

Article from:

CompAct

May 2004 – Issue 17

Using Excel to Prototype Relational Database
Applications
by Dave Snell

E
xcel is often dismissed by infor-
mation technology (IT) profession-
als because it is viewed by them as

a toy—suitable only for single-user appli-
cations. Actuaries know the value of
spreadsheets in rate calculations and
what-if scenario testing; but most actuar-
ies have never realized that their conven-
ient little spreadsheet tool is also capable
of lifting some rather heavy weights in the
database environment.

In my opinion, Microsoft Excel is a high-
ly functional programming language
that happens to come with an awesome
built-in grid control. It is the one of the
most cost-effective tools I know of for
making high-quality small applications
that can be used on almost any corpo-
rate desktop. It can also be great for pro-
totyping larger database applications.

I propose to show in this article that you
can develop and test relational database
projects from your spreadsheets. You
can do it rapidly, and with less angst or
cost than you might feel by going
through the learning curve of the big
database tools, like Microsoft’s SQL
Server or Oracle. I’ll assume you have
some familiarity with Structured Query
Language (SQL), which we won’t cover
here. I also assume you’ve some expo-
sure to Visual Basic for Applications
(VBA) and that you may have even
heard of Active Data Objects (ADO); but
this can be minimal. Once you follow the
instructions for entering the code below,
you can embellish it at your leisure. This
article is to help get you started using
SQL from within Excel.

Using SQL with Excel sources
Excel has the capability to contain multiple
tables and ranges, and it can be used as
a source for SQL queries.

An easy way to accomplish this is via ADO.
First, you must add a reference to ADO in
your project in the VBA mode, which you
can reach quickly from the spreadsheet
mode via Alt-F11 (hold down the Alt key
and press the F11 key). Once in VBA
mode, click on Tools, References.

There are several ADO libraries. I recom-
mend using the lowest numbered one that
meets your needs so that your workbook
will be more transportable. In this case, I
chose version 2.5, which probably came
with Excel 97.

Next, you are going to need a little VBA help
in the background to let you effectively use
this conduit to SQL capability. Click Insert,
then Module to get a working area. Then
copy and paste the code in from this article.

The first item to copy is a Sub to read
from an Excel database via Active Data
Objects (ADO).

12 • CompAct

Sub CopyFromXLDatabaseADO(_
sDBRangeBook As String, _
sSQLRangeName As String, _
sDestinationSheet As String, _
Optional bolClearSheet As Boolean = True, _
Optional bolShowFieldNames As Boolean = True, _
Optional sDestRange As String = "A1")

'written by Dave Snell
'This Sub allows you to perform SQL queries against
'tables (named ranges) in an Excel workbook

Dim cn As New ADODB.Connection
Dim rs As New ADODB.Recordset
Dim fld As ADODB.Field
Dim lngOffset As Long
Dim lngStartTime As Long
Dim cmd As New ADODB.Command
Dim s As String
Dim sSQL As String
Dim I As Integer

lngStartTime = Timer

Sheets(sDestinationSheet).Activate
If bolClearSheet Then

Cells.Select
Selection.ClearContents

End If

'populate with new information from the Access database extract
With cn

'PROVIDER STRING follows (change for different source type e.g., Oracle)
.Provider = "Microsoft.Jet.OLEDB.4.0" 'If you use a 'different
'version of 'the Jet engine, change the 4.0 to whatever you use.
.Properties("Extended Properties").Value = "Excel 8.0" 'If you
'use Excel '2000, this is correct; Excel 2002 is 9.0, etc.
.Open ActiveWorkbook.Path & "\" & sDBRangeBook

End With
With cmd

Set .ActiveConnection = cn
'build a SQL query from the text on the SQL worksheet

With Sheets("SQL")
s = " "
sSQL = ""
While Len(s) > 0
s = .Cells(.Range(Range(sSQLRangeName).Address).Row + I, _

.Range(Range(sSQLRangeName).Address).Column).Value
sSQL = sSQL & " " & s
I = I + 1

Wend
End With
.CommandType = adCmdText
.CommandText = sSQL
Set rs = .Execute

End If
End With

If Not rs.EOF Then
With ActiveSheet.Range(sDestRange)

If bolShowFieldNames Then
'write field names as column headers
For Each fld In rs.Fields

.Offset(0, lngOffset).Value = fld.Name
lngOffset = lngOffset + 1

Next fld
End If

End With
'copy the rest of the records one row below the headers

• continued on page 14 •

CompAct • 13

ActiveSheet.Range(sDestRange).Offset(1, 0).CopyFromRecordset rs
ActiveSheet.UsedRange.EntireColumn.AutoFit

Else
MsgBox "Error: No records read", vbCritical

End If

Range(sDestRange).Select
MsgBox "Done!" & vbCrLf & "Elapsed time = " & Timer - lngStartTime & " seconds"

ExitRoutine:
rs.Close
cn.Close
Set cn = Nothing
Set rs = Nothing
Set cmd = Nothing

End Sub 'CopyFromXLDatabaseADO

This Sub should be usable for many situations.
Note however that for readability of the sam-
ple code, I removed a lot of error checking.
You will want to add error checking in various
portions of the Sub. Since this approach uses
ADO for the data access, you can also use it
to query Access databases, Oracle databases,
etc. with a mere change of the Provider
string. In practice, I have written a longer

version of this macro that determines the
source type from parameters I set and
changes the provider string accordingly (a
future article). Rather than get complicated
here though, let’s just go ahead and try an
application showing how you might make use
of the supplied Sub.

Let’s create a very simple calling routine:

14 • CompAct

This tells the Sub CopyFromXLDatabase to
look in the current workbook (we could also
refer to any other workbook) for the Range
Name “SQL_Example.” Then, it reads down
the column from cell SQL_Example and builds
the SQL query until it encounters a cell that
is blank. The final set of results is then copied
to the Excel spreadsheet “Example_Output.”

All of this looks OK, but obviously nothing is
going to happen unless we actually have a
range named “SQL_Example” somewhere in
the workbook. Let’s assume we have a sim-
ple workbook with just three worksheets in it.
I’ll name my three sheets Example_Source,
SQL and Example_output.

In Example_Source we’ll place our tables.
Assume we have two tables of data as shown
in Figure 1 on page 15.

Note that I have the Applicants table high-
lighted. Likewise, I named the Apps table
(cells G4 through I25) “Apps.” The easy way
to accomplish this naming process is to high-

light the desired area with your mouse, then
type the desired Range name in the input box
just above cell A1. In this screen shot you can
see Applicants in this input box.

Next, we look at the SQL sheet, Figure 2 on
page 15.

Cell A4 on this sheet is the one I named
SQL_Example. I also made sure I have anoth-
er sheet for my output. This one is named
Example_Output.

Everything is in place. Now, let’s run the
macro (Figure 3, page 15).

Clicking on Tools, Macro then Macros (or just
pressing the shortcut key Alt-F8), we see a list
of the macros available (in this case just the one
test macro).

Run the macro Test_CopyFromXLDatabase
and voila! You have the SQL query output
right away on the Example_Output sheet.
(Figure 4, page 16).

SubTest_CopyFromXLDatabase()
CopyFromXLDatabaseADOThisWorkbook.Name, "SQL_Example", "Example_Output"

End Sub 'Test_CopyFromXLDatabase

• Using Excel continued from page 13 •

CompAct• 15

• continued on page 16 •

Figure 1

Bigger and Better
Let’s face it. This is a very simple example. It’s
hardly worth writing a VBA Sub to accomplish
this task. You could have obtained similar results
with Excel’s Data, Filter, Advanced Filter feature
or with its built-in QueryBuilder (accessed via
Data, Import External Data, New Database
Query) capability.

I wrote (and use) the VBA approach for a couple
of reasons. First, it allows me to get very flex-
ible with my SQL statements—beyond the lim-
its of the built-in Excel tools. In a report I wrote

Note the Range Name “SQL_Example”
assigned to cell A4 of this sheet.

Figure 2

Figure 3

for one of our foreign offices in Asia, I use a
SQL query more than 100 lines long that
involves a 16-table join with dozens of special
criteria. Second, I like the fact that once I
debug my routine on a small scale against an
Excel or Access database, I can just change
the provider string in my Sub and use exactly
the same SQL and VBA code to scale this up
to a huge Oracle database.

In my presentation on relational databases at
the SOA Annual Meeting in Orlando last year,
I showed a video of how much faster a big
chainsaw can cut a big black walnut log than an
electric circular saw or a hand-held scroll saw
can. In the beginning of the video though, I
show that if you use the chainsaw the same

way you use a handsaw, by rubbing it back
and forth against the wood, it gives very dis-
appointing results. My point here is that the
bigger database tools, like Oracle and SQL
Server, have a serious learning curve associ-
ated with their efficient usage. The actuary
does not have to become a database admin-
istrator (DBA) in order to intelligently proto-
type a large database project. Excel, supple-
mented with VBA and ADO, provides a very
convenient tool for trying out your ideas, and
also gives you a scalable solution you can
later turn over to your IT associates as a
working set of specifications for the big tool
implementation.

Happy prototyping! :

16 • CompAct

• Using Excel continued from page 17 •

Figure 4

475 N. Martingale Suite 600 • Schaumburg, IL • 60173 • www.soa.org

