

Article from:

CompAct

May 2004 – Issue 17

10 • CompA ct

P versus NP,
or How long will this take?
by Carol Marler

For a new and creative solution to this ques-
tion, you could win a prize of $1,000.000.

O
n May 24, 2000, the Clay
Mathematics Institute offered
prizes of $1 million each for seven

unsolved problems in mathematics.
Landon Clay (whose major at Harvard was
not in mathematics, but in English) want-
ed to get more media attention for the field
of mathematics. His personal fortune was
used to found the Clay Mathematics
Institute (www.claymath.org).

The idea for these "millennium problems"
came from an address given by mathe-
matician David Hilbert in 1900, in which
he listed the most significant mathemat-
ics problems at that time. One problem
on his list was Fermat's Last Theorem,
which was solved recently.

Although the solution to Fermat's Last
Theorem made extensive use of comput-
ers, the theorem itself does not refer in
any way to computers. Very few prob-
lems in theoretical math, even today, fall
under the heading of computer science.
Most computer science questions are
practical, not theoretical. But looking
back in history, some theory was devel-
oped even before any modern computers
were built.

The theoretical basis of computer science
was developed by a mathematician
named A.M. Turing. His model of a com-
puter was a black box of sorts with n dif-
ferent internal states, and an input “tape”

consisting of zeros and ones. The opera-
tion of the black box was defined by a
transition matrix in which the current
state and the current value on the input
tape determined the next state.

The amazing thing about this model is
that any real-world computer program
could be mimicked with a suitable set of
states and a transition matrix. The theo-
reticians can then analyze whole families
of programs. The P versus NP millennium
problem considers a grouping of pro-
grams based on a formula for how long
(at most) it takes to process an input
string of length n.

Programs whose time formula is a poly-
nomial in n are denoted as P, for polyno-
mial time. For example, consider a
program that sorts N values in ascending
order. A simple way to do this is to loop
through the list, comparing each pair of
numbers (N-1 comparisons), and switch-
ing them if the second number is smaller
than the first. This loop would then be
repeated N-1 times, until all the numbers
had been sifted through to their proper
position in the sorted list. If each com-
pare and switching took k units of time,
the formula is k*(N-1)*(N-1) plus some
small amount of time to set things up,
etc. The time required is clearly a second
degree polynomial. Improvements are
possible, such as noting that each itera-
tion of the outer loop reduces by one the
number of comparisons required, since
the last i+1 entries are now determined.

Incidentally, changing a list of n zeros and
ones into N values is also known to be a
polynomial process. But some processes
simply cannot be done in polynomial
time. For example, consider the “travel-
ing salesman” problem. The salesman (or
woman, but let's use male pronouns for
simplicity) has a list of Ndestinations that
he wants to visit. There is an N*N matrix of
the distances from each destination to any
other. The salesman wants to minimize

Carol Marler is a

former editor of the

Speculative Fiction

contest. She is

currently unaffiliated.

She can be reached

at 704-948-0545.

CompAct• 11

time on the road, and this can be pro-
grammed by listing all possible routes, cal-
culating the length of each route, and then
taking the shortest. If there are only five or
so cities, this can even be accomplished by
hand. But it is apparent that as N increas-
es, the program will require N! distance cal-
culations. And N! for large N grows
exponentially. You don't want to kick off a
calculation for 50 destinations if you expect
the answer in a reasonable length of time.

The next step in analyzing this kind of
problem is to generalize the computer
model. One very useful variation, and one
that is rather actuarial in nature, is to re-
place the deterministic computer with a
non-deterministic one. Instead of defining
the resulting state, the transition matrix
produces a probability distribution of
states. Nobody has yet built a non-deter-
ministic computer, but if we had one, the
traveling salesman problem could be
solved on it in polynomial time.

In fact, the traveling salesman problem is
just one of a whole family of problems for
which the individual calculations are simple
enough, but the number of possibilities to
be tested grow exponentially. These prob-
lems are denoted as NP-complete.

In 1971, Stephen Cook proved that if any
NP-complete problem could be solved on a
deterministic computer in polynomial time,
then all of them could be similarly solved.
The millennium problem then asks whether
these NP-complete problems are a subset
of P, meaning that they could be solved de-
terministically with the right kind of algo-
rithm, or are they inherently not solvable in
that way?

In the real world, the Cook analysis leaves
just two possibilities. First, if a problem is
known to be NP-complete, and a software
developer doesn't want to waste time look-
ing for a solution that has already been

sought so many times without success,
the problem can be discarded and the soft-
ware can be built for some other problem
instead. A great many problems of impor-
tance to business and industry have been
dropped for this reason. Some other prob-
lems of less practical value also fall into this
category—you may want to Google “NP-
complete” just to see how many times the
minesweeper game pops up. Second, if
some genius inventor in a garage can find
the answer to any particular NP-complete
problem, he will soon be richer than Bill
Gates (even without the millennium prize).

However, if you think it is important to have
the ability to do secure online transactions,
you had better hope that the genius is not
successful, since the most commonly used
security method is based on a known NP-
complete process—factoring a very large
number into its prime factors. If NP-com-
plete turns out to be a subset of P, the
methodology will no longer be secure.

If, in fact, NP-complete is not a subset of P,
the millennium prize will go to the person
who can prove that fact. A great many at-
tempts have been made to do this, and
none have yet been successful. It could be
another century before this problem gets
solved. Some even theorize that it is true
but cannot be proven.

One intermediate possibility also exists.
Even if NP-complete is a subset of P, the
power of the required polynomial may
prove to be so large that no practical solu-
tion is available. A 50-degree polynomial is
not much of an improvement on an expo-
nential formula if the traveling salesman
has no more than 50 destinations.

Do you and your PC have the insight and
CPU cycles to attack the problem? If so,
see http://www.claymath.org/millenni-
um/ to get entry information. :

Nobody
has yet built a

non-determin-
istic computer,

but if we had one,
the traveling

salesman
problem could be

solved on it in
polynomial

time.

