
CompAct Electronic Newsletter • Issue No. 17 • May 2004 • Published in Schaumburg, IL by the Society of Actuaries

Inside

Chairperson’s Corner 3
by David Snell

Surprising Results from Curriculum
Survey 4
by Randall Kaye

Computer Science Sessions in Anaheim &
San Antonio 5
by Phil Gold

Standards: XTbML Tables Beyond
Mortality 7
by Dean Slyter

P versus NP, or How Long Will This
Take? 10
by Carol Marler

Using Excel to Prototype Relational
Database Applications 12
by Dave Snell

CompAct

Articles Needed for the CompAct
Electronic Newsletter
Your help and participation is needed and welcomed. All arti-
cles will include a byline to give you full credit for your effort.
CompAct is pleased to publish articles in a second language
if a translation is provided by the author. For those of you in-
terested in working on the CompAct, several associate edi-
tors are needed to handle various specialty areas such as
meetings, seminars, symposia, continuing education meet-
ings, new research and studies by SOA committees and so
on. If you would like to submit an article or be an associate
editor, please call Dave Snell, editor, at 636.736.7345.

The CompAct is published as follows:

Publication Date Submission Deadline
September 15 July 15
March 15 January 15

Preferred Format
In order to efficiently handle articles, please use the
following format when submitting material:

Please e-mail your articles as attachments in either MS
Word (.doc) or Simple Text (.txt) files. We are able to con-
vert most PC-compatible software packages. Headlines are
typed upper and lower case. Please use a 10 point Times
New Roman font for the body text. Carriage returns are put
in only at the end of paragraphs. The right-hand margin is
not justified.

If you must submit articles in another manner, please call
Erica Barraca, 847.706.3549 at the Society of Actuaries for
assistance.

Please send electronic copies of the articles to:

Dave Snell
Computer Science Section Editor
1370 Timberlake Manor Parkway
Chesterfield, MO 63017-6309
phone: 636.736.7345
fax: 636.736.7745
dsnell@rgare.com

Thank you for your help.

Computer Science Section Newsletter
Issue Number 17 • May 2004

Published quarterly by the Computer Science
Section of the Society of Actuaries

475 N. Martingale Road, Suite 600
Schaumburg, IL 60173
phone: 847.706.3500
fax: 847.706.3599

World Wide Web: www.soa.org

This newsletter is free to section members.

Dave Snell
Computer Science Section Editor
RGA Reinsurance Company, Inc.
1370 Timberlake Manor Parkway
Chesterfield, MO 63017-6309
phone: 636.736.7345
fax: 636.736.7745
dsnell@rgare.com

Computer Science Section
Section Council
David L. Snell, Chairperson
Brian S. Septon, Vice-Chairperson
Hal S. Tepfer, Treasurer/Secretary
William R. Aguayo, Council Member/
Web Liaison
Charles S. Fuhrer, Council Member
Philip Gold, Council Member
Kok Bin Liew, Council Member
Frank G. Reynolds, Council Member
Michael K. Rigby, Council Member
Charles S. Linn, Immediate Past Chairperson

Lois Chinnock, Sections Manager
lchinnock@soa.org

Clay Baznik, Publications Director
cbaznik@soa.org

Erica Barraca, Graphic Designer
ebarraca@soa.org

Facts and opinions contained in these pages
are the responsibility of the persons who
express them and should not be attributed to
the Society of Actuaries, its committees,
the Computer Science Section or the
employers of the authors. Errors in fact,
if brought to our attention, will be promptly
corrected.

Copyright© 2004 Society of Actuaries.
All rights reserved.
Printed in the United States of America.

Chairperson’s Corner
by David Snell

W
elcome to this issue of CompAct.
Personal thanks are due to my
immediate predecessor, Charlie

Linn, who restarted the newsletter last fall,
after a long hiatus. We plan to make this
a more frequent way of communicating with
you. Of course, the communication process
should occur in both directions, so let us
know what you think about the articles, and
even better, contribute some articles for the
next issue.

A few decades ago, when I was a fledgling
actuarial student, I read about an SOA study
that asked people on the street to explain the
term “Actuary.” Some of us laughed at some
of the answers. I thought the most creative
response was that an Actuary was “a place
where you bury dead actors.”

Back then, of course, the insurance industry
knew of actuaries as the ultimate gurus of
financial calculations and as natural leaders
of their companies. Many, if not most, insur-
ance companies were managed by an actu-
ary. I remember hearing then that if you
liked mathematics, and you liked money
(i.e., having some), this was the profession
of choice.

Last year the SOA conducted another study,
this time asking financial services profession-
als, and the results were markedly different.
We are still viewed as very good with mathe-
matics, but now we have a lot of competition
on that front. Communication skills and busi-
ness savvy are also important and in those
areas, the CFA and MBA are considered
stronger than the FSA. The role of actuaries
as company leaders has diminished.

One thought is that the actuarial academic
training curricula may be a bit out of touch
with current needs. We decided to investi-
gate this from a computer science perspec-
tive, and Randall Kaye summarizes the
thought-provoking survey results for you in
this issue of CompAct.

Also in this issue, we have an article by
Dean Slyter about XTbML, a standard we,
along with ACORD (an industry standards
organization), are promoting to facilitate
the sharing of tabular data between differ-
ent programs, operating systems and even
hardware platforms. Cindy Jeness and
Jacques Rioux introduced us to XTbML in
the last issue of CompAct, and Dean’s arti-
cle continues with an example beyond just
mortality tables.

We even have an article about a mathe-
matics contest with a $1,000,000 prize
(mathematics and money, revisited).
Carol Marler describes this for us.

You can read about the exciting Computer
Science Section sessions planned for this
year’s Spring and Annual SOA Meetings,
and about how to use Excel, a tool as indis-
pensable to actuaries now as the calculator
was decades ago, in new ways, to proto-
type relational databases.

We think we have an assortment of articles
you might find interesting. I assure you,
we have buried no dead actors in this
issue. :

Dave Snell is
chairperson of the
Computer Science
Section. He is the
technology evangelist
for RGA Reinsurance
Company, and has a
lot of fun designing
customized solutions
for RGA’s Asia-Pacific
operations. His cur-
rent hobby is studying
Mandarin Chinese.
Dave can be reached
at dsnell@rgare.com

CompAct • 3

4 • CompAct

Randall A. Kaye ASA,

FLMI/M is a principal

with arc360, a consult-

ing firm providing

systems for the life

insurance industry.

While working with

illustration and admin

systems, he also helps

companies with their

universal life product

features and policy-

holder taxation inter-

pretations. He can be

reached at RAKaye@

compuserve.com.

Surprising Results from Curriculum Survey
by Randy Kaye

In performing their work, Computer Science
Section members utilize a wide variety of techni-
cal skills. Many useful “computer science”-relat-
ed subjects are not covered by the SOA exams,
though they may be considered. The Computer
Science Section recommends that colleges and
universities develop curricula for actuarial sci-
ence programs that reflect the results of this sur-
vey and which enable college and university stu-
dents interested in pursuing an actuarial career
to select appropriate courses.

The Computer Science Section membership
was surveyed to help us understand which top-
ics are important for actuarial staff to have a
working knowledge of, at either the “early
career” or “mature career” stage. Over 250
members completed the survey.

The results below are based on a scoring sys-
tem from 0 = Unimportant, to, 5 = Must Have,
then converted to a percentage. A score of 3.5
or more is significant, since it would imply a
level of importance somewhere between:

1. 70 percent of the respondents felt that it
was 5 = Must Have, and,

2. 100 percent of the respondents felt that it
was 3.5 = Important.

A score of 3.5 or more was achieved in the
following areas:

While the importance of system-related topics
such as spreadsheets, programming lan-
guages, database concepts, documentation
and project management were expected, the
surprising result from this survey is that the
respondents felt so strongly that numerical
algorithms (especially basic calculus, interpola-
tion, extrapolation, estimation and errors) are
still considered a Must Have in importance.

Yet the traditional actuarial skills of calculus,
numerical analysis and graduation methods
have been removed from the E&E syllabus over
the last decade or, if not removed, mentioned
as “prerequisites”. This survey shows that the
membership still judges these skills as
extremely important, and the Computer
Science Section council encourages the E&E
Committee to consider reinstating numerical
analysis and graduation on both the E&E syl-
labus and examinations.

Colleges and universities are also encouraged
to review these results and interpret them as a
“call to arms”, or at least, reinstatement, for
some of the more traditional actuarial skills.

Complete survey results can be found in the
Computer Science Section of the SOA Web site
at www.soa.org/ccm/content/areas-of-prac-
tice/special-interest-sections/computer-sci-
ence/compact-newsletter/ :

Score Early Career

4.7 Mathematical applications, especially spreadsheets (including macros).

3.5 Programming languages, especially procedural languages (C, Fortran, Basic).

3.5
Statistical analysis, especially regression, distributions, standard deviation and
Monte Carlo methods.

3.8
Numerical algorithms, especially basic calculus, interpolation, extrapolation,
estimation and errors.

3.5
Database Concepts, such as hierarchical & relational, queries, unions and
intersections.

3.9
Documentation, such as program comments, system documentation and user
documentation.

Score Mature Career

4.0 Mathematical applications, especially spreadsheets (including macros).

3.8
Project management & planning, such as steering committee, project sponsor,
critical path, dependencies and Gantt charts.

3.6
Financial aspects of information systems, such as total cost of ownership,
business risk and return on investment.

CompAct • 5

• continued on page 6 •

Computer Science Sessions in Anaheim &
San Antonio
by Phil Gold

Now’s your chance to sign up for some special sessions at the upcoming spring meetings.

We are sponsoring two sessions in Anaheim in May:

Hot Technologies
Wednesday May 19, 10:30 a.m.
Moderator: Charles S. Linn.
Panel: Neil Raden, Jit Sinha, Jerry Goedicke

This session covers a variety of hot technologies, including:
• Wireless business solutions
• Data management for analytical applications
• Grid computing

Attendee benefits include:
• All the new buzzwords
• Ideas for revolutionizing your own work environment

Nontraditional Computer Science Roles for Actuaries
Thursday, May 20, 8:30 a.m.
Moderator: Brian Reid.
Panel: Lyle S. Semchyshyn, Nancy Walczak, Emily B. Kraft

This forum highlights:
• The career paths of the panelists
• The experience of other session attendees.

Attendee benefits include ideas for job opportunities in less conventional areas of
actuarial employment.

We are co-sponsoring a panel discussion with the Health Section:

Data Warehousing Wednesday, May 19, at 4:00 p.m.

Phil Gold is a partner

in GGY Inc., the devel-

opers of the AXIS

Actuarial System. Phil

holds three passports,

writes on music and

stereo, and has at one

time or another been

a shepherd, a teacher,

a tank gunner, a

programmer, a VP

of underwriting, an

actuary, and an object

of derision. Phil lives

in Toronto and is

deteriorating rapidly.

He can be reached

at pg@ggy.com.

6 • CompAct

• Computer Sessions continued from page 5 •

We are sponsoring two sessions in San Antonio in June:

Actuaries versus IT – The Perpetual Dilemma
Monday, June 14, 10:30 a.m.
Moderator: Michael Hartfield.
Panel: Frank Reynolds, Susie Lee, Emil B. Kraft

Actuaries and IT people rarely see eye-to-eye. Neither understands the other’s perspective, with
frustrating results for both sides. Yet, with some tolerance and understanding, both can profit
from the other’s approach.

Actuaries expect IT to:
• Adjust priorities to quickly implement important changes
• Help fix program bugs and technical difficulties
• Design programs for easy modification with little verification
• Provide error-free systems that are already tested

IT expects actuaries to:
• Write specs from which include all reasonably foreseeable modifications
• Write specs IT can program
• Rigorously test all system calculations

Business Intelligence for Actuaries
Tuesday, June 15, 10:30 a.m.
Moderator: Michael K. Rigby
Lecturer: Michael Levine

This session covers:
• Context and general background on business intelligence (BI) and online

analytical processing (OLAP)
• How to build a successful application
• How to integrate with other applications

Attendee benefits include:
• A survey of products and approaches
• Examples of actuarial/financial applications

We are also co-sponsoring a workshop with the Financial Reporting Section:

Applications of Stochastic Modeling in Financial Reporting
Tuesday, June 15, 2:00 p.m. :

CompAct • 7

• continued on page 8 •

I
f you have been a member of the
Computer Science Section for a while
you know about the Table Manager

tool. You may have used it to access a
storehouse of mortality, morbidity and
lapse tables. You probably know this sec-
tion worked with ACORD, the life insur-
ance standards organization, to general-
ize the table manager format into XML
(eXtensible Markup Language). This new
standard is called XTbML (sometimes
pronounced as “x-table”).

Moving the table format to ACORD XML is
sort of like sending our child into the
world. The little being we nurtured to
handle our mortality/morbidity tables is
being asked to carry all kinds of data.
Insurance companies are trying to use
XTbML to carry premiums, cash values,
commission rates, modal factors, divi-
dend rates and interest rates. And these
are just the uses I know about.

Beginning with this issue of CompAct, I’m
going to highlight business use cases where
XTbML can define the tabled data.

My first example is from the life insurance
practice area. If you’re willing to e-mail me
a table data business case from your prac-
tice area, I would be happy to represent it
using XTbML in a future CompAct newsletter.

Business Use Case: Tabular Cash Values
This table provides cash values for a 20
pay whole life insurance plan. After pay-
ing 20 annual premiums, no additional
premiums are paid. The cash values are
based on issue age and duration (during
the premium paying period) or just
attained age (after the premium paying
period). Duration 1 is the first year from
the policy’s issue date and the cash values
in this table are end of duration cash
values. If you have a whole insurance
contract, you will find that it contains a
table of cash values. Below you’ll find
versions examples of these cash value
tables truncated by issue age or attained
age to save space.

Now let’s look at how this table might be
represented in XTbML. Keep in mind that
XTbML is a self-defined machine-readable

Standards: XTbML Tables Beyond Mortality
By Dean Slyter

Premium Payment Period Cash Values

Duration

Issue
Age 2

0.39
0.7

0.97

3
14.81
15.63
16.43

4
29.81
31.15
32.47

5
45.38
47.25
49.12

6
61.56
63.97
66.39

7
78.35
81.33
84.35

8
95.79
99.36

103

9
113.92
118.11
122.38

10
132.77
137.6

142.54

Duration

12
172.78
178.98
185.32

Issue
Age 13

194.01
200.93
208.01

14
216.12
223.78
213.62

15
239.13
247.56
256.17

16
263.09
272.3

281.69

17
288.02
298.03
308.22

18
313.98
324.8

335.83

19
340.98
352.66
364.57

20
369.11
381.7

394.56

Attained
Age

Paid-Up Period Cash Values

55
381.7

56
394.56

57
407.75

58
421.26

59
435.09

60
449.23

61
463.64

62
478.26

63
493.03

64
507.91

1
0
0
0

11
152.38
157.88
163.51

Dean Slyter is actuary

and account manager,

LIDS Consulting in

Woodridge, Ill.

He can be reached

at slytde@lidp.com.

• XTbML continued from page 7 •

8 • CompAct

<?xml version="1.0" encoding="UTF-8" ?>
- <XTbML id="Table1" Version="XTbML2.9.91"

xmlns="http://ACORD.org/Standards/Life/2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ACORD.org/Standards/Life/2
XTbML2.9.91.xsd">

- <ContentClassification>
<ContentType tc="45">Cash Value</ContentType>
<TableName>Tabular Cash Value</TableName>

</ContentClassification>
- <Table>

- <MetaData>
<ScalingFactor>0</ScalingFactor>
<DataType tc="5">Currency</DataType>
<CurrencyTypeCode tc="840">USD</CurrencyTypeCode>
<TableDescription>Issue Age -

Duration</TableDescription>
- <AxisDef id="A_1">

<ScaleType tc="3">Age</ScaleType>
<AxisName>Issue Age</AxisName>
<MinScaleValue>35</MinScaleValue>
<MaxScaleValue>45</MaxScaleValue>
<Increment>1</Increment>

</AxisDef>
- <AxisDef id="A_2">

<ScaleType tc="4">Service</ScaleType>
- <!--
also known as Duration

-->
<AxisName>Duration</AxisName>
<MinScaleValue>1</MinScaleValue>
<MaxScaleValue>20</MaxScaleValue>
<Increment>1</Increment>

</AxisDef>
</MetaData>

- <Values>
- <Axis AxisDefID="A_1" T="35">

- <Axis AxisDefID="A_2" T="1">

format for transferring and storing tabled data.
If a machine can read this format, so can you.
I’ll give you a few XML reading hints to help you
read it:

1. XML provides opening (e.g.: <Table>)
and closing (e.g.: </Table>) for each
data element. A lot of child data can
be represented between the opening
and closing of a data element.

2. The content classification defines the
type of values contained in the table.
It uses a typecode (tc) lookup table
where typecode ‘45’ is cash value.

3. The cash values are represented in
two stacked tables, first the pre-
mium paying period table, then the
paid-up period table.

4. A low duration of 21 has been defined
for the paid-up period table to clarify
the first duration where it should be
used. The data element <Continuous>
indicates that the duration 21 cash value
is used until a higher duration cash value
is given.

Cash value tables are used for product pric-
ing, financial reporting, sales and illustration
and policy administration. If each such sys-
tem could import and export data in the
XTbML format, data transfer between any two
systems would be possible.

Please send your tabled data business cases
and XTbML questions to me at
slytde@lidp.com. :

CompAct• 9

<V>0</V>
</Axis>

- <Axis AxisDefID="A_2" T="2">
<V>0.39</V>

</Axis>
- <Axis AxisDefID="A_2" T="3">

<V>14.81</V>
</Axis>

- <Axis AxisDefID="A_2" T="4">
<V>29.81</V>

</Axis>
- <Axis AxisDefID="A_2" T="5">

<V>45.38</V>
</Axis>

- <Axis AxisDefID="A_2" T="6">
<V>61.56</V>

</Axis>
- <Axis AxisDefID="A_2" T="7">

<V>78.35</V>
</Axis>

- <!--
....Continued....
-->

</Axis>
- <Axis AxisDefID="A_1" T="36">

- <Axis AxisDefID="A_2" T="1">
<V>0</V>

</Axis>
- <Axis AxisDefID="A_2" T="2">

<V>0.7</V>
</Axis>

- <Axis AxisDefID="A_2" T="3">
<V>15.63</V>

</Axis>
- <Axis AxisDefID="A_2" T="4">

<V>31.15</V>
</Axis>

- <Axis AxisDefID="A_2" T="5">
<V>47.25</V>

</Axis>
- <Axis AxisDefID="A_2" T="6">

<V>63.97</V>
</Axis>

- <Axis AxisDefID="A_2" T="7">
<V>81.33</V>

</Axis>
<!--

....Continued....
-->

</Axis>
<!--

....Continued....
-->

</Values>
</Table>
- <Table>

- <MetaData>
<ScalingFactor>0</ScalingFactor>
<DataType tc="5">Currency</DataType>
<CurrencyTypeCode

tc="840">USD</CurrencyTypeCode>
<TableDescription>Attained

Age</TableDescription>
- <AxisDef id="A_3">

<ScaleType tc="3">Age</ScaleType>

<AxisName>Attained Age</AxisName>
<MinScaleValue>55</MinScaleValue>

<MaxScaleValue>99</MaxScaleValue>
<Increment>1</Increment>

</AxisDef>
- <AxisDef id="A_4">

<ScaleType tc="4">Service</ScaleType>
- <!--
also known as Duration
-->
<AxisName>Duration</AxisName>
<MinScaleValue>21</MinScaleValue>
<Increment>1</Increment>
<Continuous>1</Continuous>

</AxisDef>
</MetaData>

- <Values>
- <Axis AxisDefID="A_3" T="55">

- <Axis AxisDefID="A_4" T="21">
<V>381.70</V>

</Axis>
</Axis>

- <Axis AxisDefID="A_3" T="56">
- <Axis AxisDefID="A_4" T="21">

<V>394.56</V>
</Axis>

</Axis>
- <Axis AxisDefID="A_3" T="57">

- <Axis AxisDefID="A_4" T="21">
<V>407.75</V>

</Axis>
</Axis>

- <Axis AxisDefID="A_3" T="58">
- <Axis AxisDefID="A_4" T="21">

<V>421.26</V>
</Axis>

</Axis>
<!--

....Continued....
-->

</Values>
</Table>

</XTbML>

10 • CompA ct

P versus NP,
or How long will this take?
by Carol Marler

For a new and creative solution to this ques-
tion, you could win a prize of $1,000.000.

O
n May 24, 2000, the Clay
Mathematics Institute offered
prizes of $1 million each for seven

unsolved problems in mathematics.
Landon Clay (whose major at Harvard was
not in mathematics, but in English) want-
ed to get more media attention for the field
of mathematics. His personal fortune was
used to found the Clay Mathematics
Institute (www.claymath.org).

The idea for these "millennium problems"
came from an address given by mathe-
matician David Hilbert in 1900, in which
he listed the most significant mathemat-
ics problems at that time. One problem
on his list was Fermat's Last Theorem,
which was solved recently.

Although the solution to Fermat's Last
Theorem made extensive use of comput-
ers, the theorem itself does not refer in
any way to computers. Very few prob-
lems in theoretical math, even today, fall
under the heading of computer science.
Most computer science questions are
practical, not theoretical. But looking
back in history, some theory was devel-
oped even before any modern computers
were built.

The theoretical basis of computer science
was developed by a mathematician
named A.M. Turing. His model of a com-
puter was a black box of sorts with n dif-
ferent internal states, and an input “tape”

consisting of zeros and ones. The opera-
tion of the black box was defined by a
transition matrix in which the current
state and the current value on the input
tape determined the next state.

The amazing thing about this model is
that any real-world computer program
could be mimicked with a suitable set of
states and a transition matrix. The theo-
reticians can then analyze whole families
of programs. The P versus NP millennium
problem considers a grouping of pro-
grams based on a formula for how long
(at most) it takes to process an input
string of length n.

Programs whose time formula is a poly-
nomial in n are denoted as P, for polyno-
mial time. For example, consider a
program that sorts N values in ascending
order. A simple way to do this is to loop
through the list, comparing each pair of
numbers (N-1 comparisons), and switch-
ing them if the second number is smaller
than the first. This loop would then be
repeated N-1 times, until all the numbers
had been sifted through to their proper
position in the sorted list. If each com-
pare and switching took k units of time,
the formula is k*(N-1)*(N-1) plus some
small amount of time to set things up,
etc. The time required is clearly a second
degree polynomial. Improvements are
possible, such as noting that each itera-
tion of the outer loop reduces by one the
number of comparisons required, since
the last i+1 entries are now determined.

Incidentally, changing a list of n zeros and
ones into N values is also known to be a
polynomial process. But some processes
simply cannot be done in polynomial
time. For example, consider the “travel-
ing salesman” problem. The salesman (or
woman, but let's use male pronouns for
simplicity) has a list of Ndestinations that
he wants to visit. There is an N*N matrix of
the distances from each destination to any
other. The salesman wants to minimize

Carol Marler is a

former editor of the

Speculative Fiction

contest. She is

currently unaffiliated.

She can be reached

at 704-948-0545.

CompAct• 11

time on the road, and this can be pro-
grammed by listing all possible routes, cal-
culating the length of each route, and then
taking the shortest. If there are only five or
so cities, this can even be accomplished by
hand. But it is apparent that as N increas-
es, the program will require N! distance cal-
culations. And N! for large N grows
exponentially. You don't want to kick off a
calculation for 50 destinations if you expect
the answer in a reasonable length of time.

The next step in analyzing this kind of
problem is to generalize the computer
model. One very useful variation, and one
that is rather actuarial in nature, is to re-
place the deterministic computer with a
non-deterministic one. Instead of defining
the resulting state, the transition matrix
produces a probability distribution of
states. Nobody has yet built a non-deter-
ministic computer, but if we had one, the
traveling salesman problem could be
solved on it in polynomial time.

In fact, the traveling salesman problem is
just one of a whole family of problems for
which the individual calculations are simple
enough, but the number of possibilities to
be tested grow exponentially. These prob-
lems are denoted as NP-complete.

In 1971, Stephen Cook proved that if any
NP-complete problem could be solved on a
deterministic computer in polynomial time,
then all of them could be similarly solved.
The millennium problem then asks whether
these NP-complete problems are a subset
of P, meaning that they could be solved de-
terministically with the right kind of algo-
rithm, or are they inherently not solvable in
that way?

In the real world, the Cook analysis leaves
just two possibilities. First, if a problem is
known to be NP-complete, and a software
developer doesn't want to waste time look-
ing for a solution that has already been

sought so many times without success,
the problem can be discarded and the soft-
ware can be built for some other problem
instead. A great many problems of impor-
tance to business and industry have been
dropped for this reason. Some other prob-
lems of less practical value also fall into this
category—you may want to Google “NP-
complete” just to see how many times the
minesweeper game pops up. Second, if
some genius inventor in a garage can find
the answer to any particular NP-complete
problem, he will soon be richer than Bill
Gates (even without the millennium prize).

However, if you think it is important to have
the ability to do secure online transactions,
you had better hope that the genius is not
successful, since the most commonly used
security method is based on a known NP-
complete process—factoring a very large
number into its prime factors. If NP-com-
plete turns out to be a subset of P, the
methodology will no longer be secure.

If, in fact, NP-complete is not a subset of P,
the millennium prize will go to the person
who can prove that fact. A great many at-
tempts have been made to do this, and
none have yet been successful. It could be
another century before this problem gets
solved. Some even theorize that it is true
but cannot be proven.

One intermediate possibility also exists.
Even if NP-complete is a subset of P, the
power of the required polynomial may
prove to be so large that no practical solu-
tion is available. A 50-degree polynomial is
not much of an improvement on an expo-
nential formula if the traveling salesman
has no more than 50 destinations.

Do you and your PC have the insight and
CPU cycles to attack the problem? If so,
see http://www.claymath.org/millenni-
um/ to get entry information. :

Nobody
has yet built a

non-determin-
istic computer,

but if we had one,
the traveling

salesman
problem could be

solved on it in
polynomial

time.

Using Excel to Prototype Relational Database
Applications
by Dave Snell

E
xcel is often dismissed by infor-
mation technology (IT) profession-
als because it is viewed by them as

a toy—suitable only for single-user appli-
cations. Actuaries know the value of
spreadsheets in rate calculations and
what-if scenario testing; but most actuar-
ies have never realized that their conven-
ient little spreadsheet tool is also capable
of lifting some rather heavy weights in the
database environment.

In my opinion, Microsoft Excel is a high-
ly functional programming language
that happens to come with an awesome
built-in grid control. It is the one of the
most cost-effective tools I know of for
making high-quality small applications
that can be used on almost any corpo-
rate desktop. It can also be great for pro-
totyping larger database applications.

I propose to show in this article that you
can develop and test relational database
projects from your spreadsheets. You
can do it rapidly, and with less angst or
cost than you might feel by going
through the learning curve of the big
database tools, like Microsoft’s SQL
Server or Oracle. I’ll assume you have
some familiarity with Structured Query
Language (SQL), which we won’t cover
here. I also assume you’ve some expo-
sure to Visual Basic for Applications
(VBA) and that you may have even
heard of Active Data Objects (ADO); but
this can be minimal. Once you follow the
instructions for entering the code below,
you can embellish it at your leisure. This
article is to help get you started using
SQL from within Excel.

Using SQL with Excel sources
Excel has the capability to contain multiple
tables and ranges, and it can be used as
a source for SQL queries.

An easy way to accomplish this is via ADO.
First, you must add a reference to ADO in
your project in the VBA mode, which you
can reach quickly from the spreadsheet
mode via Alt-F11 (hold down the Alt key
and press the F11 key). Once in VBA
mode, click on Tools, References.

There are several ADO libraries. I recom-
mend using the lowest numbered one that
meets your needs so that your workbook
will be more transportable. In this case, I
chose version 2.5, which probably came
with Excel 97.

Next, you are going to need a little VBA help
in the background to let you effectively use
this conduit to SQL capability. Click Insert,
then Module to get a working area. Then
copy and paste the code in from this article.

The first item to copy is a Sub to read
from an Excel database via Active Data
Objects (ADO).

12 • CompAct

Sub CopyFromXLDatabaseADO(_
sDBRangeBook As String, _
sSQLRangeName As String, _
sDestinationSheet As String, _
Optional bolClearSheet As Boolean = True, _
Optional bolShowFieldNames As Boolean = True, _
Optional sDestRange As String = "A1")

'written by Dave Snell
'This Sub allows you to perform SQL queries against
'tables (named ranges) in an Excel workbook

Dim cn As New ADODB.Connection
Dim rs As New ADODB.Recordset
Dim fld As ADODB.Field
Dim lngOffset As Long
Dim lngStartTime As Long
Dim cmd As New ADODB.Command
Dim s As String
Dim sSQL As String
Dim I As Integer

lngStartTime = Timer

Sheets(sDestinationSheet).Activate
If bolClearSheet Then

Cells.Select
Selection.ClearContents

End If

'populate with new information from the Access database extract
With cn

'PROVIDER STRING follows (change for different source type e.g., Oracle)
.Provider = "Microsoft.Jet.OLEDB.4.0" 'If you use a 'different
'version of 'the Jet engine, change the 4.0 to whatever you use.
.Properties("Extended Properties").Value = "Excel 8.0" 'If you
'use Excel '2000, this is correct; Excel 2002 is 9.0, etc.
.Open ActiveWorkbook.Path & "\" & sDBRangeBook

End With
With cmd

Set .ActiveConnection = cn
'build a SQL query from the text on the SQL worksheet

With Sheets("SQL")
s = " "
sSQL = ""
While Len(s) > 0
s = .Cells(.Range(Range(sSQLRangeName).Address).Row + I, _

.Range(Range(sSQLRangeName).Address).Column).Value
sSQL = sSQL & " " & s
I = I + 1

Wend
End With
.CommandType = adCmdText
.CommandText = sSQL
Set rs = .Execute

End If
End With

If Not rs.EOF Then
With ActiveSheet.Range(sDestRange)

If bolShowFieldNames Then
'write field names as column headers
For Each fld In rs.Fields

.Offset(0, lngOffset).Value = fld.Name
lngOffset = lngOffset + 1

Next fld
End If

End With
'copy the rest of the records one row below the headers

• continued on page 14 •

CompAct • 13

ActiveSheet.Range(sDestRange).Offset(1, 0).CopyFromRecordset rs
ActiveSheet.UsedRange.EntireColumn.AutoFit

Else
MsgBox "Error: No records read", vbCritical

End If

Range(sDestRange).Select
MsgBox "Done!" & vbCrLf & "Elapsed time = " & Timer - lngStartTime & " seconds"

ExitRoutine:
rs.Close
cn.Close
Set cn = Nothing
Set rs = Nothing
Set cmd = Nothing

End Sub 'CopyFromXLDatabaseADO

This Sub should be usable for many situations.
Note however that for readability of the sam-
ple code, I removed a lot of error checking.
You will want to add error checking in various
portions of the Sub. Since this approach uses
ADO for the data access, you can also use it
to query Access databases, Oracle databases,
etc. with a mere change of the Provider
string. In practice, I have written a longer

version of this macro that determines the
source type from parameters I set and
changes the provider string accordingly (a
future article). Rather than get complicated
here though, let’s just go ahead and try an
application showing how you might make use
of the supplied Sub.

Let’s create a very simple calling routine:

14 • CompAct

This tells the Sub CopyFromXLDatabase to
look in the current workbook (we could also
refer to any other workbook) for the Range
Name “SQL_Example.” Then, it reads down
the column from cell SQL_Example and builds
the SQL query until it encounters a cell that
is blank. The final set of results is then copied
to the Excel spreadsheet “Example_Output.”

All of this looks OK, but obviously nothing is
going to happen unless we actually have a
range named “SQL_Example” somewhere in
the workbook. Let’s assume we have a sim-
ple workbook with just three worksheets in it.
I’ll name my three sheets Example_Source,
SQL and Example_output.

In Example_Source we’ll place our tables.
Assume we have two tables of data as shown
in Figure 1 on page 15.

Note that I have the Applicants table high-
lighted. Likewise, I named the Apps table
(cells G4 through I25) “Apps.” The easy way
to accomplish this naming process is to high-

light the desired area with your mouse, then
type the desired Range name in the input box
just above cell A1. In this screen shot you can
see Applicants in this input box.

Next, we look at the SQL sheet, Figure 2 on
page 15.

Cell A4 on this sheet is the one I named
SQL_Example. I also made sure I have anoth-
er sheet for my output. This one is named
Example_Output.

Everything is in place. Now, let’s run the
macro (Figure 3, page 15).

Clicking on Tools, Macro then Macros (or just
pressing the shortcut key Alt-F8), we see a list
of the macros available (in this case just the one
test macro).

Run the macro Test_CopyFromXLDatabase
and voila! You have the SQL query output
right away on the Example_Output sheet.
(Figure 4, page 16).

SubTest_CopyFromXLDatabase()
CopyFromXLDatabaseADOThisWorkbook.Name, "SQL_Example", "Example_Output"

End Sub 'Test_CopyFromXLDatabase

• Using Excel continued from page 13 •

CompAct• 15

• continued on page 16 •

Figure 1

Bigger and Better
Let’s face it. This is a very simple example. It’s
hardly worth writing a VBA Sub to accomplish
this task. You could have obtained similar results
with Excel’s Data, Filter, Advanced Filter feature
or with its built-in QueryBuilder (accessed via
Data, Import External Data, New Database
Query) capability.

I wrote (and use) the VBA approach for a couple
of reasons. First, it allows me to get very flex-
ible with my SQL statements—beyond the lim-
its of the built-in Excel tools. In a report I wrote

Note the Range Name “SQL_Example”
assigned to cell A4 of this sheet.

Figure 2

Figure 3

for one of our foreign offices in Asia, I use a
SQL query more than 100 lines long that
involves a 16-table join with dozens of special
criteria. Second, I like the fact that once I
debug my routine on a small scale against an
Excel or Access database, I can just change
the provider string in my Sub and use exactly
the same SQL and VBA code to scale this up
to a huge Oracle database.

In my presentation on relational databases at
the SOA Annual Meeting in Orlando last year,
I showed a video of how much faster a big
chainsaw can cut a big black walnut log than an
electric circular saw or a hand-held scroll saw
can. In the beginning of the video though, I
show that if you use the chainsaw the same

way you use a handsaw, by rubbing it back
and forth against the wood, it gives very dis-
appointing results. My point here is that the
bigger database tools, like Oracle and SQL
Server, have a serious learning curve associ-
ated with their efficient usage. The actuary
does not have to become a database admin-
istrator (DBA) in order to intelligently proto-
type a large database project. Excel, supple-
mented with VBA and ADO, provides a very
convenient tool for trying out your ideas, and
also gives you a scalable solution you can
later turn over to your IT associates as a
working set of specifications for the big tool
implementation.

Happy prototyping! :

16 • CompAct

• Using Excel continued from page 17 •

Figure 4

475 N. Martingale Suite 600 • Schaumburg, IL • 60173 • www.soa.org

	Chairperson’s Corner
	Surprising Results from Curriculum Survey
	Computer Science Sessions in Anaheim & San Antonio
	Standards: XTbML Tables Beyond Mortality
	P versus NP, or How long will this take?
	Using Excel to Prototype Relational Database Applications

