
RECORD OF SOCIETY OF ACTUARIES

1995 VOL. 21 NO. 3B

WHY SYSTEMS ARE ALWAYS LATE

Instructor: RANDALL ALEXANDER KAYE

Why do systems projects seem to take so much longer than originally thought? lf we
spend the extra time, do we get a better system in the end? Why does testing take more
and more time, and seem to be less and less effective? We have all these project manage-
ment tools; why do we still have problems managing these projects? Systems development
is a technical discipline different from actuarial work in both methodology and expecta-
tion. As actuaries become more and more involved in systems activities, we must better
understand these differences.

MR. RANDALL ALEXANDER KAYE: I am a member of the Computer Science
Section council, and I am also the Computer Science Section's representative for the
spring program committee.

My background has been primarily in the area of life insurance, first with small Canadian
companies in an actuarial capacity. Then by working on the reserve valuation, I became
more acquainted with administrative systems, eventually spending all of my time on
system-related issues, even though I was still positioned in the actuarial department. From
there I worked for a U.S. software vendor for several years, then returning to a life
insurance company environment where I became director of information systems. Finally,
I have been providing systems consulting to LOGISIL's clients for the last six years.

It's not an easy mix--actuarial and systems! A vice president of systems for a reinsurance
company once told me that it would not be easy developing this niche, and he was right.
As he explained, systems people will never see eye-to-eye with actuaries, since in most
other industries, it's the systems people who are the prima dormas!

OVERVIEW

In describing why systems are always late, I want to start at a high level, examining North
American management, and then become more detailed, discussing systems management,
how users have become involved in the development of systems, then turning to the
formal systems development process. Next we'll continue by seeing the challenges facing
project managers of systems projects, as they tryto do in-house development. Since this is
so difficult, many companies turn to outsourcing and vendors, although, as we will see,
these have their own problems.

NORTH AMERICAN MANAGEMENT

North American management people are too preoccupied with the "quick fix" or "magic
bullet" that will solve all of their problems immediately. They want to apply technology
willy-nilly, without trying to find out the root cause of the problems. Technology is just
an amplifier, so applying technology often serves only to "turbocharge" the bottlenecks,
and can bring a badly managed company to its knees.

Too often, I find the disappointment executives feel with systems projects, and with what
technology can do for them, caused by their expectations being inflated out of proportion.
The suppliers of technology, both in-house and external, are at fault by not managing their
"client's" expectations properly.

457

RECORD, VOLUME 21

Another thing you may not realize, but I've found is vice presidents of companies
exaggerate. They exaggerate to their counterparts on the golf course, and they exaggerate
in articles in the trade press. In so many areas where I've had firsthand experience, I know
that these projects didn't go as smoothly as they say, and the changes their company
experienced haven't been as beneficial or far-reaching as they claim they were. If they
were, why do we see them so soon looking for another technological fix for the same
problems? Perhaps it's their egos talking, but I'd much rather talk to a programmer than a
vice president to find out how a project progressed or how good a new piece of software
is.

The Japanese don't go in for the "quick fix;" instead they embrace Kaizen, or continuous
improvement in incremental steps. The Japanese are looked upon as the best engineers,
although they themselves recognize they aren't good at software development or industrial
design. For example, the Mazda Miata was designed in California, and U.S. companies
are contracted extensively to supply software.

REENG1NEERING

The Japanese aren't looking for radical change as we are, with all of our reengineering
projects. Today, everything seems to be a reengineering project. Too often our executives
are just paying lip service to the latest management buzzword, as a means of attempting
another "quick fix."

Michael Hammer defined business process reengineering (BPR) as the fundamental
rethinking and radical redesign of an entire "business system" to achieve dramatic
improvements in critical measures of performance. Its key concepts are that business rules
were created before the availability of computer systems (and are therefore paper-based),
that 80% of the administrative processes add no value (since most effort manages work
flow or verifies previous work, such as duplicated data entry into various systems), and
that the application of information technology enables entirely new processes. It is
estimated that 50-70% of BPR efforts fail, due to either not getting the business strategy
right first, or being ham-strung by middle management who feel the most threatened and
have the most to lose, or by change that isn't radical enough. Successful BPR projects
recognize and deal with the resulting radical changes in job descriptions, the reward
structure, and the ways of measuring performance.

Many systems projects are being misclassified. Reengineering often gets confused with
downscaling, since executives use common technologies, but they are very different
things. Reengineering projects are driven by the company's business areas, while
downscaling projects are driven by the information systems department. Reengineering's
cost/benefit analysis derives its benefits from lower corporate operating costs (that is, a
lower head count), while downscaling derives its benefits from lower information systems
costs. In successful reengineering projects, systems costs actually increase! Successful
companies pick one or the other. Too many times, executives read two different articles,
one lowering technology costs, and one lowering corporate costs and they think they
can do both; they can't. Is North American management leaning to centralize or
decentralize? I've heard of a consulting firm with two phone numbers, one for clients who
want to centralize and another for clients who want to decentralize. This isn't as far out as

it sounds. I know a CEO of a life insurance company who was asked by his staff if he
favors centralizing or decentralizing, and he said "Both!" He believes in centralizing for a

458

WHY SYSTEMS ARE ALWAYS LATE

few years, then in decentralizing for a few years, not because he changes his mind;
instead, he uses this as a catalyst for changing his company, and for reevaluating itself.

LESSONS

How should North American management invest its dollars? Surprisingly, a General
Motors study showed no correlation between investing in technology and improvements in
productivity and quality. However, there was a correlation when investments were made
in human resources reform, such as reorganizing into teams, empowerment programs,
education, and training.

The lesson we can learn from this is how important "people" technology is; how we must
continue to lower the barriers of communication between people and computers. We can
see this stress on the human interface, in all of the development today in graphical user
interfaces. Do you remember when people took programming courses because they were
worried the computer was passing them by? Well, it actually turned out that the computer
had to come to them and become more accessible and easier to use. Another area of

development illustrating how technology facilitates human communication is the work on
local area networks (LANs) and the new hot topic "groupware," bringing people together.

The real lesson ofreengineering is to reorganize and simplify the business processes
before applying technology.

Another lesson for us is to beware emerging technology. Don't think you have to be first
to use new technology. Instead, you should be creative and innovative in how you apply
traditional technology. Only large corporations can afford to speculate or "gamble" on
new technology. Victor Janulaitis, president of Positive Support Review, recently noted
that only 5-8% of companies today are leaders in the competitive use of technology:
"These are mostly small entrepreneurial risk takers and large corporate R&D departments.
Everyone else seems content to pursue a protective follower strategy." As a CEO of a
medium-sized office equipment supplier said, "We don't want to die on the cutting edge of
technology. We'll wait until new technologies are proven, then use our sales and services
organization to get and hold market share."

SYSTEMS MANAGEMENT

Now let's turn to the management of systems departments. One person I talked to thinks
that to best explain modern systems management, one should turn to chaos theory.
Seriously though, we have seen the rise of a new corporate title to accompany CEO, chief
operating officer (COO), and chief financial officer (CFO); that is, the chief information
officer (CIO). In most companies this is the vice-president of information systems (IS).

But systems departments are criticized for being slow and unresponsive; users want more
control. The CIO seems most concerned with maintaining levels of procedures and
control. Perhaps the IS department has become too big. I recently attended a presentation
on human resource issues regarding acquisitions and mergers. At that company, they use
rules of thumb to model the resulting merged company's organization. I was surprised
when the suggested size of the IS department for a 1,000-person company was about 200!
I think back enviously of how much we could have accomplished in some of the much
smaller companies I worked in, if we could have had 20% of the total staffdevoted to
information technology.

459

RECORD, VOLUME 21

I also think that all of the emphasis on procedures and control may also be based on the
CIO's fear of having the big mistake made on his watch. Indeed, statistics show that the
annual turnover rate among CIOs is about 25%. No wonder some people say that "CIO"
stands for "Career Is Over."

The traditional IS department was structured along process lines, with separate depart-
ments for systems programming, database administration, network management, and
application programming. Today, the CIO brings himself closer to the core of the
business by organizing by application area, with separate departments for sales applica-
tions, engineering applications, marketing applications, and so on, with one department to
provide technical support,

SURVEY OF CIOs

Deloitte and Touche publishes an manual survey of CIOs. The questions change each
year, so you can't necessarily compare the responses from year to year. Some of the more
interesting items I noticed from one of the recent surveys, is that it seems all projects are
called reengineering projects. Another thing I noticed is that when companies outsource,
they usually only outsource the data entry,, data center operations, and!network manage-
ment functions, not the entire IS function. Generally, the expected cost savings from
outsourcing are not realized.

But what I wanted to bring to your attention from this survey are the following two lists.
The first list shows what CIOs think are the most important reasons ibr systems develop-
ment cost overruns. In order, they are:
1. Increased scope of development
2. Lack of user consensus

3. Inaccurate project plans
4. Lack of user involvement

5. Inaccurate cost projections
6. Lack of qualified personnel
7. Inaccurate processor estimates
8. Cost of training
9. Staff turnover

Number one is what I call creeping scope, which is the tendency for just a little bit more
additional functionality to be added to an existing project, over and over again, without
adjusting project schedules and expectations accordingly; we'll cover creeping scope in
more detail later. The interesting thing about this list is that three of the top four items can
be remedied with more communication, understanding, and relationship building between
users and systems developers.

The second list shows which application development techniques CIOs say they are using
most. In order, they are:
1. System development methodologies
2. Fourth generation languages
3. Personal computer (PC)-based development
4. Prototyping
5. Joint application development (JAD) sessions
6. Computer-aided software engineering (CASE)
7. Application generators

460

WHY SYSTEMS ARE ALWAYS LATE

8. Rapid application development
9. Object-oriented programming languages

Number five, JAD, is a technique in which users and systems developers jointly design
and plan a system (and its development project) through highly structured, facilitated
workshops. The curious thing to notice here is that JAD is the only technique listed that
involves users. And even then it's number five on the list. It seems that CIOs still aren't

getting their own message.

SYSTEMS DEVELOPMENT WITHOUT USER INVOLVEMENT

I like to show a series of cartoons entitled "systems development without user involve-
ment," each showing variations on a theme (a child's swing, attached to a tree branch), but
with different captions:
1. "As Proposed by the Project Sponsor" has two ropes to the swing but three boards

several inches apart.
2. "As Specified in the Project Request" has three ropes and one board.
3. "As Designed by the Senior Analyst" shows two ropes and one board, but the

ropes are attached to the tree's trunk, rather than the branch.
4. "As Produced by the Programmers" has two ropes and one board, but the ropes are

tied to different branches on opposite sides of the tree.
5. "As Installed at the User's Site" shows the previous picture, but with the entire tree

propped up on huge crutches.
6. "What the User Wanted" shows a spare tire hanging from the branch by one rope!

Is it any wonder that users are dissatisfied? Attempts have been made to try to involve
users more, for example, in facilitated workshops such as the JAD sessions. Another
method has been to try to reorganize, either by centralizing (moving users into the IS
department) or by decentralizing (moving IS staff out to the user departments). I'd like to
recount a portion of Smitty Grayson's experiences at Western Farm Bureau Life Insurance
Company. In "Battling the Backlog Beast," (The Interpreter, Insurance Accounting
Systems Association (IASA), September, 1985) he writes:

A department entitled Methods and Procedures reporting to the Senior Vice
President of Operations was formed with the purpose of developing application
program specifications, providing user education, and testing all new application
systems. The user departments were considered exempt from testing activities and
allowed to concentrate on normal day-to-day production work. The user areas did
not experience the same rate of progress as that of the Methods and Procedures
department. The knowledge of new systems possessed by the users was insuffi-
cient to properly support their introduction. The demand for assistance from the
Methods and Procedures department was overwhelming and since they had little
authority over the areas in which they were obligated to serve, the attempt proved
unsuccessful. A new group arose from the ashes of the old Methods and Proce-
dures area that was recognized as a working unit within the systems division.
Upon its inception, it was dubbed the Quality Assurance (QA) department. The
objective of the department was to perform the actual testing of code from pro-
gramming. The emphasis on providing user education and specification develop-
ment by individuals of this area was relaxed. Unfortunately, the priorities of the
QA area frequently conflicted with those of the user departments and, all too often,
the unit testing required more specialized individuals than those in the QA

461

RECORD, VOLUME 21

department. Because of the dependency of the user departments on the QA
personnel, this endeavor also failed and the group was ultimately disbanded.

After lengthy debate by the different areas of the company regarding this dilemma,
several conclusions were reached:

1. The education of personnel and testing of specific changes should be
performed by highly specialized individuals, and they should be directly
assigned to the managers of the department they intend to serve.

2. The data processing area should take a position of support in matters of
research and development rather than assume control.

3. The feasibility, justification, and specification phases of a project should be
performed by the department requesting the change.

These requirements laid the foundation for the evolution of a position known as
User Analyst. The former employees of the QA department were reassigned to
specific user areas based upon their education and experience. Since they report
directly to the manager of their newly assigned areas, they essentially disassociated
themselves from the systems division. The requirements of specification develop-
ment, educational instruction, and departmental proceduralizing were displaced to
the User Analysts leavir_g the programming department to perform pure data
processing functions."

User departments have also become more involved by hiring and developing "power"
users, extremely computer-literate user staff. Typically, the IS department has tried to
ignore "power" users, since they tend to oversell the benefits of new technology. Under-
standably, "power" users feel disenfranchised by the IS department, and say IS people will
stifle innovation when they bring in their rigor and discipline. Some "power" users are
"cowboys," and insist upon their freedom from standards and procedures.

Excellently managed companies find a beneficial use for "power" users, that of an early
warning system for technologies that will help the business. These companies foster an
environment where "power" users are encouraged to raise new ideas, but the ideas must be
far-reaching to many facets of the company's operations. "Power" users are brought into
the usability lab to supervise the evaluation.

SYSTEMS DEVELOPMENT PROCESS

Now, let's talk about the formal systems development process. You've probably all
experienced these steps:
1. Excitement
2. Frustration
3. Disenchantment

4. Search for the guilty
5. Punishment of the innocent
6. Distinction for the uninvolved

Seriously though, the systems development process is a rigid and formal process, begin-
ning with the request from a user, through analysis, design, programming and testing,
finally putting the system into production. In this scenario, users seem to be asking,
"What can you do for us?" and the systems people are asking, "What do you want?"

462

WHY SYSTEMS ARE ALWAYS LATE

As we discussed before, this process is prone to creeping scope, where little by little, more
and more additional function is added to the scope of a systems project, without adjusting
the project schedules, until finally a project becomes too large and unwieldy. For those
fringe users who join in and add more ideas as to what the system should do, the stakes are
lower in making the project successful, even though they are expected to shoulder their
part of the burden.

To me, the major problem I see in the traditional management of systems projects, is that
the expectations of the participants are not managed properly. To get a project approved,
it seems sometimes as if it must be oversold. Users and executives become overly and
unrealistically optimistic of all of the great benefits the system will provide. This can lead
to having no alternative plan when things go wrong, so that eventually good money may
be thrown after bad in a futile attempt to maintain a heightened positive approach. And
traditionally, systems people have been bad communicators.

Some projects also flounder due to a lack of clear authority. Traditionally, systems people
have been completely concerned with the technical aspects, and are ignorant of the
business; and users have been completely concerned with the business, and are ignorant of
software concerns. After several projects flounder without clear leadership, long-time
employees can become cynical.

Some projects are just too technical to begin with. The systems people want to use the
latest technical tricks to prove it can be done. In the end, these systems often need to be
rewritten, or if you prefer, to reinvent their wheel, before they can become productive.

As users and executives we must realize that this isn't an exact science; because of the
complexity inherent in today's systems, these are not routine projects. When what you are
attempting to do hasn't been done before, it is very difficult to estimate the work, time,
and money required to complete the job.

REACTIONS

So how have we reacted to better manage systems development? First, every project has a
user sponsor, with user involvement throughout, and especially at the project executive
level.

Second, we've seen the rise of integrated systems to address productivity issues. Again,
as Smitty Grayson says:

In the past, software packages were acquired in order to satisfy an immediate
product need. For the larger companies this is probably the most practical ap-
proach; however, it causes significant problems for the medium- and smaller-sized
companies. An inordinate amount of time and effort is exhausted trying to support
multiple systems. The word interface mysteriously began to appear at all levels of
communication. A serious division of resources was experienced throughout the
company, but it was no more prevalent than within data processing. The solution
to this problem was to consolidate these different processing systems into a single
entity. Only then would we be able to redirect our resources from the interface
bottleneck to more desirable enhancement and refinement activities.

Integrated systems are not a series of subsystems, but one integrated whole, with a
consistent design philosophy in its user interface, technical programming style, and data

463

RECORD, VOLUME 21

structures. This enables companies to leverage their staff's training so that, when a user or
programmer approaches another part of the system, he or she can count on the same,
familiar concepts being used. Rather than buying a new subsystem from another supplier,
this philosophy encourages continual improvements within a consistent framework.
Hmmm, sounds like "Kaizen!"

One of the challenges with integrated systems, though, is the extra testing burden they
place on QA teams. A change in one area of an integrated system seems often to change
things in other parts of the system. We need better regression testing tools, so that testing
scripts can be maintained to automate the testing process in those other parts of the system
where no changes are expected. One of the promises of the new "object oriented"
technology is that integrated systems can be built using incorruptible, isolated modules, so
as to minimize the "ripple" effect of system modifications.

Another method that has arisen to improve the systems development process is prototyp-
ing. Prototyping is usually done to show (rather than describe) how a user interface will
function. But it should be done anytime you "smell a rat," that is, a technical problem
where there are too many variables for a full analysis; in short, prototyping helps when-
ever you want to understand and validate your assumptions. It allows you to experiment
cheaply, lower the risk, and plan for larger capacity, to compensate for the tendency of
creeping scope to make your platform insufficient. To prototype properly', you should
subdivide your application to the appropriate mix of, for example, number crunching,
input/output, and video response.

We've also seen the parallel introduction of systems used more and more to help reduce
the risk. Simply stated, don't turn off the old system matil the new system has been proven
in production. A parallel introduction will also help gain user acceptance. I know of one
company, when it introduced E-mail, kept sending the users paper copies as well, since it
knew that paper was "comfortable." Two months later, the users asked, "Why are you still
sending us all this paper?"

PROJECT MANAGEMENT

In my experience as a systems project manager, one of the most difficult things I've found
is the vast difference in productivity between the top programmer and the average one; I
estimate it at 8:1. I would contend that this shocking difference is more extreme than you
find in either clerical or actuarial staff. Systems people are technical staff, but in a
different way than actuarial staff, although managing actuarial staffpresents some of the
same problems. Perhaps it is more appropriate for an actuarial vice president to manage
systems people, than the more typical CFO type, who is more accustomed to managing
clerical staff.

I have a cartoon about technical staff. The caption reads, "In a display of perverse
brilliance, Carl the repairman mistakes a room humidifier for a mid-range computer but
manages to tie it into the network anyway!"

How should a project manager schedule a project? Too often, the project manager
becomes a slave to the schedule, charting progress in minute detail. ! find that some of the
software tools to keep track of the detailed schedule are so burdensome to maintain that I
need a project secretary to keep it up-to-date; I prefer to spend my time managing the

464

WHY SYSTEMS ARE ALWAYS LATE

expectations of the participants in face-to-face communication, a far more important task
than maintaining the schedule.

As one project manager I know suggests, "Don't publish the schedule in too much detail,
or people will start to believe it as gospel!" I have a cartoon showing a project manager in
a suit, sitting on a park bench next to a "wino;" the project manager is expounding, "32
meetings, seven months of overtime, and 200 screens later, I finally said, 'Let's keep our
fingers crossed.' But he didn't see the inherent humor in the situation."

Should the goals and milestones in the project schedule be soft and fuzzy, or hard and
quantifiable? I believe that the overall expectation is the hardest to manage; try to leave
the long-term goal as loose as possible. If it seems too long, my project management
philosophy is to have people set their own dates under the assumption that everything goes
fight. Of course, problems do arise and the project falls behind. But motivation, I find,
remains high until the scheduled date of the long-term goal becomes "laughable." At this
stage I repeat the process of having them determine a new set of dates, since everyone
wants to do a quality job, and will remain motivated as long as they are allowed to do so.
The difficulty I've found with this process is not so much with the participants within the
project who can see what I'm doing with this management style (it's pretty transparent,
really), but with the external observers who understandably wonder if any project will
come in on time. The secret is that the project executives must support this management
style, and must quietly take a more realistic delivery time into their corporate planning
cycle.

Short-term goals should be hard and quantifiable, by decomposing each phase into small
manageable tasks, for which the participants set their own dates and know that they are
held accountable.

SYSTEMS STAFFING AND STANDARDS

Should we replace the old mainframe systems staff, as we move to smaller client/server
systems? IS professionals with traditional systems backgrounds can be very successful
with the new concepts and technologies of computing. Their most important skill is that
they bring the rigor and discipline required to implement business systems. Those who
are successful will be the ones who see their value to the organization as taking new and
existing business requirements into application systems, not those who are tied up in the
detail of the minutiae, such as knowing every IBM error message ever created.

PCs are nowa major mission-critical resource, and the IS department is typically the
custodian of this corporate resource. So we've seen IS taking back control of the com-
pany's PCs.

PCs are now tied together in LANs, and we see the IS department's LAN administrator
visit our PCs and help make them work together. But what does the LAN administrator
do all day? He or she is doing the same work the IS department used to do on the
mainframe (for example, training, maintenance, planning), but now the LAN administrator
is more visible, since the work is being done among us, the users.

To leverage the company's investment in PCs and LAN technology, the IS department
people are enforcing standards in hardware and software. They seem to be trying to
dictate to us, the users, a personal work style, and we resent it. By standardizing though,

465

RECORD, VOLUME 21

the company can significantly leverage its training and support resources, as well as
negotiate from strength with hardware and software suppliers. PC technology is still
immature; the number of PC support staff per 1O0 users is still far in excess of the number
of mainframe support staff per 100 users. Yes, it is possible to make different operating
systems and technologies talk together, but it is difficult and costly, and never as easy as
they say it is. The CEO of a major oil company thought this principle was so important,
he sent a private message on tens of thousands of videotapes to every employee in the
company, saying, "Yes, imposing these standards may mean that you'll have to give up a
feature that you really like, but you know, as leader of this company I have to say that the
most important thing for our future success, is for everyone in this company to be able to
work together as easily as possible."

IN-HOUSE DEVELOPMENT

When choosing to do in-house development, beware the lure of new technology. I know
of one director of IS at an insurance company who says, "We must do something about
our old system; it's falling apart!" Knowing that many successful companies are still
using the same package, I asked, "What do you mean?" She said that the company had
been growing so quickly that they were getting ctose to not being able to run the full batch
cycle overnight, so they wanted to start a huge in-house development project to create an
integrated client/server system to meet all of the company's administration needs. "But
since you're not using anywhere near the largest mainframe computer, why can't you get a
bigger mainframe and more disk space?" I asked. She responded, "But we haven't any
more space in our computer room!" I asked myself, if the company has been growing so
successfully, how can they embark on such a risky and costly in-house development
project, but can't afford to expand the computer morn? Before I could voice that, she
offered what seemed to me to be the real reason: "Besides, I won't be able to keep my
eager technical staff from leaving the company unless we have an interesting project using
new technology!" Amazingly, this company has started their big development project.

Another risk I've seen, is how easy it is in a development project lasting several years, to
always seem to be aiming at the next generation of future technology. When I was
working at a software vendor, I once asked if the current design of a system in develop-
ment would actually perform in production, when it seemed to be needlessly passing data
back and forth without doing much with it. I was told that it was alright, because by the
time the system was going to be in production in a company, larger processing power
would be available and be the norm. Believe it or not, this conversation occurred six
months before the first production implementations were going to be live. I realized that
this same rationalization had been going on during the previous five years of development.
No wonder that when this system finally did go into production, instead of six months
later, it was literally six years later!

The lesson is to not just hope the system will perform. Successful developers know that
the first implementations of a system never perform well; the users complain of slow
response time and call the system a "pig." Successful implementations hide the "pig" by
installing an oversized processor.

In-house development can get bogged down in "analysis paralysis," when a project team is
able to start with a clean sheet of paper and dream about what could be possible, They
keep analyzing and analyzing and seem never to come up with a firm foundation to build
their system on. That's why I often recommend buying a software package, not as the

466

WHY SYSTEMS ARE ALWAYS LATE

total solution out of the box, as oversold by the software salesmen and seemingly used as
justification of the high cost, but rather as a working prototype from which the company's
needs can be incorporated within a proven framework; even if the redesign is extensive,
it's much easier to begin the first steps with a firm understanding of where you are.

David Kull in his excellent article, "Anatomy ofa 4GL Disaster," (The Interpreter, IASA,
February 11, 1986) notes that:

Large projects almost always take on lives of their own. And participants, concen-
trating on their particular goals, lose sight of the big picture. Organizations can
avoid this problem by providing for ongoing project review by a detached, objec-
tive observer. This QA must be provided by personnel with the technological
expertise to recognize mis-steps, and the standing to enforce judgments that may
run counter to the individual interests of team members.

METHODOLOGIES

I once talked to the chief architect of that system, which eventually remained in develop-
ment for 11 years. I mentioned to him that usually when I approach a new system, I try to
learn how it hangs together, for example, how the keys are built, and which are the
important fields that drive the processing, or that direct the processing through an efficient
path. But I told him, "I can't find them and none of the developers can tell me where they
are!" Finally, in exasperation, I asked him "Where's the elegance in the design? Where's
the art? Ah," he said, "That's where you're wrong! You're approaching the develop-
ment in the wrong fashion. We're trying to engineer a system. You see we have a
methodology for developing this system, and since you can't count on having brilliant
people to design and develop a system, we have a methodology to lead systems people of
average intelligence to successful completion!" I was stunned. I knew from personal
experience and business case histories that small groups of brilliant people have achieved
the most, and will continue to produce the effective and elegant systems we all want to
use,

This chief architect was banking on the methodology working, which would lead to
successful completion of this mission-critical system; he was betting the company on it.

I find that many people I talk to want to know what methodology I subscribe to. I'm at a
loss for words. I usually try to say that I'm not beholden to any particular methodology; I
can use whatever methodology they want. Unfortunately, this doesn't satisfy them.

A methodology is not a solution to problems arising in systems development projects. I
still find that you still need great project leadership: Great project leadership can save
you, even if you have a bad methodology, but a great methodology can't save you if you
have bad leadership.

What do users want? Methodologies presume the users know what they want. I have a
surprise for you. Users don't know what they want. They make it up! The systems
analyst asks leading questions, after the user runs out of things to say. The user responds;
these become requirements, which the user doesn't actually need. Specifications are
developed through leading questions. No wonder we have so many problems satisfying
users.

467

RECORD, VOLUME 21

Frederick P. Brooks, Jr. wrote a book titled Mythical-Man Month: Essays on Software
Engineering (Reading, MA: Addison-Wesley, 1975), which is still valid today. In just the
same way as nine women can't make a baby in one month, no development team should
have more than six participants or communication disintegrates. When a development
project is in trouble, don't add more people. You should actually take people off, not only
to create a more tightly-focused team, but also to get to the bottom of the difficulties and
truly understand them.

DEVELOPMENT APPROACH

How then should you approach a development project? One well-respected consultant I
know, says that he wants to staffa project with three programmer/analysts and two strong
users. These users should be influence leaders, able to unilaterally change the business
processes in their organizations. Ifhe's told that they aren't available, then he refuses to
accept the project, since he concludes the company doesn't want the project to succeed.
The users are required to attend from 8:00 to 10:00 am everyday. Then he tells their
manager to expect the two users to resign, and to accept their resignation, but that they can
rescind their resignation by showing up the next morning at 8:00 a.m.

On Day 1, the programmer/analysts have been instructed not to lead the users, but to tbrce
the users to talk. They don't know the requirements, and neither does the IS staff. Those
first two hours are allowed to drag out in near silence. The users run to their manager to
complain that this is the most ridiculous project the), ever worked on. From 10:00 a.m. to
5:00 p.m. the programmer/analysts create a screen prototype of what the users actually
asked for. They've said so little, yet it's finished by 3:00 p.m. It's so ugly that the
programming team leaves at 3:00 p.m. and doesn't come back.

On Day 2, the users show up with a "project suggestion list" about how the project should
be run. The project manager thanks them and puts it away. Then the programming team
shows the prototype, based on the clearly articulated user requirements. Not surprisingly,
the users respond, "It's not what I want." The programming team replies, "Well, what do
you want?"

Today's shrinking business cycles mean that the IS department doesn't have the time to
interview the users and compile a list of user requirements. Users know what they want
when they see it, and our job in IS is to facilitate the process, by giving immediate
feedback of what they've articulated. We've shown them the screen prototype because, to
a user, the system is the interface.

OUTSOURCING

If in-house development is so difficult, can we turn to consulting firms to provide assis-
tance. Too often I've found consulting finns to be champions of exotic technology, whose
sole reason for being seems to be to find a victim to try it out on. Instead of being
"leading edge," they can leave you stranded on the "bleeding edge," and bathed in red
(either red ink, red in the face, or maybe even with a pink slip!).

They can befuddle you with jargon. Indeed, some firms seem to be specialists at adopting
each new set ofbuzzwords as they come into vogue, milking the novelty to their same old
clients, and leaving them no better oft, but ready for the next wave of jargon to come
along. I have a cartoon, showing a professor admonishing his university students: "You

468

WHY SYSTEMS ARE ALWAYS LATE

ask me the value of jargon? I'll tell you the value of jargon. To you, about ten grand a
year!"

Assuming you can find a suitable firm to contract with, you still have the problem that the
stakes are lower for "employees" on contract, than for internal staff. The short term of the
contract may lead to short-term thinking.

Unfortunately, the ultimate cost of any system, either from the programming perspective
or the user perspective, depends more on how easily it can be maintained than on how
easy the initial implementation was. I know of one software vendor that follows all of its
customers' requests. When the customer wants to keep costs down and to implement the
system as quickly as possible, the vendor makes as few modifications as possible. To do
this, the vendor splits each insurance plan the company sells into as many as 20, 40, or 60
separate plans on the computer system. By making a few, very inexpensive and minor
modifications to the system, the vendor could cut this down dramatically. I would argue
that these minor modifications should have been added to the base system years ago. But
there's no way the customer could know how best to use the new system and when to
exercise judgment; customer look to the software vendor. However, the software vendor
will have finished the contract and no longer be on-site, by the time the customer realizes
how difficult it is to maintain on the computer all of these separate plan records, and how
this simple decision has percolated through the entire company, complicating the work of
each and every user of the system.

One of the things that can be done in dealing with consulting firms is to structure their
engagements carefully. David Kull observes:

•..the firm that writes the requirements and specifications should not actually
implement the system. The federal government prohibits that arrangement in its
computer projects. Splitting the two development phases builds checks into the
process. The implementer can objectively judge the work of the specified. And
because the specified knows it won't implement the system, it's not likely to build
in expensive but unnecessary features.

Perhaps another way of controlling projects involving consulting firms is to insist upon
fixed-price contracts. However, when problems arise on a locked-in contract, sometimes
the financial pressures lead to declining workmanship. In spite of obvious pain being
suffered, the company continues to hope for the best; unfortunately, usually the worst
occurs, with the company having planned no provision for fullback or recovery, since it
has its fixed-price contract to stand behind. David Kull offers a refreshing opinion:

Large development projects frequently encounter legitimate, unexpected cost
overruns. Rational compromises in such situations--perhaps a sharing of the extra
expenses by developer and client for contract jobs or a budget revision for in-house
projects--allow for happy endings to these situations.

SOFTWARE VENDORS

So if it's so difficult to do development, either in-house or with external consultants, why
shouldn't we look to packages from soRware vendors? Well, these have their own set of
problems• And I can talk from first-hand experience on both sides of the transaction.

You certainly will have heard about hardware and software, and some of you may have
heard the temlfirmware (it's software that has been permanently written to a silicon chip,

469

RECORD, VOLUME 21

that is, to hardware), but how many of you have heard ofvaporware. Vaporware is
software that doesn't exist yet; it's out there somewhere in the vapor. It could be called
software under development. It may never work. When I joined that software vendor
whose system was supposedly six months away from completion after five years of
development (but was still six years away from completion), over 80 companies had
bought the software, or rather the promise of the software. In retrospect, this was a
triumph of marketing vaporware.

Many companies get caught up in the vendor's excitement and want to be the first to use
the new software when it is completed. But, as David Kull writes:

Two general principles apply to a pioneering software project. No software arrives
in the marketplace bug-free and in final working form. The vendor provides fixes
and adds functions and features---enhancements--when its developers complete
them. This "maturing" process proceeds unpredictably. Prudent users, therefore,
don't count on capabilities that are not in hand.

Realize that if you want to be first with new software fi:om a vendor, you are in a joint
venture, a partnership with the vendor to develop the software, but with much less control
of the situation than if you did the development yourself.

VENDOR PROCESS

Generally, managers responsible for selection of packages are forced to make decisions in
areas where they have no expertise. The nature of the beast, when using a software
vendor, means that you go through the following steps:
1. Request for proposal (RFP), asking vendors to submit a proposal if their system

meets your needs, as specified in the RFP.
2. Response from the vendor, almost always favorably. As Donald Belfall says in the

article "Guilty until Proven Innocent" (Software Report, February 20, 1986), "Any
software salesman can improve the appearance of his product line through a series
of unqualified responses, half-truths, loaded reference contact lists, and tailored
demonstrations," Is that ever true! In my experience with that software vendor I
couldn't believe how we would answer half the question, or answer a different
question than the one asked, all so we could say "Yes, our system does it[" And
when I questioned the ethics of this, I was told that all the other companies
responding would be doing the same thing, and since the client would be better off
with our software, it was alright. Software salesmen basically tell you whatever
they think you want to hear.

3. Evaluate the response from the vendor, and investigate, by checking references and
seeing a demonstration. Too many times demonstrations are "canned." Donald
Belfall again: "The well-prepared checklist of an organizations' requirements on a
feature basis will force qualifications to positive responses when necessary. Every
assertion made by a salesman should be obtained in writing." We'll look at the
evaluation process in more detail later.

4. Negotiate and sign the contract. The vendor is amazingly accommodating until
you sign the contract; after that, he thinks you're hooked (that is, committed), and
he can relax, since the marketing phase is finished and you are comfortable with
the inflated expectations he's left you with. Regarding the contract, Donald Belfall
writes: "All vendors should be informed at the beginning of the selection exercise
that any assertions made will be appended to the license agreement. This will
include claims regarding software functionality and the guarantee that

470

WHY SYSTEMS ARE ALWAYS LATE

reference lists submitted were complete." And as stated in the article "Staying out
of the Black Hole," by Bruce Brickman (Best's Review, February 1986):

Instead of bargaining, technical personnel often buy on the vendor's terms.
•. the vendor's contract becomes the binding document. Naturally, in some
cases, the contract can reflect the vendor's objectives of no link between
performance and payment, no standards for training, inadequate mainte-
nance and no recourse for performance failure.

We as insurance professionals don't understand the vendor's business and his
practices. For the most part, our salaries are paid by the renewal premiums rolling
in almost automatically from our policyholders. Software vendors lead a hand-to-
mouth existence, scratching for every dollar to stay alive. They make it sound as if
the license fee is not negotiable, that it represents their valuable intellectual
property. Well, I have news for you: vendors consider the license fee "gravy" that
goes immediately to profit (less the salesman's 30% commission), and is priced at
whatever they think the "traffic will bear." Software vendors make their money on
the services they offer: implementation, modification, enhancement, training and
maintenance fees. They have an overall revenue target for you to pay. So if you
start to negotiate for fewer services from them, the license fee will suddenly
become very firm; and of course, the reverse is true, too. My best advice to you, is
to get outside help in negotiating and signing the contract.

5. Implementation study and project plan. Now that the marketing phase is finished,
the client is passed over to the consulting arm of the software vendor• I was one of
these people. I hate to say it, but my real job was to lower the inflated expectations
the sales process left the client with, and to do it in small steps, so that the client
wasn't disappointed all at once, and didn't lose faith in the company. Dragging
out the implementation, with many phases, made my job easier.

6. Implementation, modification and enhancement. I've already discussed how, if
you don't have the right priorities in this phase, you may end up with an
unmaintainable system• It's difficult to have the best of the vendor's staffassigned
to your project, unless you have some sort of"clouf' with the vendor. And the
vendor doesn't consider the terms of the contract your "clout."

How would I change the process? I feel the vendor should leave the system and its
documentation on your site for your review. You can learn all you want to, such as how
well it performs under stress, how it's internally structured, and where you think the
modification dollars should be spent.

VENDOR EVALUATION

Let's talk more about evaluating the vendor. This is probably the most difficult step. In
hindsight, where do you think the most mistakes are made in evaluating the vendor, that is,
where does the actual experience, in hindsight, vary the most from what was expected?
Surprisingly, it's in the following order, from most offthe mark, to least:
1. Quality
2. Risk
3. Time
4. Cost

471

RECORD, VOLUME 21

VENDOR QUALITY
I'd like to quote extensively from Richard Smith, Jr.'s excellent article "Evaluation and
Selection of Application Software Packages" (The Interpreter, IASA, June, 1978). It's a
very candid article, especially since Mr. Smith was working for a software vendor when
he wrote the article:

A key contributing factor to "Quality" being ranked as most frequently miscalcu-
lated is a lack of focus on the basic purpose of a good software package. A
software package typically does not represent a total solution to a problem but is a
key component to be utilized by a company to derive the total solution. The large
application package generally must be "adapted" and often "extended" to a varying
degree by data processing and user personnel. The package must coalesce with a
company framework of manual work flows.

The problem is not that the great majority of decision-making teams do not
recognize, in general terms, the role of the software package. The problem often is
a lack of focus on or lack of understanding of what constitutes good generalized
software in specific, measurable terms. This problem often surfaces as a preoccu-
pation with the existence, or lack thereof; of detailed functional capability, accom-
panied by insufficient attention being given to the overall structure and capability
of the system and the ease with which it can be made to respond so that it provides
all required functions.

An effective decision-making team must have an in-depth grasp of what consti-
tutes good generalized application software. Unfortunately, this is often not the
case. As an example, a decision team is generally sent forth to do an evaluation
with the charge to "make sure the package is flexible." The concept of"flexibil-
ity" has almost become a cliche within the software industry. The reader can rest
assured that every application software package on the market will be advertised as
"flexible." In reality, there are wide differences in the "flexibility" of application
software packages. In addition, the very concept of"flexibility" is often not even
defined sufficiently to allow an evaluation to be made...

All application packages of any significant size require some degree of"tailoring"
in order to adapt to a specific operational environment. Such tailoring can be as
simple as entering a few numerical values into edit tables to as complicated as
requiring significant assembly language reprogramming of existing program code.
The ease with which a program can be tailored to fit a specific user environment
and "how" this tailoring is accomplished are two of the most significant factors
separating good software packages from poor ones.

Adaptability should be built into a system from the beginning through anticipating
the vast majority of changes that will be required when going from one user
environment to another...

Too often an evaluation team will not delve deeply enough into this aspect of the
system. The question is not the simple existence of some table driven routines,
because every large application package will have table driven routines that can be
paraded past the evaluation team, but the crucial issue is the extent of generalized
concepts and the degree to which the unique aspects of the company can be

472

WHY SYSTEMS ARE ALWAYS LATE

accommodated without reprogramming efforts. Or, I might add, accommodated
with relatively simple programming efforts.

VENDOR RISK

Richard Smith, Jr., asks some pointed questions regarding the risk component:
How long has the vendor been in the software package business? All soft:ware
vendors go through similar learning curves and typically make the same mistakes
in their early years such as:
1. overcommitting their resources through outselling their ability to install, or

promising system modifications within timeframes that they cannot meet.
2. not fully appreciating the system design concepts that must be utilized to

create high quality software packages.
3. inadequate appreciation of the need to evolve packages through a series of

"digestible" system releases over the life of the product.
4. lack of appreciation of the highly professional organization that must be in

place to service a large base of clients.
What is the history of the package? How many times has the package been
successfully installed? How large is the vendor in terms of revenue, personnel and
financial backing?

When I was working for that software vendor, I didn't understandwhy the vendors go to
such great lengths to explain their financial situation. We insurance professionals don't
pay enough attention to this, since we don't understand the software vendor business, as I
discussed before. Software vendors go where the money is, and if you run out of money,
they go somewhere else. We think we'll be protected by the contract, but software
vendors can afford to have one company mad at them; they just give you your money
back, leaving you with wasted time and effort on your part. But they can't afford to have
all of their clients mad at them at the same time.

TESTING
Bruce Brickman offers some further advice about the testing phase of implementing a
package:

Testing a product after payment can mean fighting with an unresponsive vendor.
The key is to link payment to testing, thereby requiring an investment by the
vendor in assuring performance. This means withholding payment until perfor-
mance is proven.

Certainly, mature systems have fewer bugs. In fact, instead of using the first release of the
most recent version of a vendor's software, I've been known to have our company choose

instead to install the final release of the previous version of the vendor's software. In
hindsight, everyone from the vendor, other user companies, to our own staff, exclaimed
how wise we were to do so.

And don't forget that with today's integrated systems, lots of regression testing is required
to make sure that modifications and enhancements in one part of the system don't

adversely affect another part.

CONCLUSION

Our difficulties with technology are nothing new. Often, implementing new technologies
have brought other problems and effects, other than what was intended.

473

RECORD, VOLUME 21

I'd like to close with a quotation from Neil Postman's book, Technopoly, which is
subtitled, The Surrender of Culture to Technology (New York: Random House, Inc.,
1993):

The invention of the mechanical clock.., had its origin in the Benedictine
monasteries of the twelfth and thirteenth centuries. The impetus behind the
invention was to provide a more or less precise regularity to the routines of the
monasteries, which required, among other things, seven periods of devotion during
the course of the day. The bells ofthe monastery were to be rung to signal the
canonical hours; the mechanical clock was the technology that could provide
precision to these rituals of devotion. And indeed it did. But what the monks did
not foresee was that the clock is a means not merely of keeping track of the hours
but also of synchronizing and controlling the actions of men. And thus, by the
middle of the fourteenth century, the clock had moved outside the walls of the
monastery, and brought a new and precise regularity to the life of the workman and
the merchant. "The mechanical clock," as Lewis Mumford wrote, "made possible
the idea of regular production, regular working hours and a standardized product."
tn short, without the clock, capitalism would have been quite impossible. _Ihe
paradox, the surprise, and the wonder are that the clock was invented by men who
wanted to devote themselves more rigorously to God; it ended as the technology of
greatest use to men who wished to devote themselves to the accumulation of
money.

May all your technological projects turn out the way you intend!

474

