Also, I think we need to think in terms of the fact that we
don't want to have actuaries responsible for all the data input. So you can get people
who are familiar with spreadsheet to create data input that you've designed. Then
you can create a bit mapping and bring them into your APL work space and do your
calculations there. Well, those are some of the advantages of APL.

MR. MARK A. CAVAZOS: I'm here as a user. Unlike these gentlemen, I'm not into
programming languages like APL or Magic or any of that. In fact, I started with
computers when I was in college. I played computer games, and I learned enough
BASIC or APL to go into the computer program. I manipulated it to do other things,
and that's what I've done. I worked with Mercer for 13 years, and now I have just
started going out on my own. That's what I've done in my career. I've taken the
languages, the software that has been developed, and I have manipulated them either
to find some techniques that were built into the system that no one ever uses just to
see if I could get the system to do something. Or I will take a software that's been
developed and get it to do things for which it wasn't originally programmed. I've also
taken the data that ha-'e come out of so_¢-are and used them like a spreadsheet
because the particular situation I was working on was not available with the software
that we had. So now I could look at it as many of you do, trying to figure out what
kind of language would be useful and how the whole process would integrate from
getting in the data to actually printing out a report and any supplementary items after

814

COMPUTER LANGUAGES

that. So I may end up actually having as many questions as the audience for the
other panelists.

MR. KENNETH KOFFLER: What is Magic? Magic is a post-fourth-generation, object-
oriented, code-free, application development and deployment tool. Magic allows you
to develop applications quicker than any other tool and more importantly, allows you
to make changes as the business requires. Consider COBOL. COBOL used to go
into your favorite text editor; it used to write 500,000 lines of code. Now maybe
you go up to a fourth-generation language (4GL), which now is at 25,000 lines of
code. Now in Magic, which is a post-fourth-generation language, instead of writing
code, you describe what you want to do in tables, and now it's only 500 lines. So
which is easier to maintain, 500,000 lines or 500 lines? If you as users want to
make changes, is it easier to do it to a 500,O00-1ine or a 500-line program? That's
how Magic gives you the ability to develop applications quickly. And more important
is look and feel. In the olden days, on most tools you'd have to have it look some
way based on what the tool required. With Magic, you can go in and have any look
and feel that you want. You can use colors, or buttons, or pop-up or pull-down
menus, or check boxes allowing your users to be very, very productive. They get the
look and feel exactly as they want it, which allows them to develop and see their
applications and make it fun to use.

Now let's talk about how Magic does this. In Magic you go into a table and you
describe what you want to do. There are 13 operations that will allow you, once you
learn them, to write mission-critical applications. Magic uses object-oriented features
so I can make a change at the very highest level that wilt convert all the way through
the whole system.

Now let's say we developed this application, it's sitting out here, and now for most
systems, you're stuck on a particular hardware platform or in a particular database.
Magic allows you to have independence. I can work on the weekend on my DOS
machine at home using B-Trieve. Let's say I go into work and I have a VAX or a
UNIX machine. I can instantly port this application to this other machine and convert
it to a different database. I have a screen here. On the screen, I have some informa-
tion, maybe from DOS, or B-trieve, or any of my X bases, such as dBase or FoxPro
or Clipper or whatever; or maybe information from my UNIX machine, such as a Sun
and Sybase or Oracle or Informix or CIM; or maybe from my VAX, my Digital Equip-
ment in RDB or RMS, all sitting on the same screen, with Magic handling all the
database manipulation or cross platform, cross database for you. And maybe I have
some users sitting there in DOS and others wanting to run this application under
WINDOWS, the same application without any changes. I have some users running
native on the terminal and all are looking at exactly the same application. Magic is
handling it cross platform, cross database. If you look at a client server, Magic allows
you to split the data, the application logic, and the presentation anywhere you want,
wherever makes the best sense.

So what does Magic give you in the end? It really gives you productivity. It lets you
develop applications quicker than any other tool, and it allows you to make changes
at the highest level and aptly go and convert it through the whole system. It gives
you platform and hardware and database independence so you can move this
application or put it wherever it most belongs.

815

RECORD, VOLUME 20

MR. GILES: I want to ask the audience, have any of you ever heard of Magic?
(Nobody's ever heard of it.)

MR. KOFFLER: Let me also add, Magic in the U.S. is not as well known. It's
actually written in 18 different languages, and it has 250,000 users. It's the number-
one tool in Japan and Europe. It just came into the United States in 1991, so it's a
little new here.

MR. GILES: I want somebody in the audience to defend or advocate BASIC.

MR. RICHARD E. ROWAN: It's cheap.

MR. KOFFLER: Let's talk about this for a second. It definitely is cheap to buy that
software, but then you're talking about your programmers' time. All of a sudden you
have a project with 100 programmers that five programmers could have done faster,
quicker, and easier. So in the long run, which is actually cheaper? You can look at
the long-run cost of a software and the many years of use. Yes, it might cost less to
begin with, but in the long run, which is actually going to be cheaper and which is
going to be easier?

MR. GILES: One problem many of us have is that it's not our choice. The company
or the firm is picking the language, and we're kind of tagging along behind, I realize
that. I want to get other languages represented. How about C? That's a popular
one. Does anybody use C, or C plus, or one of those types?

MR. W. KEITH SLOAN: I don't personally use C, but several of the people in our
shop do, and they use Clarion Development System, which is very similar, I gather, to
the Magic that's been demonstrated.

MR. GILES: OK. Another one is Pascal. I don't know any of these, but how about
any other language?

MR. EDWARD G. BAILEY: We often use SASS in our shop. It's a nice package. I
don't know about the rest of your programming needs, but most of what I do is write
a program and not use it again for another year. It's not meant to be used repeat-
edly. And so I want something I can code quickly, make it work right, and not have
to deal with it again. And if I do, it's simple enough to read that somebody else can
pick it up, read it, and make the changes to it next time.

MR. GILES: What type of actuarial work do you do? Are you health or pension?

MR. BAILEY: LTD.

MS. JEAN M. WODARCZYK: I am one of those actuaries who doesn't go beyond a
word processing package or LOTUS, b-'t ! have the responsibility for deciding the kind
of languages our staff should use. We currently use SASS to do our health care data
work. Perhaps that's a little old; I have the feeling we're not on the leading edge
where we need to be. We also have been looking at some material that's written in
APL. I'm concerned about getting involved in APL, because it's been around a long,
long time and I don't think it's in a WINDOWS environment or is about to be. I'm

816

COMPUTER LANGUAGES

wondering if that's the right avenue to take, or if there are some other languages we
should be looking at in today's environment. So that's kind of where I am.

MR. GILES: Dennis, I believe you said APL is available in WINDOWS.

MR. TOBLEMAN: Yes, it is. APL's strength obviously is in hard calculations. It's
primarily an actuarial and engineering tool. If people want to do a lot of report writing
from databases or whatever, created from other means, APL is not going to be that
good. It's a little complicated. You must make sure that you have backup, so a
certain number of people must learn it. It's not the easiest language to learn; I
expressed that in terms of actuaries. It's very natural to what we do. We deal with
formulas, we see equations, that's our bread and butter, so it doesn't throw us to
have to look at all that. But I understand there are different kinds of smarts in this

world; many people smarter than I have trouble with equations. So I would first try
to narrow it down to the type of applications you're going to be looking at. Are you
going to be doing many calculations, etc.? If you are, then it may be a good thing.
With the WINDOWS compatibility, you can call up and say, "Oh, shucks, I forgot to
send out this memo," so you can jump over to something else. It does have greater
export-import capabilities, which make it easier to take advantage of APL's strengths
without being burdened by its weaknesses.

MR. GILES: I have never heard of SASS until this meeting, and I've heard it a couple
of times now. How many have heard of that? Most of you--wow!

MR. GREGG E. LITTLEFIELD: SASS seems to be used a lot at the university level. I
suspect that's where most people saw it and that's where I did. Many universities
have it, but that's not what we use. I was just going to mention another thing if
you're not in the hard calculation mode. One of our pension actuaries recently fell in
love with Microsoft Access database. He was keeping track of the valuation data
and what had been done and whatnot. He's doing Microsoft Access now, and he
likes that quite a bit. It's a relational database with a lot of WINDOWS interfaces,
and what he had done in APL or had been doing in other, more primitive databases,
he has actually moved to Access. So that's another tool that's out there. Some of
these databases often are very sophisticated, and some of the things you can do are
quite amazing. And so that's another thing we can think about here.

MR. GILES: Is Access a type of spreadsheet?

MR. KOFFLER: It's actually a 4GL development tool. It's a very good development
tool. It's very object oriented, to be able to touch and pick. It's more of an end-user
tool. When we're describing tools, we probably should place where they fit in the
global scope. Are they a development tool? Are they an enterprise line of tool?
What is your company looking for? For example, Access is a very good, very object-
oriented tool, but it's more for development. But it makes you develop things very
quickly and let's you do some things that are very amazing.

MR. GILES: What is a relational database?

MR. KOFFLER: I'm not sure I can give a good description of this that people are
going to agree upon. A relational database basically allows you to access your data.

817

RECORD, VOLUME 20

A flat file has, like B-trieve, a file structure with one file record after another record

sequentially. A relational database has your information so you can instantly get to
any of your data. You have a back-end engine, a relational engine, that helps you do
this. And it does it by writing sequel commands to the system. I don't know if that
gives it or not.

MR. GILES: I can tell you that from the life insurance end, they like these relational
databases. If you have five policies and you change the address or the beneficiary on
one of them, they can do it all. You don't have to go find the other four; they're all
related and that's a big deal.

MR. MARK F. HOWLAND: Like Dennis, I grew up using APL but when I came to
Blue Cross, I found SASS in wide use, and that's what my entire shop uses. It's also
used by other departments besides actuarial: our provider department, our market
research area. So it's a program that can be used throughout the company. It does
require a little bit of an investment in training. It's not readily usable but after a three-
or four-day course, you're as good as anyone else.

But what I wanted to also mention and ask others to comment on is support. I think
the issue of support is very important and the SASS Institute is very, very responsive
to questions and problems. It also runs national and regional user groups. It has
bulletin boards and so forth so that you can share ideas with other users and with the
SASS Institute. We found that to be very important and very helpful. It also runs on
the mainframe and on the PC, and you can even run it in a production mode. We've
worked with our systems people to actually run some SASS jobs in production as
well as on the fly. So I think those are more advantages, but I'd like to hear com-
ments about support for the other languages.

MR. GILES: OK, let's have the whole panel run through that. Ray, how do you get
support for FORTRAN?.

MR. MARTIN: I use the Microsoft version of FORTRAN, and if you've ever tried to
get to Microsoft for anything, you know it takes a while. Usually, trying to explain a
programming problem over the phone is very difficult. I would say Microsoft usually
will get back to you, they usually will help you, but they don't always give you a
good answer. But Microsoft is a big producer and it's hard to get through some-
times. If at all possible, I don't try to access them, I try to figure it out myself.

MR. GILES: Dennis, how about APL? When you have an APL question, what do
you do?

MR. TOBLEMAN: Well, a few times I had to get support from IBM concerning its
APL product, and of course it did respond, but it wasn't necessarily very quick. APL
is not a big product for IBM. I've always found the support of the Manugistics
Corporation, which used to be Scientific Time Sharing Corporation, to be quite good.
It's not necessarily instantaneous anymore. Sometimes the company will take your
name and your number and they'll call you back. The people they have on the help
line to help you with problems are sharp. Nowadays though, you do usually have to
pay a little extra. I think you get a 30-day support if you buy one of the APL

818

COMPUTER LANGUAGES

packages, and I think you pay a little extra if you want extended support. It's not
that costly, but if you purchase that, I've always thought it was very good.

MR. GILES: OK. Ken, does Magic support its users?

MR. KOFFLER: Actually, it does. It has 7 a.m.-7 p.m. free support, it comes with
your maintenance. It also has a bulletin board, it's on CompuServe, and it has user
groups throughout the country. It has about 16 training centers throughout the U.S.
tOO.

FROM THE FLOOR: Do you maintain these tables and then Magic produces the
code?

MR. KOFFLER: That's a good question. There are seven tables that relate to each
other but they only create one file. This file is a file you give to your end user, so
that allows Magic to be database independent. So whatever system you're working
on or whatever database you want the application to sit in is the database it will use.

FROM THE FLOOR: Well, does it produce code in some language like COBOL?

MR. KOFFLER: It actually has a C engine, a compiled C-executable that sits on
whatever system you're using. And this one file is being interpreted by the engine.
But 98% is the C engine, the other 2% includes the seven tables that create the file
that are being interpreted by the engine. Does that make sense?

FROM THE FLOOR: Yes.

MR. MARTIN: So Magic is an interpretive language, it's not a compiled--

MR. KOFFLER: Well, actually 98% of it is a compiled executable. The other 2% are,
basically the parameter is telling the engine what to do at run time so it allows it to
be very dynamic.

MR. TOBLEMAN: Could you explain just a tad about these seven tables, because I'm
still having a hard time understanding it?

MR. KOFFLER: Sure. This is sort of hard to visualize without a system, but first
think about having a tight table. This is a global table sitting above all my files and
programs in which I cap all my basic primers. Maybe I have a phone number set. I
can set it up one time, and then I would set up files. In these files, I'd say I want to
use a phone number, and I'd already have it defined. So instantly I allow my
development to have one set so it allows easy maintenance and also allows every-
body to be very consistent. Because if I want to make a change, I will go to the very
top table, make a change, and it will automatically go through all the lower tables.
And then, of course, there are some more object-oriented features you can do with
the high level. Then the second level includes your data structures, your files. Magic
will automatically go to a relational database and grab the structures for you. Or if
you're using a nonrelational database, you would describe what your files look like.
The third level is programmed; that's where you're actually writing your programs and

819

RECORD, VOLUME 20

you're describing what you want to do. And then we have security and pop-up and
pull-down menus and so forth.

MR. GILES: We've heard the terms interpretive language and compiled language, and
many developers use that as a point of debate. What are those and what are the
pros and cons? I guess Ray actually used the term; would you like to be the definer?

MR. MARTIN: Well, a compiled language is one that produces final source code that
runs directly on the computer without any other external programs. LOTUS is an
interpretive language; I would consider APL an interpretive language; there's a
program that's running your program. A compiled program will run much quicker
than an interpretive program.

MR. GILES: What is SASS, interpretive or compiled?

MR. MARTIN: It depends.

MS. DEBRA K. TOOHILL: A compiled language takes your code, translates it into
machine language, and runs directly from machine language; it runs faster. It is
harder to debug because you get these mountains of syntax errors. I wish I knew
what happened with FORTRAN since the 196Os. I'm now an APL programmer, and
you can't get me away from APL. I like it for what I do. But I was interested in
learning about C, and I'm kind of disappointed that there isn't somebody here to tell
me about C.

I was writing a program and had an error that popped up. It was reading a file on the
209,000th record, it was mainframe APL, but I was able to get the program to
continue. I didn't have to rerun 209,000 records to redo it, and that's the big
beauty, I think, of an interpretive language. So I've done both.

MR. TOBLEMAN: It's beauty is also a drawback if you're going to be using a
repetitive, such as if you're doing some valuation every day, every week and it is very
large. The beauty of it can also be a problem. You're exactly right, that's one of the
trade-offs.

MS. TOOHILL: Yes. But I do have a question on Magic. It sounds to me like this is
a great thing for the sort of stuff that COBOL might do, but is it a number-crunching
language?

MR. KOFFLER: That's a good question. For example, an insurance package is
actually in some of the big insurance companies around the country and is written in
Magic and does lots of number crunching. But let's say, for example, you already
have certain procedures written in C. I don't know APL, so I'm sure if it compiles--

FROM THE FLOOR: i_ does not.

MR. KOFFLER: Oh, it doesn't compile. But I could actually run any language that
compiles to an executable from Magic. So I could use Magic as a front end and
actually run some of these compiled executables that you already have in your

820

COMPUTER LANGUAGES

system. But can it do number crunching? Yes, it definitely can do number
crunching.

MR. GILES: But it has all the mathematical functions; I mean even trigonometric
functions I think, doesn't it?

MR. KOFFLER- Yes.

FROM THE FLOOR: My application is to produce for financial statement purposes
some reserve numbers. The input into it is a set of assumptions for interest rates,
termination rates, lapses and that kind of thing, and also a set of in-force data, the
109,000 people in force. We had a system set up in which APL took the assump-
tions and created a file of reserve factors. A FORTRAN program took these reserve
factors and applied them against the in force and produced a file that had all the
information in it. And then we took a reporting language, SASS I think it was, that
took the information that FORTRAN produced and created a nice document that
would go into the financial statement. This seemed like the best solution. Does it
seem like the best solution to you, and what language should it have been in?

MR. TOBLEMAN: I'll speak quickly. I think that's a very intelligent use of the various
tools. Your use of APL in that example is correct, I think, and I would stop it there.
It's very good for that. Then let something else that's faster at applying factors to in-
force units do those calculations and then finish up with a report writer that especially
is nice and neat for designing reports. I think that's beautiful.

MR. CAVAZOS: Well, if you're doing that and looking at that, what would you do?
Would you want, on an ongoing basis, someone to have three groups of people to
learn different software packages? Would you want one language that could actually
do everything that you need, from taking your database all the way to polishing off a
report, or do you want people to essentially learn one language for this aspect and
another language for another aspect? I know in my experience it seems like a lot of
this has been evolutionary. We originally had a file database system and an evalua-
tion system. Later we added on a report system. And then later we upgraded
systems. Part of the system is now in COBOL, part of it is in FORTRAN; some that
could be done in COBOL couldn't be done in FORTRAN. Where do you make a
bridge of using one language, and how do you maintain the knowledge base for all
the different languages? It seems like a problem to me.

MR. TOBLEMAN: The actuaries are primarily the ones doing the assumption setting
and the factor derivations. And my personal belief is I don't think actuaries should
follow the project necessarily downstream. Once you have reports and you have a
program that will apply factors to in-force units, why does an actuary need to follow
that downstream? So I think it's natural for other data processing people or other
people within the company to have those other skills. I also think you need to under-
stand that these other tools are just good tools in general. It's good to have a Magic-
type program or something else, and that's not going to be the only application. So
it's not exactly like we're going to be wasting resources because we have several
different platforms that are being used within a company; that's my feeling.

821

RECORD, VOLUME 20

MR. GILES: In the life insurance application of Magic, you must compute the policy's
TEFRA premium, its seven-pay premium. They do that calculation downsl_eam to a
spreadsheet. It probablycould be done in Magic, but one of the owners of the
company, an actuary, says that most actuariesdo It in a spreadsheet. So there's an
example of mixing and matching, but I sympathize with Mark's point of view.

MR. KERRYA. KRANTZ: Frank's comment about what he does is similarto what I

do. When we do a projection of, say, a five-yearplan of where our businessis going
for statutory or GAAP reserves, if we start with our GAAP reserves as an example,
our in force is over 120,000 records. So I'll run a FORTRAN programon the main-
frame, which will project it for five years recordby record producingsummarized
results. I'll then download that to a PC and put it into a LOTUS 1-2-3 worksheet.
When we do our valua'dons,we have quirks. It seems like the factor generation is the
easy part. The computer does all the work, we don't have to worry about It, but
becauseit's easier in a spreadsheetto do manipul_ons, since each cell is essentiallya
program, you can do many things that way. I want to point out that you could use
several different languages. You could use BASIC, APL, LOTUS, if you want to call
that a language,or FoxProor dBase3 or whatever, and you can linkthem together
because they have hooks now in the languages,userexits. So, for example, if you
have a .BAT file, you can start where it will say, start LOTUS 1-2-3, which will have
an auto 1-2-3 file, which will then load a spreadsheet,which can then have an exit,
which can then run a BASIC program, which will create some of itsdata and bring it
back into LOTUS. I findthat makes things easy. I try to write a lot of macros; I
don't have to worry about editing what's in the spreadsheet. It will automalJcaUy
bring data that I've downloaded from the mainframe. Forexample, if I download a file
that's called August 1993, then the spreadsheetputs in a section called August
1993.

MR. SLOAN: As a consultant in product development, I have to communicatewith
my clientseasily, and we use FORTRAN for most of our product developmentwork.
But then I can take the resultsof my FORTRAN and import It into EXCEL, which I can
then fax to the client. It is a very useful process. Now I'd like to call your attention
to another languagethat I use at home; it's called GAUSS (Aptech Systems, Inc.,
Kent, Washington). You might describeit best as a left-handed versionof APLo It
works very much likeAPL starting with the assumptionthat everything is a matrix.
And it's very, very fast, but it doesn't go right to left. It's a PC-orientedlanguagethat
got a whole lot more out of the old 86s than anythingelse did. It's marketed mostly
to statisticians,but it has hooks for C and FORTRAN and whatever.

MR. GILES: Let's get back to SASS, because so many people raisedtheir hands on
that. What's your view of SASS?

MR. KOFFLER: I used SASS when I was in college doing regression analysis and I
haven't used it since.

MR. GILES: But is it a fourth generation, where does it fit in this hierarchy, and what
is this hierarchy?

MR. KOFFLER: SASS has changed a lot since I used it. When I used it, it was
mostly used for analysis purposes, and it at that time was less of a development tool.

822

COMPUTER LANGUAGES

From what I've seen and from what I've heard, it's become a lot mere of a develop-
ment tool, but I haven't used it in probably the last 8-10 years.

MR. GILES: Well, let me ask you another question. You say Magic is beyond fourth
generation; can you take us through the generations?

MR. KOFFLER: OK. Let's look a little bit. Actually, at the lowest level is Binary,
zeros and ones. Then you go to the next step, such as a 2 GL, which would be
assembler, which actually interprets the Binary. And then you go to the third GL. I
don't think anybody, at least in this group, deals lower than that. You have for
instance COBOL. In COBOL, you're writing lines of code but you have to write quite
a bit of informa'don to actually get the result. So they decided, why do we have to
write all this? Let's make this easier so they came out with 4GL, and usually 4GL
deals with sequel or SQL with relational databases. It makes it easier to get to the
information, and you're writing less inform_on to get to it. And in a way I would
say Magic is a post-4GL, because instead of writing lines of code and editor, you're
describing what you want to do into tables and it makes it even easier. So it's just an
evolution of the systems.

MR. GILES: What are the fourth-generation languages?

MR. KOFFLER: You have Focus, you have Progress, you have Power Soft or Power
Builder, you have GUPTA; there are 10,000 different languages.

MR. GILES: And that is the problem we're facing; how do we sort through all these?

MR. KOFFLER: Actually, that's a good question; how do you decide what is the right
language? You have to look at what the application is. What are you trying to have
occur? What do your end users want? Decide which will be the easiest way. The
best way I've seen to decide which tool is the one is to get a piece of a project that
you already have and do what's called a rapid application development project. So
say here's the project I've already done. I know how long it took me to do it in
COBOL, for example. Say I want to do this piece, I know how long it will take, I'll
write out specifications, and I'll give these specifications to maybe three or four
different companies and ask them to come in and do this particular project on your
system, on your database, using your data, so you see if it works. And that's the
fairest and the best way I've seen to look at different tools and decide what the best
tool is. Because it's your system, a piece of your system, you know how long it
took, you're seeing it done with your data and on your system.

MR. GILES: I asked the few people I know who use Magic how they started using it.
And their answer is, they _/every new program language that's available. I can't do
that, I can't drop APL and try everything. If everybody were like me, there would
never be any progress, nobody would ever tTy something new. But that is the
problem. When do you decide how to take that next leap? We're all struggling with
that. Does anybody sympathize with that?

MR. ROBERT E. GOVE: I've gone through this for the last five years on what to do.
And I learned FORTRAN, we didn't have APL. And when I went to PCs, I migrated
to BASIC for the same reason Dennis likes APL; you can stop it in the middle, change

823

RECORD, VOLUME 20

your data, and progress on. It's cheap but it worked, and I still have some programs
I wrote ten years ago that work. I'd like to rewrite my valuation programs and I have
been. I started doing some things for clients that they wanted done cheaply, and I
tried to find a way that they could do all the input. And I went to Clarion because I
could do the screens; I can paint the screens on the PC and it generates all the code.
I can draw the report on the screen and it generates all the code. Clarion's come a
long way. It just came out with its Version 3 last year and it has a lot of problems.
I'm part of the beta testing on the WINDOWS version, it's a database management.
If you people are in APL or FORTRAN, I'd stay there. He talks about an end user; the
hardest thing I had to figure out was that I am the end user. I am the user, I'm the
end user, I'm the developer. When he's talking about end user, he's talking about the
person out there who's doing the policy work, inputting the issue date, or the
address. That's not you, and I had the hardest time figuring that out. I've stuck with
Clarion because it does all the screens for me. You mentioned C; I'd leave it alone.
I've never had anybody who programs in it tell me anything good.

MR. GILES: We need more speakers like that; we want this to be confrontational.

FORM THE FLOOR: I have a question, I guess it's for Mark. I've used APL a little bit
myself, and APL has been referred to as a write-onLy language. Once you write it, no
one else in the world can understand what you wrote. And it seems like Magic kind
of has some of those qualities, too. Everyone is free to set up his or her environment
exactly the way he or she likes it. So when I come into someone else's environment
and hit the F5 key, it doesn't do the same thing as when I get into my environment
and hit the F5 key. If you were to go in and debug a program or try to modify a
program, which would be the best language that you would like to look at?

MR. KOFFLER: Can I first just differentiate that a little bit? Remember we talked
about the different tables. The first table lets you set standards so you can set
standards for all my developers when they're developing the application. Here are the
stands that they're going to do, this is the keyboard mapping you're going to use,
these are the colors they can do. I can tell all my programmers to use this color
when they're developing a data entry screen and they say, well, OK. Now the
president of the company says to change this data entry screen. I can go to one
place, one table, make a change, and it's changed throughout the system. That's
allowing Magic to use its object-oriented features. Also, talking about documentation,
Magic has full documentation. For everything you're doing in the system, you can
get complete documentation, and also you can actually only document things that
you want to document. So it lets you easily set standards. If you press this key and
this is your standard and it's set on your application, every single place you make this
change it will always be the same. Now if went into a different installation, it could
be totally different.

FROM THE FLOOR: So what you're saying is that the person operating it is setting
the standard; it's some central location.

MR. KOFFLER: Well, actually it's a choice. It could be centrally set or you could
have it so the user could set it. If the user sets it, then it's going to be different
between two different machines; that is correct, right.

824

COMPUTER LANGUAGES

FROM THE FLOOR: One user sets the function key one way. I'm used to my way,
then I come over here, it doesn't work.

MR. KOFFLER: So if your company wants to set a standard, you can easily say this
is a standard and every single machine, terminal, if you press this key, will always do
this. When you're testing your applications, you don't have to test whether these
keyboards are going to do certain things, you know they'll always do that particular
function.

FROM THE FLOOR: So I can set up my function keys a certain way, and someone
can override them.

MR. KOFFLER: Yes, that is correct.

FROM THE FLOOR: If you come in one day, it doesn't work the same.

MR. KOFFLER: If they want to set the standard, they could, yes.

FROM THE FLOOR: I guess I'd still go back to Mark.

MR. CAVAZOS: Well, in my experience, I haven't done the actual programming.
We've had a programming group, but the problem that I see is somewhat related to
it. In some of the very old languages that we had, we had programs that were
actually written in assembler language, and whoever the programmer was left and
now it's a black box. It was just being used and we knew what came out of it but if
something went wrong, we wouldn't know what to do with it. That's why to me
it's not so much whether one program is truly superior, one language is truly superior,
but that they're consistent for all segments of your program. That's what it seems to
me would be important. Also, because programming people may not stay with a
company forever, you will need other people to come in who already know the
language. So I would think you'd want something that may be a little bit more
universal and then within that, have the documentation for it.

MR. GILES: There is a trade-off between programmer creativity and documentation,
and I guess these object-oriented languages drive the professional programmer crazy.
It takes away his or her options.

MR. KRANTZ: Going back to my memories of APL days, I want to talk about
Roberta Canfield, who was my boss at my prior company. She was the best APL
programmer I've ever encountered. She would write programs that were table driven,
which is what I would call a fourth-generation-plus language. Instead of having a long
coded program, in which you have to look line by line to see what's going on, she
would create tables where you would go into that table to find out what you wanted
to do, and so documentation was automatic with her. She would just print out the
tables. If you were calling the table that came up with lapse rates, you would just
say "load table A." There would be your lapse rates, and the formula for calculating
persistency would be right there in the table. SO documentation depends on program-
ming abilities. Sometimes in APL you'll have a long code and nobody will understand
it because it was written A gets 3, B gets 5, C gets A + B. Well, that's easy, but
when you go 400 lines and you've got all the Greek letters in APL, I won't remember

825

RECORD, VOLUME 20

all these combinations of the characters, so the language is important. COBOL is a
good language because it automatically forces you to document; FORTRAN is less so.
BASIC, when I first encountered it, was a single-letter version of FORTRAN. I think
today it's a lot improved. The only experience I've had with C is we had a non-
actuarial programmer at my last company who programmed in C, and he explained it
to us one day. It seemed like it was closer to COBOL than other languages and that
you had to declare more things.

FROM THE FLOOR: My question is for Dennis. I've always had an interest in APL
because APL seems like it's the actuarial language. The languages we use are Easy
Tree Plus, SQL, and LOTUS. When we got Easy Tree Plus, it made things in my
department just so much easier because I do things, such as calculate a raise. I
guess what I want to know is, what are some of the health-insurance-related things
that can be done in APL that can't be done in these languages, or that are much
easier in APL? I'm still interested in learning about APL and wonder if our company
should get it.

MR. TOBLEMAN: Well, I'll try to say quickly, first of all, if your company's needs are
being met with the tools you have, why change? Now what you're asking is, are
there things that you're not aware of that maybe could be served better? A guy I
used to work for has written profit projection systems in Symphony. Now I've
written one in APL. I can assure you, mine allows much more flexibility and input,
it's also more complicated, but I've taken the time to put in more tables, a more
on-line documentation that automatically comes up every time someone calls in a
certain segment of the program. So you don't have to be looking for help keys and
the like. Again, APL's strengths are present-value calculations and projections,
because you can do calculations of premiums and things like that in your spreadsheet
environment, and I'm not familiar with Easy Tree, for instance.

MR. GILES: One of the first applications of APL that I used was disability income
premiums. APL seemed to work well where you had termination rates and incidence
rates and many tables. The Society is promoting Actuaries Online. Have any of you
experienced that? Anybody want to speak to that, help the Society out?

MR. GOVE: If anybody in here is on CompuServe, it's just like anything else you get
into, as in the forum. If you catch anybody on line, you can call him or her up and
talk. It's easy communication; you can leave messages to many people. If every-
body will get on, you can pull up and see if anybody needs help. You were talking
about support; I use Clarion and Magic's the same way, I'm sure. You go in, you
have a question, you just leave it. You come back two days later, you have about
20 answers. You start a thread, and it goes off on different tangents, but with
Actuaries Online, if you need something, you have specific questions, you can ask a
question. I've already gotten some good help on it. I recommend it.

FROM THE FLOOR: i started my actuariai career by using APL and it's great. I
started using it for pricing and calculating reserves, but APL is not that great for
experience studies. Then I got SASS on the mainframe and SASS is so good for
doing experience studies. 1 guess most people know, it's just using a summary to get
whatever you want. We have SASS on PC. I find SASS on PC is quite slow. Then
I moved to the current company. I don't have SASS; I have to go back to

826

COMPUTER LANGUAGES

FORTRAN. When I do experience studies, I do a state-required report. You always
need a summary by policy form, by whatever criteria to get the premium, get a trend.
FORTRAN seems very quick, but it takes too much time to program it, and APL is
not that good. I tried to convince my boss to purchase SASS, but the problem is it's
too expensive. A week ago, I had a chance to be exposed to Microsoft Access.
You have to copy the data to memory before you can do anything, so I think it will
have some memory problems. SASS on PC has memory problems. Is anyone doing
experience studies, doing those kinds of state reports? What other choice is there
except SASS?

MR. RANDEL S. SWANSON: For right now, we have a language called Focus,
which is a database that we use to get in-force information off the mainframe. Then
I take the information as it's summarized from Focus and download it to the PC. I
put it into a spreadsheet and I do some stuff with it. And then I take the numbers
and I shove it into APO and I do some more with it. So it's going back and forth,
but Focus is the language that I use; it's another database manipulation. It just gets
me a summarization of the in-force data and I shove it into APO or LOTUS.

MR. HOWLAND: Focus is also in use at Blue Cross in New Hampshire mostly by the
systems folks. There's a little bit of a tug of war between the users who like SASS
and the systems folks who like Focus, mostly because SASS wasn't their idea so
they don't like it. But it is similar to SASS. I can't speak to the support that its
organization provides, but I can also tell you that it's more expensive than SASS.

FROM THE FLOOR: I've done a few experience studies and use SASS on the PC,
and I found that for the blocks of business that I've been looking at, time and speed
is not a problem, it gets done quickly. I'd like to echo the expense problem there.
SASS is not a software package that you buy for your PC; you're leasing it so you
have a charge. If you're only one workstation in the office, it could be $500 a year
instead of just buying a package for $300. We're looking at other databases;
Manager, maybe Paradox, or something like that might be able to do the same kind
of calculations and summaries and report generation.

MR. GILES: Let's get back to Clarion. We had a strong support for Clarion. Does
anybody else use that?

FROM THE FLOOR: This is not Clarion, but this is a Paradox SASS situation. We

use SASS heavily and we had one new programmer come in and use Paradox. I
wouldn't do it. It isn't as efficient, it was much more problematic. I do have a
question though. We seem to take our health care data beyond just experience
studies. We're often using large heaith data files and other mixed sources along with
perhaps demographic files, doing a lot of mixing and matching. I'm told that SASS
doesn't do that well and that we need to move onto another product, a relational
database manager or something. I just want to know if anybody else is doing that
sort of thing. Is there a good set of tools for that?

MR. KENNETH K. LAU: I'm partly responsible for developing a large software product
called Champ, which does health care monetary. We at one time started with Clipper
and then we moved to FoxPro. Now we just changed it to Power Builder. Some-
time early next year there will be Power Builder, which will be WINDOWS based, and

827

RECORD, VOLUME 20

a relational database at the background using client server technology. This is talking
about developing something for a user-oriented system but if you want relational
database, Paradox is a good one for desktop, or FoxPro will be a good one for
desktop if you do programming. For end-use oriented, I think Paradox is much better
than FoxPro. You don't have to worry about the language, you just use the Query
By Example (QBE) and you just pick the field that you want, bring up two or three
databases, and put them together. It's very easy. For example, you take the
demographic data on one table, and you take another piece and your experience data
on this other table, bring them together, and it's no problem.

MR. KOFFLER: Can I say something too? Magic does allow you to get all this data,
and that was one of the major features in the beginning. All these islands of data
and Magic would help you bring them all together and use all the information so your
end users can quickly have all this information and make use of it. And if you do
look at tools like that, make sure you look two ways. There are more than two
ways, but there are two main ways to get to this data. One is what's called ODBC.
ODBC is an open way that allows you to easily access data, and then there's what's
called optimized gateways, and optimized gateways is written specifically for that
database. Now the differences in an optimized gateway will be much, much more
efficient. It's written for a specific database rather than ODBC, which is more
general. Of course, Magic is optimized gateways. So when you're looking at this,
take a look because some tools will let you access data but they use ODBC. If
you're using large amounts of data, you'll have speed and transmission issues,
because a lot of it will happen on the client side instead of on the server side. When
we start dealing with the client-server environment and relational databases, those
issues start becoming very important.

FROM THE FLOOR: I use APL because the tasks I use are basically a lot of quick
and dirty programming, and I appreciate that there are documentation problems with
APL. But because of what we do, it fits our bill. However, we've talked about the
weaknesses of APL and the weaknesses of some other languages; what's Magic's
weakness?

MR. KOFFLER: What is Magic's weakness? Say I was going to write a device
driver, for example. One of our clients has have gas stations all across the country.
It deals with the pumps, sending information back and forth to the pumps. If I was
going to work at that kind of low level, I would write that in C, and I would use
Magic as a front end to call it. Besides that low level type of thing, I see all types of
applications written in Magic from artificial intelligence, many business applications
integrating with financial systems and insurance packages. Our other major weakness
is that we do have a good graphic user interface (GUI) product, but it doesn't have all
the features yet that a product like Power Builder does. We have a product coming
out at the end of the year that will have more of those features.

MR. GILES: A GUi feature being?

MR. KOFFLER: A GUI feature being where you're using a product under WINDOWS.
WINDOWS allows you to have many, many features, and Magic allows you to run as
a WINDOWS application, but it doesn't allow you as many features under WINDOWS
as a product like a Power Builder.

828

COMPUTER LANGUAGES

MR. LITTLEFIELD: Someone mentioned linking a lot of data together, and that
sounds like something that's not on your PCs. Is that correct?

FROM THE FLOOR: Mainframe.

MR. LITTLEFIELD: We're in a situation where we're not a big company as far as
number of actuaries. We do deal a lot with the information on our minicomputer and
there's a distinction. You have tools that you'll be using on your mainframe. You
have large data sets, you have millions of records, you don't want to fiddle with that
on your PC. You have to have a tool on your mainframe to deal with that sort of
thing. You have to extract it and/or summarize it, There are tools out there for doing
that and for linking raised data sets so that you can link your enrollment information
to claims information, to anything else that needs to be linked, and you do all that
beforehand, create a suitable file that is more manageable. Those 100,000, 40,000,
10,000, 5,000 records that you get down on your PC and you can play with it at a
database, you can put it in APL, you can throw it in Magic, whatever. But keep in
mind that if you have that data up on your mainframe, you must have something to
deal with it. You need a large computer, and that's something we haven't touched
much, but that's a very important consideration, what you're doing out there. You
save a lot of grief when you put it down in your PC. Give some thought to what
you do up there as far as putting all that data together. They have some nice tools.
We're on an HP platform, and you have PRESENCE and some other things you can
use to link data sets, even if you don't have relational databases. You don't have to
get a relational database if you want to link things. There are tools out there that do
that on your minicomputers or your mainframes. You link it up there and then you
have a nice file you can use on your PC.

MR. GILES: Well, we are shooting at a moving target because as the PCs get more
and more powerful and can handle more and more records, the equation keeps
shifting.

FROM THE FLOOR: Have you ever heard of Pac Base?

MR. KOFFLER: I haven't heard that, no.

FROM THE FLOOR: I knew a little bit about it, like maybe five, six years ago, but
you set up tables similar to Magic. I think it originated in France.

FROM THE FLOOR: We moved toward office of the future. We have remote users
trying to link via modem to the local area network (LAN), and then we have people in
house on mainframe. We're trying to move data all over the place, and one glitch
we've run into most recently, as we have now some permanent remote users, is
trying to get into the LAN in a WINDOWS environment. Is there a way to get into
the LAN when you're in WINDOWS?

MR. KOFFLER: Sure. Many products out there will do that. Many communication
products will let you easily connect from a remote location. Carbon Copy is one of
them.

829

RECORD, VOLUME 20

FROM THE FLOOR: We do that but not with WINDOWS. Apparently, WINDOWS
takes ten minutes to fill out your screen when you're using Carbon Copy. We had to
have $10,000 for the right telephone line.

MR. KOFFLER: Yes, a T-1 line.

FROM THE FLOOR: We wanted to avoid the $10,000 telephone line.

FROM THE FLOOR: It's my understanding that the DOS system--and we're not
doing commercials for any system, but since we at our company use it, we need to
know these things--is going in the future to run off of the WINDOWS environment.
And because we have a LAN network, I know that we have to be able to access the
DOS system through our network. We had problems with WINDOWS when I
upgraded from four meg to eight meg on my PC, and so we installed 3.1. I know
that the networks in WINDOWS do talk to each other, because when they installed
WINDOWS, there was a question of whether a LAN was present. We're on a Novell
network and it recognized the network.

MR. KOFFLER: If anyone wants information on Magic, the number is
1-800-345-6244.

830

