
CompAct Electronic Newsletter • Issue No. 16 • August 2003 • Published in Schaumburg by the Society of Actuaries

Inside

Chairperson’s Corner 3
by Charlie Linn

The XTbML Standard: A Fresh
Approach to Interchange of Table Data 4
by Cynthia Jeness and
Jacques Rioux Ph. D

Smarter, Not Harder. An Example by
Steve Welander 7

2003 Annual Meeting–Orlando, FL
Computer Science
Sections Sessions 9
.
CompAct
Introducing MathML: The Solution to
Mathmatics on the Web 13
by Jay Brown

Society of Actuaries Web Redesign 18
by Rob Hayashida

What’s Going On? 19

2003 Actuarial Speculatove Fiction
Contest: The Outer Limits of
Actuarial Thoughts 19

CompAct

Articles Needed for the CompAct
Electronic Newsletter
Your help and participation is needed and welcomed. All arti-
cles will include a byline to give you full credit for your effort.
CompAct is pleased to publish articles in a second language
if a translation is provided by the author. For those of you in-
terested in working on the CompAct, several associate edi-
tors are needed to handle various specialty areas such as
meetings, seminars, symposia, continuing education meet-
ings, new research and studies by Society committees and
so on. If you would like to submit an article or be an associate
editor, please call Charlie Linn, editor, at 860.687.0157.

The CompAct is published as follows:

Publication Date Submission Deadline
September 15 July 15
March 15 January 15

Preferred Format
In order to efficiently handle articles, please use the
following format when submitting material:

Please e-mail your articles as attachments in either MS
Word (.doc) or Simple Text (.txt) files. We are able to con-
vert most PC-compatible software packages. Headlines are
typed upper and lower case. Please use a 10 point Times
New Roman font for the body text. Carriage returns are put
in only at the end of paragraphs. The right-hand margin is
not justified.

If you must submit articles in another manner, please call
Bryeanne Summers, 847.706.3573, at the Society of
Actuaries for assistance.

Please send electronic copies of the articles to:

Charlie Linn, FSA
Computer Science Section Editor
MG-Triton Actuary
Milliman USA
80 Lamberton Road
Windsor, CT 06095
phone: 860.687.0157
fax: 860.687.2111
charlie.linn@milliman.com

Thank you for your help.

Computer Science Section Newsletter
Issue Number 16 • August 2003

Published quarterly by the Computer Science
Section of the Society of Actuaries

475 N. Martingale Road, Suite 600
Schaumburg, IL 60173
phone: 847.706.3500
fax: 847.706.3599

World Wide Web: www.soa.org

This newsletter is free to section members.

Charles S. Linn, FSA
Computer Science Section Editor
MG-Triton Actuary
Milliman USA
80 Lamberton Road
Windsor, CT 06095
phone: 860.687.0157
fax: 860.687.2111
charlie.linn@milliman.com

Computer Science Section
Section Council
Charles S. Linn, Chairperson
David L. Snell, Vice-Chairperson
Hal S. Tepfer, Treasurer/Secretary
William Aguayo, Web Liason
Mark D. Horowitz, Council Member
Frank G. Reynolds, Council Member
Michael K. Rigby, Council Member
Jacques Rioux, Council Member
Brian M. Septon, Council Member

Lois Chinnock, Staff Liaison
lchinnock@soa.org

Clay Baznik, Publications Director
cbaznik@soa.org

Bryeanne Summers, Graphic Designer
bsummers@soa.org

Facts and opinions contained in these pages
are the responsibility of the persons who
express them and should not be attributed to
the Society of Actuaries, its committees,
the Computer Science Section or the
employers of the authors. Errors in fact,
if brought to our attention, will be promptly
corrected.

Copyright© 2003 Society of Actuaries.
All rights reserved.
Printed in the United States of America.

2 • CompAct

Chairperson’s Corner
by Charlie Linn

Y
es, believe it or not, this is an issue of
CompAct, the newsletter of the
Computer Science Section of the

Society of Actuaries! We have not published
an official newsletter since May, 1997.
Subsequent to that newsletter, a decision was
made to move to an all-electronic format for
the newsletter. Seemed like a no-brainer.
Computer Science Section....paperless
newsletter. We wanted to be on the leading
edge of technological advances. The Section
Council also realized that rather than relying
on the SOA staff to compile and publish an or-
ganized newsletter, all we would have to do is
get people to write articles and we could post
them on the Web one-at-a-time, as they be-
came available. Great idea, or so we thought.
However, the reality was that without an edi-
tor, a set schedule and specific deadlines, it
was difficult to get people to agree to write ar-
ticles and then actually follow through and
write them. So, the newsletter went dormant.

However, we are now reviving the newslet-
ter, and have a good collection of articles
covering a wide range of topics related to
computer science of interest to actuaries.
First, Cindy Jeness and Jacques Rioux,
members of the Computer Science Section
Council, have provided a summary of a
major project undertaken by the Computer
Science Section, in conjunction with
ACORD, the standards setting body, to
develop and maintain a standard for table
data storage. This project grew out of
work begun a number of years ago by
Steve Strommen to develop a common
library of mortality tables for use by all
actuaries. The new project with ACORD
has developed a standard for table storage
of all types of insurance data, not just
mortality data. In addition, the Computer
Science Section has sponsored a project by
GoldenCode to

develop a sample implementation of the
new standard. Information on this sample
implementation is available on the SOA
Web site at http://www.soa.org/sections/
compac.html.

We have an article by Steve Welander,
offering a methodology for using Microsoft
Visual Basic to automate the creation of a
Microsoft PowerPoint presentation. This
can come in handy for anyone who regu-
larly creates a report for others using data
available in electronic format, allowing
them to "work smarter, not harder."

In addition, Jay Brown provides a summary
of MathML, an XML-based language for
presenting and reading mathematical for-
mulas on a Web page. This article gives a
good introduction to how MathML works
and the capabilities already built into it for
actuarial expressions, and provides sources
of more information for those looking for
additional detail.

The Society of Actuaries is in the process
of redesigning its Web site to improve nav-
igation and content organization. Rob
Hayashida gives a brief summary of the
project, for which the Computer Science
Section has provided funding assistance.

We also provide information on other activ-
ities of the section to keep members
informed of what we're doing.

So, please read and enjoy what is here,
and let us know what you think. We don't
want to wait six more years for another
newsletter, but we will need your help in
telling us what you would like to see in the
newsletter, or better yet, what you would
like to contribute! :

Charlie Linn, FSA,

MAAA, is Chairperson of

the Computer Science

Section. In his spare

time, he is an MG-Triton

Actuary at Milliman USA

in Windsor, CT,

specializing in

traditional and health

valuation systems. He

may be reached at

charlie.linn @

milliman.com.
CompAct • 3

Introduction
If you have been following the work of the
Computer Science Section over the last few
years, you might have heard of a standard for
interchange of tabular data. You might even
have attended the breakfast session of the last
few annual meetings and seen a precursor of it
in action. XTbML is the name of that standard
and in this paper we will offer a preview of
what it is, where it came from and what else
may be coming to you from the section.

The original impetus for the creation of the
XTbML standard may be traced back to
the efforts of Steve Strommen and the

creation of the Table Manager program and the
binary format in which it stored the table data.
Prior to the implementation of the XTbML stan-
dard, the technique for delivering table data
from the SOA Web site was to utilize the Table
Manager application and associated database.
This required downloading and installing the
Table Manager program under MS-Windows and
then using it to extract the tables of interest. The
Table Manager will export data in an ASCII for-
mat which is consistent across all tables of the
same type and is described in the appendix of
[1]. However, tables in this ASCII format are not
available directly on the SOA Web site.

In 1998, the Computer Science Council of the
Society of Actuaries revisited the task of
defining a standard for the interchange of
table data. The focus of this work was to be
on the format of the data itself and not the
tools to maintain or update the data. In 2000,
a Data Standards Committee was formed.
This Committee was composed of Jacques
Rioux, chair (SAS Institute), Cynthia Jeness
(Philibert Software Group) and Mark Horowitz
(Towers Perrin). This Committee determined
that there was already an open W3C stan-

dard, XML, which could be used for actuarial
tabular data. Using XML as the standard, the
Committee developed a preliminary dialect
and presented the results to the Computer
Science Council. Subsequent discussions with
members of the SOA led to the submission of
the XML standard for adoption by ACORD.

On March 21-22, 2002, members of the SOA
and other insurance industry professionals
met with ACORD in Westwood, MA. At this
meeting the original standard was generalized
and improved so that it would apply across a
range of actuarial tabular data needs. The
improved version, XTbML, went through the
approval process at the ACORD meeting in
June, 2002 and was adopted on a pilot basis
by ACORD. The pilot period was intended to
provide time for interested parties to use the
standard and submit comments before it was
officially adopted as a standard in November,
2002.

In September, 2002, another ACORD meeting
was held to define the transactional interac-
tion for XTbML. Utilizing this transactional
standard, tabular data could be stored in a
central repository and transferred to a
requesting computer utilizing various industry
standard protocols such as SOAP and HTTP
GET/POST. This should extend the utility of
the standard from the realm of human inter-
action to computer-computer interaction.

Later in the fall of 2002, the Computer Science
Section decided to contract with Golden Code
Development Corporation to provide a sample
implementation of the standard at least for the
tables already available under the Table
Manager database format and to make those
available from the SOA Web site. The resulting
e may be best represented by a two-

4 • CompAct

The XTbML Standard: A Fresh Approach to
Interchange of Table Data
by Cynthia Jeness and Jacques Rioux Ph. D

Cynthia Jeness, FSA,
FCA, MAAA, is a
project manager/
developer for Philibert
Software Group in
Atlanta, GA where she
is working on a J2EE-
based insurance
illustration system. She
can be reached at
cjeness@bellsouth.net.

Jacques Rioux, ASA,
Ph.D. is Senior
Actuarial Scientist at
SAS institute in Cary
NC where he works on
software to calculate
and report operational
risk for the banking
industry. He can be
reached at
jacques.rioux@sas.com

work contains more technical details about
the standard itself and should be made avail-
able online very soon. In the meantime, we
provide here a preview of what will be avail-
able for early potential implementers of the
standard.

The XTbML Standard Itself
The primary documentation of the XTbML
standard from ACORD consists of two docu-
ments:

• XML Schema

• Type Code Definition Document

The schema is the actual technical definition
of the standard. It dictates what is and what
is not a valid XTbML document . This note is
not intended to dissect the standard or its
schema in all its fine points and generality
but rather to give an overview so that one
can get the big picture.

The type code definition document is avail-
able from the ACORD site and may be
downloaded by anyone who is willing to
register. In terms of the XTbML standard,
the following type code groups are the
most important:

• Content Type Codes

• Nation Type Codes

• Scale Type Codes

Beyond the documents cited above, ACORD
does not provide information related to how
to successfully implement the standard.
They look to the users themselves to pro-
vide this type of information. Because the
ACORD standard is very general and also
because it takes a different approach to
storing data than did Table Manager, some
more specific standards need to be adopted
in order to facilitate the exchange of tabular
data.

ACORD Standard:
Table Structure
The XML structure underlying the ACORD
standard may be represented diagrammati-
cally as follows:

Under this scheme, the XTbML element con-
tains a content classification element and
one or more table elements. Each table ele-
ment contains both a metadata element and
a values element. The values element con-
tains one or more axis elements and these
elements actually store the values. This
assumes that the indexes to the values are
numbers (e.g. age). Non-numeric indexes
(e.g. gender) require the use of both
KeyDef's and key's. For the purpose of the
SOA table database the use of these ele-
ments is deemed unnecessary.

The purpose of each of the elements shown in
the diagram may be summarized as follows:

• Content Classification—Identifies the
tabular data and provides general
descriptive information.

• Table–This is the container for the tab-
ular data. In some cases, it is more con-
venient to use multiple "tables" to rep-
resent a set of tabular data. For exam-
ple, a select and ultimate table may be
best represented by a two-dimensional
select Table plus a one-dimensional
aggregate Table.

• continued on page 6 •

CompAct • 5

some more
specific
standards
need to be
adopted

in order to
facilitate the
exchange of
tabular data

XTbML

ContentClassification Table

MetaData Values

AxisDef KeyDef Axis

Axis

• Table: MetaData—This describes the
attributes of the data stored within the
Table; e.g., the minimum and maxi-
mum values for the indexes, the type
of data, etc.

• Table—Values—This is the top-level
container for the data itself.

• Table—Values:Axis—This is the contain-
er for one dimension of the data. A one-
dimensional table would have one axis
while a two-dimensional table would
have one axis which contains a second
axis. The lowest level axis will contain a
series of Y elements which actually
house the data.

For the purpose of the SOA project, the
types of tables stored by Table Manager
will be structured in XTbML as follows:

• Aggregate Tables—A single table ele-
ment with one Axis element.

• Select and Ultimate Tables—Two table
elements. The select part of the table is
represented by one of these. This table
will have two axis elements. The outer
most axis will be indexed on age and
the innermost axis will be indexed
based on the duration. The second table
element will contain the ultimate data
which will be handled just like an
aggregate table.

Since the ACORD standard is so generic,
other structures could be used to represent
the SOA data. The proposed scheme is rec-
ommended because it is simple and consis-
tent with the pre-cursor to the ACORD stan-
dard developed by the Computer Science
Council. There was considerable discussion
and development around the pre-cursor
standard.

Sample XTbML documents
To make the structure of the tables more
concrete for the reader, we supply two
examples of actual implementation in
appendixes 1 and 2. The first one is an
aggregate mortality table and the second

one is a select and ultimate table. Those two
tables are available from the Table Manager
database as table number 10 and table
number 259 respectively. The vertical ellip-
sis obviously indicates a series of missing
rows that were not included here to improve
readability.

An interesting point to be made here is that
most everyone with no knowledge of the
XTbML standard itself but with familiarity
with mortality tables could read the two
samples provided and extract all the
pertinent information available in them.
That is part of the beauty of XML, it is quite
verbose and therefore can carry a lot of
semantics for the human reader.

Of course, most XML documents are not
meant for human consumption, they are
instead meant for consumption by comput-
ers. There again, XML with its panoply of
related technologies such as XPATH,
XSL/XSLT, DOM, SAX and the likes provides
the programmer with a number of ways to
access the information desired. It is clear
however that if one is to write code to
access a given probability of mortality for a
certain age from any old table supplied in
XML format, more knowledge is needed.
This is precisely where the schema itself will
be useful for the programmer of the pro-
gram itself to make sense of the actual lay-
out of the data.

What else should you expect
Those of you who attended the section’s
breakfast session of the last annual meeting
will recall a few proof of concept demon-
strations of what can be done with such a
standard. Those demonstrations were all
based on the fact that it is as easy to
request a certain mortality table from a
server providing it under the XTbML stan-
dard, as it is to request an HTML page from
a browser. Initially, the Golden Code project
sponsored by the section will provide just
that, a way to download and browse tables
directly from your web browser. However,
once you have an XTbML document avail-
able in memory on the client side, the pos-

• continued on page 10 •

• XTbML continued from page 5 •

6 • CompAct

Smarter, Not Harder
An Example by Steve Welander, ASA, MAAA

By now I'm sure we've all been told at some
point during our careers to work smarter,
not harder. With this article, I will present

one possible solution. As an example of working
harder, let us assume that we need to create a
presentation showing reinsurance cash flows
and that we need to do it monthly. Since upper
management will see part of this presentation,
pictures are necessary. We are currently doing
this by gathering all the data into Microsoft
Access, building pivot tables in Microsoft Excel,
and putting the results into a Microsoft
PowerPoint presentation. This presentation con-
sists of the following parts. A title slide, a sum-
mary slide showing monthly cash flows by line of
business (LOB), a series of detail slides showing
the monthly flows for each reinsurer by LOB, and
a few bullet points.

Now it is time to work smarter. What if once
our database was populated, all it took was a
double-click to create the presentation? Or
better yet, it ran automatically? Using
Microsoft Visual Basic (VB), we can do just
that.

VB allows us to access various objects,
including a PowerPoint object. We will take
advantage of this PowerPoint object along
with a connection to our Access database and
some relatively straightforward code to
accomplish our goal. The code will consist of
a main “driver” routine and a couple special-
ized subroutines to create the various slide
types.

Still with me? If you are management,
maybe you want to skip this next part, look
at the sample slides, write “can you do this?”
on a copy of this article and pass it down to
the your resident computer whiz. OK, you are
still with me and you aren’t management, ☺
so let’s get a little more technical and discuss
how to actually get this to work. I’ll review
the program flow, provide a little detail on
some of the key elements, and discuss some
additional considerations.

Since the goal is to have this run as a sched-
uled task, we will create the project so that it
calls a module on load rather than a form.
Once running, we need to establish access to
the PowerPoint object and to the database.
Next we will pass control to a routine to build
the slides. Finally we save the presentation,
close our files, and exit.

In order to set the program to run a module
instead of loading a form, we need to go to
the Project Properties menu and change the

startup object to “Sub Main” (see figure 1).
The “Unattended Execution” box should also
be checked if this will be a standalone job.
Since the program is now expecting a Main
subroutine, we better make sure we have one
with that name. We should think of this sub-
routine Main as an introduction to our pro-
gram. By doing so, it makes it easier for us,
or for someone else, to look at the code and
get a pretty good idea of what the program is
going to do.

The key routine for this example is the
Build_Slides subroutine. First we need to
establish a link to PowerPoint. Then we will
pass a link to the presentation to several spe-
cialized subroutines that will actually build our
slides. Once our slides are built, we can add
global headers and footers.

This is done via the
SlideMaster.HeadersFooters object. Finally,
the presentation is saved and control is
passed back to the Main subroutine.

The title slide is a fairly straightforward slide
to create.
oPres.Slides.Add Slide_number, ppLayoutTitle
oPres.Slides(Slide_number).Shapes
("Rectangle 2").TextFrame.TextRange.Text =
Title_text
oPres.Slides(Slide_number).Shapes
("Rectangle 3").TextFrame.TextRange.Text =
sub_title_text

We tell it to add a slide of type ppLayoutTitle
(a predefined variable). This slide consists of
two rectangle boxes, the first of which is the
main title box and the second is the sub-title

• continued on page 8 •

CompAct • 7

Steve Welander, ASA,
MAAA, is an actuary
with AIG | American
General in Springfield,
IL. He can be reached at
actuary@welander.com

Can we
work even

smarter?

box. We assign our text to the appropriate
properties and we are done with that slide.

The bullet point slides are created using a
type ppLayoutText. Like the title slide, it has
two predefined rectangles on it. The first one
is the slide title box and the second is for the
bullets. We don’t need to get too fancy with
this slide since it probably will be manually
updated each month. But it is good to have
as a placeholder in the
presentation.
The chart slides are the real meat of the pro-
gram. I've attempted to make a fairly gener-
ic subroutine to accomplish this.

Sub Add_Chart_Slide(strChartType As String,
oPres As PowerPoint.Presentation, lSlide As
Long, _

strTitle As String, strQuery As String, strXAxis
As String, strYAxis As String)

What we are passing here are the type of
slide (Bar or Line), the PowerPoint presenta-
tion object, the most recent slide number, the
title for the chart, a string containing the
query necessary to create the slide, and titles
for the X and Y axis. Once we start the rou-
tine, we bump up our slide number by one
since we are adding one, then we add a total-
ly blank slide using ppLayoutBlank. After
adding a blank slide, we need to insert a
chart object.

Set shpGraph = .Shapes.AddOLEObject(0, 0,
oPres.PageSetup.SlideWidth, _

oPres.PageSetup.SlideHeight * 0.9,
ClassName:="msgraph.chart",
Link:=msoFalse)

What this is doing is inserting a chart starting
in the top left, for the width of the slide and
leaving the bottom 10% of the slide blank.
This is the area where the footers would go,
so it makes sense not to overlap them. Now
that we have a chart, we need to tell it what
type of chart.

oGraph.ChartType = xlLine ' to make line
graphs

The sample is set up to switch between a line
chart and a bar chart depending on the value
we provide as strChartType.

Within the chart object is a datasheet. This
looks a lot like an Excel spreadsheet. We
need to take data from our Access query and
fill this datasheet. First we blank out some of
the default values. This isn't necessary if you
are sure that you will be using at least the
same number of rows and columns as the
default. Then we set up some formatting for

the axis. Here we could define a minimum
and/or maximum scale if we needed our
slides to be consistent. In the sample I've
commented these out, but you can see how it
would be done if desired. Next we loop
through the query setting up my row and col-
umn headings. These values would go into
row one and column one on the datasheet.

oDataSheet.Cells(lRowCnt, 1).Value =
Format(.Fields(0).Value, "0000-00")

Now we reset the query back to the begin-
ning and fill in our actual datasheet values.
We need to keep track of what row and col-
umn we are in, but with a couple temporary
variables this isn't too difficult. Now that our
table is populated, we can thicken up the
weight of the lines if desired.
oGraph.SeriesCollection(x).Border.Weight =
xlMedium

Then we need to update the changes we've
made to the chart.
oGraph.Application.Update

If we don't update the changes, when we
look at our presentation, all we will see is the
default chart for each slide.

As mentioned at the beginning of the article,
we also want to make a series of slides based
on a single query. In this case, it is monthly
cash flows by LOB with a separate slide for
each reinsurer. Initially I set about doing this
with a subroutine very similar to the one just
described, but with an extra layer of looping
involved. I quickly saw that this was going to
be a lot of redundant code so I rethought my
strategy. My new train of thought had me
taking the query and running a query on it.
This created a new query that had just the
reinsurer’s name in it. So now I could loop
through this new query and call the single
slide query using a slight modification of the
original query. This slight modification was
just to select off only the records for the rein-
surer we want for this slide. A little testing, a
little cursing, some more testing and I got it
working.

What is left to do? Best I can tell, we just
have to fire up PowerPoint, edit the bullet
slides, and ship it off to management.

And there we have it, an automated slide
generating program. Now for some consider-
ations. If the database has a massive
amount of data, the queries could run very
slow. Since some of the queries get multiple
hits, it might make sense to run a
CreateTable query first to store the summary
data in and run the queries off of that table.
It is entirely possible that you don't have

• Smarter, Not Harder continued from page 7 •

8 • CompAct

access to Visual Basic. In that case, it should
be possible to modify this logic to work as a
module in either Access or PowerPoint. It
should also be fairly easy to make this a
form-based application and allow inputs for
file location, “as of” dates, custom titles, or
whatever.

It should be noted that there were no “holes”
in the sample data. That is to say every cell
had a value. If that isn’t the case,
allowances need to be made. This can be
accomplished in many different ways such as
loading the data into an array and then popu-
lating the datasheet from the array or tweak-
ing the queries to ensure that there are no
empty cells. If you are trying to run the
sample code, make sure you have the data-
base placed in the same location that is hard-
coded in the sample code.
Can we work even smarter? If we could
automate the populating of the database,
then we can answer “yes”. If there is enough
demand, then maybe another article will fully
answer that question.

This project has been created using Office 97
and Visual Basic 5. I would hope that
the modifications to newer versions of the
software would be trivial. Some of the rou-
tines were found in some samples on the
Microsoft website. Some web searches (using
www.google.com) turned up surprisingly little
data on this topic. The Object Browser also
proved helpful. I was able to obtain some
help on the Chart objects by recording Chart
macros in Excel. I found recording them in
PowerPoint didn't produce any useful informa-
tion.

The following KnowledgeBase articles were
used to help with this project: Q143038,
Q172836, and Q176443.

The author has made a sample program and
sample database available along with the arti-
cle, and they can be found at: [insert web
link here]. The author may be contacted at
actuary@welander.com with questions and/or
comments. :

Data Mining—How to Find Gold (co-sponsored with E&R and NTM Sections)
Monday, October 27, 10:30 a.m.–12:00 p.m.

Are your customers profitable? Data mining lets you slice your current customer block in a variety of ways. This ses-
sion shows you what techniques are available to find and maximize the additional value within in-force blocks of busi-
ness. Real-life examples of when to use each technique and why are presented.

Participants gain an understanding of:
• Data mining techniques currently in use
• Privacy and regulatory issues

Computer Science Section Hot Breakfast: ACORD Data Standards
Tuesday, October 28, 8:00 a.m. - 10:00 a.m.
Computer Science Section members learn about current section activities and provide input to the Section Council.
The session also teaches the workings of the XML-based ACORD data standard, including the far-reaching applications
of ACORD. In addition, examples of representing tabular data in XTbML format and transmission of data are incorpo-
rated.

At the conclusion of this session, attendees:
• Learn about section activities
• Recognize opportunities to volunteer for section projects
• Learn about ACORD’s XTbML standard and its applicability in some areas

Relating to Relational Databases
Tuesday, October 28, 10:30 a.m. - 12:00 p.m.
Sure, data are all part of one big database family, but are they properly related? Actuaries can feel intimidated when
the information technology (IT) folks start talking about normalization, SQL, foreign keys, object-relational and entity
relationship diagrams.

Attendees learn when to:
• Use spreadsheets
• Choose entry-level databases
• Consider the powerful large databases

This session gives attendees an understanding of how to arrange and store data in a manner that reduces duplication
of effort and improves the ability to utilize it for more informed business decisions. Actuaries receive
common-sense definitions to IT jargon. :

2003 Annual Meeting– Orlando, FL
Computer Science Section Sessions

CompAct• 9

• XTbML ontinued from page 6 •

10 • CompA ct

sibilities are limitless.

One could write custom clients in the lan-
guage of their choice. One such custom
client could be an Excel add-in that allows to
access table data just by typing in a custom
worksheet function taking the table number,
age and duration as arguments for example.
The second author demonstrated such a
client based on a previous version of the
standard and plans on distributing another
one written in Visual Basic as open source
later this summer. The first author has
plans on providing a similar custom client
implemented in Java.

CompAct • 11

• continued on page 12 •

Bibliography
[1] Proposed Data Standards for Table Data in the
Insurance and Pension Industries,
http://www.soa.org/sections/data_standards.pdf.

:

• XTbML continued from page 11 •

12 • CompAct

Introducing MathML: The Solution to Mathmatics
on the Web
by Jay Brown

H
aven’t you always wanted to put

on your web page? Who hasn’t?

Unfortunately, HTML was not made for

mathematical expressions. With it, there is

no way to mark up mathematical formulas

so that they will be properly displayed.

Fortunately, there is an answer: MathML.

Standard World Wide Web mark-up lan-

guages do not allow for the accurate repre-

sentation of mathematical formulas, even

though one of the early intents of the Web

was for it to be a pooling of scientific knowl-

edge. Previously, the only way to include

mathematical expressions in HTML Web

documents was to link to images stored in

JPG or GIF format. The quality of such doc-

uments is often very poor. The images are

usually hard to create, very primitive in

appearance and cause a marked increase in

document load time. Additionally, once the

images are created, they are fixed. They

cannot adapt to changes in font size or

background color, which can cause anti-

aliasing halos (blurred, or fuzzy edges and

shadows). It is also difficult, if not impossi-

ble, to correctly align formulas horizontally,

so that they appear appropriately when

used in the middle of a line of text. Once

these documents are finally created, they

typically print poorly, because of the limited

pixel depth (70 dpi) of the printed images.

Beyond simply being displayed, formulas

should ideally react to events, like mouse-

over events for portions of formulas, with

functionality beyond the limited capabilities

of image maps. For convenience, formulas

should also be able to be folded and unfold-

ed as long equations are being viewed.

When formulas are stored as images, they

are unavailable for searching, and cannot

have portions selected for cut-and-paste

operations. Nor, can they be transferred into

other software applications for manipula-

tion, or be exchanged between software

applications. Enter MathML.

MathML is a World Wide Web Consortium

(W3C) recommendation, released on February

21, 2001 (see http://www.w3.org/Math/), and

having a last call on the Working Draft of its

second edition on May 9, 2003. It has its

origins in a 1994 proposal by Dave Raggett

for HTML Math in the HTML 3.0 Working

Draft. This led to a discussion panel on

mathematical markup at the April 1995

WWW Conference in Darmstadt. In May of

1995, Wolfran Research then submitted a

proposal for mathematical markup. A year

later, the Digital Library Initiative Meeting in

Champaign-Urbana, IL brought interested

parties together, leading to the formation of

the HTML Math Editorial Review Board. This

Board became the W3C Math Working Group

in March of 1997, and was given a longer

charter as the 2nd W3C Math Working

Group in July of 1998 and again in June of

2001 (for a list of members see

http://www.w3.org/Math/workingGroup).

MathML was developed with the goals of

encoding mathematics suitable for teaching

and scientific communication. The language

was to encode both notation and meaning

and be sufficient for use as an exchange

medium for both software applications and

scientists.

MathML is an application of XML (eXtensible

Markup Language), which was created to

surpass the limitation of pre-defined HTML

tags. In XML, authors define their own tags

Jay Brown is an MG-Triton

client support manager at

Milliman USA in Windsor,

CT. He specializes in

traditional and health

valuation systems, and

holds a Masters degree in

Computer Science from

Rensselaer Polytechnic

Institute. He may be

reached at jay.brown@

milliman.com.

• continued on page 14 •

CompAct• 13

β com = + −+P
P c

a
x x

x n

19 1

˙̇ :

as needed. MathML is further supported by style

sheets, including a published XSL style sheet

called the Universal MathML Style Sheet (UMSS)

that can adjust to the current environment, to be

used in editors, translators and native renderors

(browsers, plugins, applets or ActiveX compo-

nents). It can be used to mark up both the pres-

entation of mathematical expressions and their

semantics, or underlying meaning. It has been

designed to support mathematics up to and

including the high school/early university level,

and is intended to be primarily written by soft-

ware, such as authoring tools, and not by human

hand —the assumption being that an author lay

out their expression using a WYSIWYG tool and

let the tool generate the corresponding MathML.

To control presentation and meaning, MathML

specifies two new sets of XML tags: Presentation

MathML and Content MathML. For the notation of

mathematical formulas in markup (Presentation

MathML), there are 28 new tags and 50 attrib-

utes covering 2000 symbols, which take advan-

tage of the proposed extensions for mathematics

in Unicode 3.1 and 3.2, with the ability to add

others through the MathML mglyph element. To

convey semantic meaning (Content MathML),

there are 75 new tags and 12 attributes, with

methods to extend them. An author of a math-

ematical expression may chose to use either or

both Presentation MathML and Content MathML,

based on that expression’s intended use.

To see how MathML works, let’s look at the

mathematical expression for the quadratic

equation (the solution to the basic quadratic

formula ax2 + bx + c = 0):

Figure 1: The quadratic equation

In Presentation MathML, the expression would

look like the following:

<mrow>

<mi>x</mi>

<mo>=</mo>

<mfrac>

<mrow>

<mrow>

<mo>-</mo>

<mi>b</mi>

</mrow>

<mo>±</mo>

<msqrt>

<mrow>

<msup>

<mi>b</mi>

<mn>2</mn>

</msup>

<mo>-</mo>

<mrow>

<mn>4</mn>

<mo>⁢</mo>

<mi>a</mi>

<mo>⁢</mo>

<mi>c</mi>

</mrow>

</mrow>

</msqrt>

</mrow>

<mrow>

<mn>2</mn>

<mo>⁢</mo>

<mi>a</mi>

</mrow>

</mfrac>

</mrow>

Note that the marked-up expression is essential-

ly nested XML, in line with the recursive nature of

mathematics. Elements like mrow (indicating a

horizontal row of elements) and msup (indicating

a base element and its superscript) help define

the typical two-dimensional layout of a mathe-

matical expression. Other tags used are mfrac (a

fraction with the first child as the numerator, and

the second as the denominator), msqrt (the

square root of the contained expression), mi

• MathML continued from page 13 •

14 • CompAct

x
b b ac

a
= − ± −2 4

2

The Content
MathML is
expressing the
underlying
meaning...

(variables) and mo (operators). In an HTML

document, the marked-up expression would

be contained within <math xmlns=

”http:// www.w3.org/1998/Math/MathML”>

and </math> tags.

In Content MathML, the same expression

would look as follows:

<mrow>

<apply>

<eq/>

<ci>x</ci>

<apply>

<divide/>

<apply>

<mo>±</mo>

<apply>

<minus/>

<ci>b</ci>

</apply>

<apply>

<root/>

<apply>

<minus/>

<apply>

<power/>

<ci>b</ci>

<cn>2</cn>

</apply>

<apply>

<times/>

<cn>4</cn>

<ci>a</ci>

<ci>c</ci>

</apply>

</apply>

<cn>2</cn>

</apply>

</apply>

<apply>

<times/>

<cn>2</cn>

<ci>a</ci>

</apply>

</apply>

</apply>

</mrow>

Note that from a semantic standpoint the

formula looks like:

The Content MathML is expressing the under-

lying meaning, and not the layout or presen-

tation. This requires more expressive tags

like apply (construct, using prefix notation), ci

(child variable), minus (subtraction) and

times (multiplication).

It is also possible to use Presentation and

Content MathML together.

For example, to render

The standard Content markup would be:

<mrow>

<semantics>

<mrow>

<msubsup>

<mo>∫</mo>

<mn>1</mn>

<mi>t</mi>

</msubsup>

<mfrac>

<mrow>

<mo>ⅆ</mo>

<mi>x</mi>

</mrow>

<mi>x</mi>

</mfrac>

</mrow>

<annotation-xml encoding="MathML-

Content">

CompAct • 15

• continued on page 16 •

x b b a c a= ± − −() ÷, 2 4 2x x x

dx

x
1

t

∫

• MathML continued from page 15 •

<apply>

<int/>

<bvar><ci>x</ci></bvar>

<lowlimit><cn>1</cn></lowlimit>

<uplimit><ci>t</ci></uplimit>

<apply>

<divide/>

<cn>1</cn>

<ci>x</ci>

</apply>

</apply>

</annotation-xml>

</semantics>

</mrow>

However, some renderors might present the integrand

as (1/x)dx, when the author would like to ensure it is

displayed as dx/x. The combination of Presentation

and Content shown below will solve that problem, by

defining both display rules and meaning concurrently:

<semantics>

<apply>

<int/>

<bvar><ci>x</ci></bvar>

<lowlimit><cn>1</cn></lowlimit>

<uplimit><ci>t</ci></uplimit>

<apply>

<divide/>

<cn>1</cn>

<ci>x</ci>

</apply>

</apply>

<annotation-xml encoding=

"MathM-Presentation">

<mrow>

<msubsup>

<mo>∫</mo>

<mn>1</mn>

<mi>t</mi>

</msubsup>

<mfrac>

<mrow>

<mo>ⅆ</mo>

<mi>x</mi>

</mrow>

<mi>x</mi>

</mfrac>

</mrow>

</annotation-xml>

</semantics>

For the actuarial community, that latest version of

MathML supports actuarial notation. For example, the

MathML markup for:

Figure 2: CRVM Beta equationis as follows:

<semantics>

<mrow>

<msup>

<mi>β</mi>

<mrow>

<mtext>Com</mtext>

</mrow>

</msup>

<mo>=</mo><mi>P</mi><mo>+</mo><mfrac>

<mrow>

<mmultiscripts>

<mi>P</mi>

<mrow>

<mi>x</mi><mo>+</mo><mn>1</mn>

</mrow>

<none />

<mprescripts/>

<mrow>

<mn>19</mn>

</mrow>

<none />

</mmultiscripts>

<mo>−</mo><msub>

<mi>c</mi>

<mi>x</mi>

</msub>

</mrow>

16 • CompAct

β com = + −+P
P c

a
x x

x n

19 1

˙̇ :

<mrow>

<msub>

<mover accent='true'>

<mi>a</mi>

<mo>¨</mo>

</mover>

<mrow>

<mi>x</mi>

<mo>:</mo>

<menclose notation='actuarial'>

<mi>n</mi>

</menclose>

</mrow>

</msub>

</mrow>

</mfrac>

</mrow>

</semantics>

Netscape, Internet Explorer and Mozilla now have very

good native browser support for MathML (see Table 1).

Currently, tools exist to help with the creation and viewing

of mathematical expressions on Web pages. For example,

MathType (www.mathtype.com) has augmented their pop-

ular equation editor, to include MathML as an output option.

They have also developed the WebEQ toolkit to aid in devel-

oping mathematics for the Web and the MathPlayer display

engine for Internet Explorer. So, get your mouse and

modem ready, because MathML, the solution to mathemat-

ics on the Web, is coming your way. :

CompAct • 17

Internet
Explorer 5.0

•1

•1

Internet
Explorer 5.5

•1 or 2

Internet
Explorer 6.0

•3

Netscape
6.1

•1

•1

Netscape
7.0 PR1

•

•

Amaya

•4

•4

Mozilla
0.9.9

•

•

•

Windows

Macintosh

Linux/UNIX

Table 1: Browser Support for MathML
1 = with Techexplorer plug-in

2 = with MathPlayer plug-in

3 = optionally, with Techexplorer or MathPlayer plug-ins

4 = presentation MathML only

Society of Actuaries Web Redesign
by Rob Hayashida

I
n May, the Society of Actuaries began the

first phase of the SOA Web site redesign.

The first phase focuses on making navi-

gation more intuitive and easier to use by or-

ganizing the site’s content in a logical manner.

Other features that will be included in the first

phase of the redesign will be a new and im-

proved online library search, integrated site

search and the possibility of new discussion

forums and knowledge base of frequently

asked questions.

By redesigning our Web site, the SOA will be

providing members and candidates easy

access to information, research tools, study

notes, online education, interactivity and

community. The aim is to create a user

experience that reflects the SOA as the pre-

mier source of information about the actu-

arial profession.

The next few months will be a very exciting

time for the SOA as we launch the new site

in the beginning of 2004.:

18 • CompAct

Rob Hayashida is the
web manager with
the Society of
Actuaries and has
been active in web-
application develop-
ment for close to
seven years. He can
be reached at
rhayashida@soa.org.

2003 Actuarial
Speculative Fiction
Contest:
The Outer Limits of

Actuarial Thoughts

Take a walk through the outer limits of the
minds of some of your actuarial associ-
ates! Contributors to the fifth Actuarial

Speculative Fiction Contest, sponsored by the
Computer Science Section, have provided a
variety of views of the future of the world
from an actuarial perspective, sharing
those inner most thoughts with you. Come
learn, marvel, chuckle and cry at what pos-
sibly might be, but do be careful. Once you
have finished these stories, you will never
look at your world, or the actuaries in it, in
the same way. The thoughts and ideas
shared here will change the way you think.

As part of the contest, the Computer
Science Section presents prizes in various

categories. This year's winners were:

First place
Alan Shulman wins $200 for his contribution

“God’s Actuary”

Second place
Gregory A. Dreher wins $100 for his contri-
bution “Actuarial Certainty.”

Best use of computers
Steve Mathys wins $50 for his contribu-
tion “Antiquity in Their Midst.”

Best use of actuarial science
Joe Kincaid wins $50 for his contribution
“Worth the Risk.”

To access all of the stories, please go to
http://www.soa.org/sections/

scifi/fiction_version5.html.:

What's Going
On ?

Ever wonder what the
Computer Science
Section does? Here is a

list of recent accomplishments
and the work we are currently
doing:

(i) ACORD Table Data
Standard, developed by
ACORD and the Computer
Science Section, adopted in
November 2002

(ii) Fifth Actuarial
Speculative Fiction contest
completed in Spring 2003

(iii) Sessions on Internet
Security and Actuarial
Software Quality Assurance
at SOA Spring Meetings

(iv) Ongoing project with
GoldenCode to produce a
sample implementation of
the ACORD Table Data
Standard

(v) Working group develop-
ing a recommendation for
computer science curriculum
for actuarial majors

(vi) Coordination of Annual
Meeting sessions on
Relational Databases and the
ACORD Table Data Standard,
along with the section break-
fast

(vii) Re-birth of CompAct,
the Section newsletter

What would you like us to be
doing? If you have sugges-
tions for projects related to
computer science, or would
like to volunteer, please con-
tact Charlie Linn at
charlie.linn@milliman.com.:

CompAct • 19

475 N. Martingale • Schaumburg, IL • 60173 • www.soa.org

	Table of Contents
	Articles Needed for the CompAct Newsletter
	Chairperson's Corner by Charlie Linn
	The XTbML Standard: A Fresh Approach to Interchange of Table Data by Cynthis Jeness and Jacques Rioux Ph.d
	Smarter, Not Harder An Example by Steve Welander
	2003 Annual Meeting-Orlando, FL
	Introducing MathML: The Solution to mathmatics on the Web by Jay Brown
	SOA Web Redesign by Rob Hayashida
	What's going on?
	2003 Actuarial Speculative Fiction Contest

