
Inside
Letter from the Chair
by Paula M. Hodges 2

Illustration Software Testing–Part 2:
Calculation Testing
by Joe Alaimo 3

Emulating A Random Surfer
Is Not That Bad
by N.D. Shyamalkumar 8

The Real Costs of Actuarial Software
by Trevor Howes 10

Join the Technology Section! 13

Articles Needed for CompAct 14

T E C H N O L O G Y S E C T I O N
“A KNOWLEDGE COMMUNITY FOR THE SOCIETY OF ACTUARIES”

CompAct Electronic Newsletter • Issue No. 23 • April 2007 • Published in Schaumburg, Ill. by the Society of Actuaries

CompAct

Technology Section Newsletter
Issue Number 23
April 2007

Published quarterly by the Technology
Section of the Society of Actuaries

475 N. Martingale Road, Suite 600
Schaumburg, IL 60173
phone: 847.706.3500
fax: 847.706.3599

World Wide Web: www.soa.org

Nariankadu D. Shyamalkumar
CompAct Editor
Assistant Professor
Statistics and Actuarial Science
241 Schaeffer Hall
The University of Iowa
Iowa City, IA 52242-1409
phone: 319.335.1980
fax: 319.335.3017
e-mail: shyamal-kumar@uiowa.edu

Technology Section Council
Paula M. Hodges, Chairperson
Kevin J. Pledge, Vice-Chairperson
Joseph Liuzzo, Secretary/Treasurer

Council Members
Van Beach, Council Member
David Minches, Council Member
2007 Annual Meeting Coordinator
Carl J. Nauman, Council Member
Timothy L. Rozar, Council Member
2007 Spring Meeting Program
Committee Coordinator
N.D. Shyamalkumar, Council Member
Newsletter Editor
Dean K. Slyter, Council Member
Web Coordinator

BOG Partner: Mark Freedman

Staff Partner: Meg Weber
mweber@soa.org

Staff Support: Susan Martz
smartz@soa.org

Graphic Designer: Kathleen Roche
kroche@soa.org

Facts and opinions contained in these
pages are the responsibility of the persons
who express them and should not be
attributed to the Society of Actuaries, its
committees, the Technology Section or the
employers of the authors. Errors in fact, if
brought to our attention, will be promptly
corrected.

Copyright© 2007 Society of Actuaries.
All rights reserved.
Printed in the United States of America.

Letter from the Chair
by Paula M. Hodges

T
he Technology Section, as a special interest section, has the blessing

and curse of being able to define what we mean to our members.

We’re not limited to a particular “practice;” we don’t need to deci-

pher new regulations, and we don’t focus on a particular product or market.

However, technology is present in virtually everything we do each day, not

only as actuaries but as human beings, and we are charged with covering

this broad set of topics. As such, our council has been listening to you, our

members, on what is important to you, and what we can do as a section to

give your membership value.

One such topic that has generated quite a bit of discussion is education

on technology. Our formal actuarial studies focused on the mathematical

and business aspects of our jobs. However, once we landed our first posi-

tion in the “real world,” we were suddenly confronted with our colleagues’

spreadsheets, macros, programs written in Visual Basic, C++, Pascal, APL

and other technologies that we’d never dealt with before. These foreign

objects were put before us, and we were expected to figure them out,

update them and make them easier to use.

We didn’t need spreadsheets to solve our calculus or differential equation

problems in college, so this was a very different world. If we were lucky,

there was some training available to help us along the way. Many of us

needed to quickly build an informal network of co-workers and peers.

Those actuaries who were lucky enough to get hands-on experience with

some of these technologies prior to entering the job market clearly had

an advantage when coming in on the ground floor.

So … why aren’t we teaching this?

Well, we should be. And we plan to.

Our section understands the importance of learning both

the “basic” and the “advanced” aspects of technology.

We also have a great appreciation of how quickly these

things change. We will be working to track the pulse of

our membership and provide relevant and timely training

opportunities via webcasts and sessions at our Spring

and Annual Meetings.

We need to keep hearing from you. We’re surveying our

membership to make sure we’re delivering what you

need. Please help us by taking the few minutes to

respond when we ask. This is a simple way you can help

move our section in the right direction. We look forward

to hearing from you!! :

Paula Hodges

Chair - Technology Council

Paula M. Hodges,

FSA, MAAA, is

manager of

Modeling Strategy

with Allstate

Financial in Lincoln,

NE. She can be

reached at

phodg@allstate.com

I
n my first article I focused on auto-

mated interface testing of illustration

systems. In my opinion, the imple-

mentation of automated interface testing is

one of the most overlooked aspects of

illustration system testing.

This article will focus on the issue of automated

calculation testing. Although everyone tests the

calculations in his or her illustration system,

many companies don’t use full testing

automation or give the testing process the

focus that it deserves.

Opponents of automated calculation testing

use the same arguments against it as they do

against interface testing. The biggest is “cre-

ating a test system will increase the testing

time.” Upon further investigation this state-

ment proves to be incorrect. This article will

describe the tools and procedures that need

to be set up to perform proper automated

calculation testing. It will offer a timeline

analysis that will show how automation will

improve the timing of the testing cycle and I

will also outline the benefits of automated

calculation testing.

Tools
Due to the unique and individual nature of

life insurance calculations, an automated cal-

culation testing tool will have to be created

specifically for each project. The tool can be

written in any computer language with the

most common being Visual Basic, Microsoft

.NET, C++ or inside an EXCEL spreadsheet

(using VBA). This system is usually called the

test system or shadow system.

The tool must basically perform the

following functions for each case in a test

deck of cases:

• Read-in policy information input from a

file, database or spreadsheet

• Perform the calculations thus mirroring

the actual calculation engine

• Write the resulting output to a file,

database or spreadsheet

• Compare the output from the test system

with that of the calculation engine using

tolerance parameters (discussed more in

the benefits section)

• Document the results of the comparison,

usually outlining which columns did not

match and in which years they did not

match

When differences between the illustration

system and the shadow system are found,

the question of which system is producing

the incorrect answer can arise. It is possible

that the test system has the error while the

calculation engine is correct. The solution to

Illustration Software Testing–Part 2:
Calculation Testing
by Joe Alaimo

(continued on page 4)

CompAct • 3

•

• Illustration Software Testing–Part 2 • continued from page 3 •

4 • CompAct

•

this problem is that a calculation specification

document must be created at the start of the

project. The calculation specification is used

by the creators of both systems as their cal-

culation blueprint. When a difference occurs,

both systems must be checked against the

specifications to find

out where the error

has occurred.

It is vitally important

that an independent

party create the test

system. This party can

be a second set of in-

house developers, the

actuarial department

(as long as they were not directly involved in

creating the calculation engine) or an outside

consulting firm. There is no value in having

the same people who were involved in devel-

oping the calculation engine involved in

building the test system. They would just

reproduce any mistakes or misinterpretation

of the specifications in the test system.

Timing
As with interface testing, calculation testing

does not begin at the end of the develop-

ment cycle, but rather begins from the start

of the project. There are two elements to

calculation testing that begin right from the

first day.

The first element of calculation testing is

the development of test cases. This step is

totally independent of the creation of the

testing system. The test cases must be

planned out and documented (a methodolo-

gy that can be used to determine the test

cases is outlined below). Once the cases

have been planned out, they must be

entered into a file, database or spreadsheet

so that the testing program and the calcula-

tion engine can access them. The format of

the test cases must be decided at the

beginning of the project so that both the

calculation engine and the testing system

can be developed to read-in the test cases.

The second element of calculation testing

involves the development of the test sys-

tem. This system should not take as long

as the calculation engine because it can be

a lot more customized than the calculation

engine. Since this system will only be used

by the testers, a lot of error and business

rule checking code does not need to be

written into it. The development of this

system should begin at the same time that

development on the calculation engine

begins. At this time the calculation specifi-

cation will already have been developed.

Comparing Automated versus
Manual Testing
To illustrate how automated calculation testing

can reduce the length of the testing cycle I

will use an example. Let’s assume the worst-

case scenario where the testing system was

not built in advance. Therefore, at the time

when testing is to begin, the testing system

has yet to be built. We will also assume that

we have allocated 12 weeks to perform our

testing. Two separate teams have been hired

to perform the testing. Team A will perform

manual testing and Team B will create a test

system and perform automated testing.

Team A requires two weeks to run every test

case and manually check the columns to

ensure that they match. During this time they

document any mismatches that they find. Team

B requires four weeks to build their test sys-

tem. Once the test system is complete they

only require one day to run the testing. Once

the testing cycle is complete, we will assume

that the development team needs one week to

fix all reported problems. Let’s keep track of

the testing progress over the 12 weeks.

By the end of the second week, Team A

has run through all of the test cases once and

submitted their results to the developers while

Team B is still building their test system.

By the end of the third week Team A

receives a new system from the developers

and begins testing.

“As with interface testing,
calculation testing does not
begin at the end of the
development cycle, but
rather begins from the start
of the project. ”

• Illustration Software Testing–Part 2 •

CompAct • 5

•

By the end of the fourth week Team A is half

way through their second testing cycle while

Team B has just finished their test system.

The next day Team B has run their first test

cycle and submits their problems to the

developers.

By the end of the fifth week, Team A has

completed their second testing cycle and

submits their problems to the developers.

Team B is still awaiting the developer fixes

from the first cycle.

By the end of the eighth week, Team A has

just submitted the results of its third testing

cycle. Team B, on the other hand, is halfway

through getting the problems from their

fourth testing cycle fixed.

By the end of the tenth week, Team A is

muddling through their fourth testing cycle,

while Team B has just completed their sixth

testing cycle.

By the end of our 12-week period, Team A

completed four testing cycles, while Team B

completed seven.

The picture below graphically represents the

above scenario. Team A is shown above the

line and Team B below. Each tick represents

one week.

Benefits
Automated calculation testing offers a num-

ber of benefits over manual testing. The two

largest benefits are:

1) Ability to run regression tests more often:

The usual test cycle consists of running a

complete test, fixing all of the problems

then re-running the complete test. When

using automation, the complete test can

be run so quickly that the developers can

request a regression test of all or some of

the cases more often. They may make a

particular fix and be unsure of the effects

on the rest of the system. In these cir-

cumstances, they can run the regression

test immediately to find out if the fix had

any ill effects without waiting until all of

the other bugs are complete.

2) Cases can be run

with tolerance

specifications: Due

to rounding errors

that can occur, the

calculations

between the test

system and the cal-

culation engine may

not match exactly.

The testing tool,

therefore, should

be built to compare

the numbers within

a certain tolerance.

The tolerance can

be a single number

or can increase as

the policy matures

(after all, if the policy is different by

$0.50 in year one, then the difference will

grow larger every year). The tolerance

may also increase as a function of face

value. These tolerance values should also

be programmed so that they can be set

on a column-by-column basis.

Comparing the calculations to this degree

of precision is nearly impossible when per-

formed manually, but a computer program is

ideally suited to this type of precision.

Test Case Development
Development of test cases is an essential

part of calculation testing. All test cases

should be numbered and fully documented.

(continued on page 6)

6 • CompAct

•

• Illustration Software Testing • continued from page 5 •

This gives the testing team and the develop-

ment team a common reference point when

communicating bugs. It also makes the bugs

reproducible.

Calculation test cases can be developed right

at the start of the project. There is no need

to wait until the calculation engine is com-

plete. The testing team and development

team should agree upon the documentation

format of the tests in advance. If testing

automation is used, then the documentation

may also serve as the automation input file.

When developing a series of test cases the

following guidelines should be followed to

help ensure that a broad range of features

are included in the test deck and to ensure

that when a problem is found, its source can

be easily deduced.

1) Document the test cases: The test cases

should be planned and laid out in

advance of when the actual testing will

occur. The cases should be numbered to

provide the testing team and the devel-

opment team a common reference point.

The cases can be entered into a spread-

sheet or, if testing automation is used,

can be entered into the format needed

for the automation input file. Thus the

documentation may serve two purposes

and duplication of effort can be avoided.

2) Start with a basic case and build upon

it: I have encountered the situation a

number of times where the first case

tested failed. This first case consisted of

an insured that had mortality and flat

extra ratings, had multiple riders and

multiple benefits on the policy, paid

above the maximum premium and

multiple funds were selected. Finding

the problem in this case is like finding

a needle in a haystack.

It is important to start with a basic

case. The typical basic case is a male

non-smoker, aged 40 with $100,000 of

insurance paying a modest premium. No

riders, benefits or ratings should be

placed on this case. Use this basic case

as a starting point for the next series of

cases adding one feature at a time. The

second case might add a rider, the third

may add a benefit. When a problem

occurs this will help pinpoint the problem.

CompAct • 7

•

• Illustration Software Testing–Part 2 •

If case two worked successfully but case

three fails, then we can be confident that

the problem was with the benefit that

was not present in case two but was in

case three.

Using this method will leave the test

deck broken up into groups of cases,

each case in the group building upon

the last.

3) Use age ranges as criteria to differenti-

ate cases: When creating test cases, a

common mistake is to assume that

each individual age creates a unique

case. Three cases where the only differ-

ence is that the insured is age 20, 22

and 25 do not constitute three distinct

cases. I would say that this is really

just one case. It is a better practice to

break the allowable age range into

three categories: young, middle aged

and older insureds. For example, you

may use 18 to 35 for the younger, 36

to 59 as your middle aged and 60 to 80

as your older range. Your testing team

can decide the actual breakup that will

be used. This method should provide

you with a better mix of cases and

ensures that time is not wasted testing

cases that are too similar.

4) Add to your test deck as unique cases

arise: Following the above techniques will

provide you with a robust set of cases

that will represent most of the situations

that will arise. There are, however,

unique circumstances that may be

thought of when the cases are being

developed or may be encountered during

the testing. It is important that these

special cases be added into your test

deck whenever they are discovered.

Examples of some special cases are

developing a case where the exempt test

may fail at a specific age or testing a

very specific combination of multiple

insureds, riders and benefits that caused

problems in your previous system.

Whatever the situation may be, it is

important to add it to your test deck, so

that it can be part of your testing cycle.

Conclusion
Although it is often perceived that building

a calculation test system will slow a project

down, the truth is that the timelines can

actually decrease when

automation is used.

Automation allows the

testing to be performed

more frequently and

can quickly allow the

developers to determine

if a new fix has caused

any other problems.

This level of testing

gives the developers

more confidence that

their calculations are

correct and reduces the number of errors that

are found once the system is released. :

“Although it is often
perceived that building
a calculation test system
will slow a project down, the
truth is that the timelines
can actually decrease when
automation is used. ”

Joe Alaimo, B.Sc.,

ASA, is the

president of

ProComp

Consulting.

ProComp specializes

in illustration system

consulting including

system develop-

ment, concept

development,

calculation engine

development and of

course, interface

and calculation

automated testing.

Joe can be reached

at (416) 949-2667

or joealaimo@

rogers.com.

8 • CompAct

A Review of:

Google’s PageRank and Beyond: The Science

of Search Engine Rankings by Amy N.

Langville and Carl D. Meyer

M
ost of us have heard of Google

being a play on Googol (10100)

and many of us have followed

Google’s Dutch auction IPO. But perhaps

not many of us have heard of PageRank,

an algorithm to rank search results, which

lies at the very heart of Google and the

focus of this book.

A typical user of a

search engine accesses

only the top few search

results displayed, and

hence, beyond indexing

a certain proportion of

the Web, it is the order-

ing or ranking of the

search results that is vital. Given a query, the

earlier search engines rated Web pages solely

on their content, and the ranking of the search

results was based on these ratings. This

method is, by its very nature, subject to tamp-

er as the author, by suitably modifying the con-

tents of a page (with some modifications even

invisible to the reader), can favorably affect its

ranking. With the rapid expansion of the Web in

the late ’90s, solely content-based rankings

increasingly delivered poor search results. It is

in this setting that two research groups inde-

pendently were focusing their attention on link

analysis models. Jon Klienberg’s HITS algorithm

and the algorithm PageRank by Sergey Brin

and Larry Page were the earliest of the models

to use the hyperlink structure of the Web to

augment content-based ratings. PageRank is

the most dominant model for reasons including

its commercial success.

The key idea behind PageRank (and HITS) is

to view a hyperlink from Web page A to Web

page B as a recommendation by A of B. In

order to limit the influence of A, it is allocated

a certain amount of endorsement weight that

is equally transferred through each of the

hyperlinks it carries. The rating given to Web

page B is then equal to the sum of endorse-

ment weights it collects via each of the hyper-

links that point to B, and moreover a Web

page’s endorsement weight is defined to be its

rating. Even though this results in a circular

definition, under certain conditions it has a

unique solution and this determines the rank-

ing of the Web pages. For an alternate view,

and one more to my personal taste, consider a

random surfer who at every time epoch trav-

erses from the current page by choosing one

of its hyperlinks at random. Then the rating of

Web page B can be shown to be the probabili-

ty that a random surfer, who has been surfing

for a very long time, is found visiting page B.

Illustrative Example: Consider a hypothetical

Web site with four pages—A-D, each with

hyperlinks as depicted in Figure 1 (e.g., A has

hyperlinks to each of the other three Web

pages). If the pages A-D are assigned endorse-

ment weights of six, nine, 12 and two, respec-

tively, it is easy to check that the ratings are

equal to the endorsement weights. For exam-

ple, Web page C receives endorsement weights

of two, nine and one from A, B and C yielding a

rating of 12, its endorsement weight. Hence

the ranking of pages A, B, C and D are three,

two, one and four, respectively. Alternatively,

the Web pages visited at each time epoch by

the random surfer can be viewed as a finite

state Markov chain (part of the syllabus for

Course M) with stationary transition probability

matrix given by the following equation:

•

“ The key idea behind
PageRank (and HITS) is to
view a hyperlink from Web
page A to Web page B.”

EEmmuullaattiinngg AA RRaannddoomm SSuurrffeerr IIss NNoott TThhaatt BBaadd!!
by N. D. Shyamalkumar, ASA

Figure 1 An Illustrative Web Site with Four

Pages

Of course in the real World Wide Web, there

would be pages with no hyperlinks, the so called

dangling nodes (the term reminds me of hang-

ing chads); there would be a cluster of sites with

no link from inside the cluster to the outside, the

so called rank sinks; and the number of pages

would be more than 8 billion and rising at an

ever increasing pace. How these and some other

imperfections, or real-world complexities, can

be dealt with is covered in chapters 5-10.

Chapters 11-12 discuss other algorithms like

HITS and SALSA. In chapter 13 the authors dis-

cuss the future of Web information retrieval.

While chapter 14 lists some useful resources

for the researcher in information retrieval,

chapter 15 briefly covers mathematical pre-

requisites. And of course, the first four chapters

introduce Web search and discuss its various

components.

One of the enjoyable features of this book is its

numerous asides—interesting digressions

spread throughout the book. I particularly liked

those on the Great Firewall of China (the effort

of the Chinese government to control Web con-

tent), G-Day and Google Bombs (successful

attempts at manipulating PageRank), how

librarians have to deal on a daily basis with

Googleopoly (Google’s domi-

nance of Web search), the dis-

cussion of the lawsuit of

SearchKing (a search engine

optimization company) versus

Google, and Google Dance (the

oscillations in the rankings dur-

ing their monthly updates) and

the Google Dance Syndrome.

I greatly enjoyed reading the

book, and to me its only short-

coming is the lack of heuristics

(probabilistic) alongside the alge-

braic proofs. Even by skipping

most of the mathematical details,

I am quite certain that an actuary

will find it a worthwhile read. : N.D.

Shyamalkumar

ASA, an assistant

professor of

statistics &

actuarial science

at the University of

Iowa, is a member

of the technology

section council.

He can be

contacted at

shyamal-kumar

@uiowa.edu

CompAct • 9

•

























0
2
1

2
1

0

00
2
1

2
1

0100
3
1

3
1

3
1

0

,

10 • CompAct

••

TThhee RReeaall CCoossttss ooff AAccttuuaarriiaall SSooffttwwaarree
by Trevor Howes

I
s that aging actuarial system no longer

doing the job? Are you worried about

the future implications of the princi-

ples-based approach? If so, then sooner or

later you may have to face the prospect of a

software replacement project.

Being an actuary, it may help you to prepare

an analysis of comparative costs before mak-

ing your decision. After a little reflection you

will realize your investment in a new system

goes well beyond the

sticker price! The true

costs of actuarial soft-

ware include not just

the initial costs of

acquiring and imple-

menting the software,

but also the ongoing

expenses of operating

and maintaining it.

Furthermore, you must

consider hard dollar

costs, soft dollar costs

and contingent costs

that depend on the

overall performance of

the software and its

vendor.

Hard Dollar Costs
The hard dollar costs of new software should

be the easiest place to start. Ask the vendor

for a proposal based on the number of users

and the modules of the system you want.

The vendor’s proposal typically will include

initial license fees and their current schedule

of ongoing maintenance fees. You should ask

about their policy of revising fee schedules,

and what the recent history of fee increases

has been.

Nailing down license and maintenance fees

from the vendor is a waste of time, unless

you also have a clear understanding of what

those fees give you in terms of software

that’s ready to use and training and support

for your users.

If the software needs customization, then the

complexity and risk of the exercise just went

up. If you need the vendor or third-party con-

sultants to modify the system as part of the

initial implementation, the payments for the

customizations required can often exceed the

initial license fees. If you take this on yourself,

be realistic about the expertise and efficiency

of your programming resources working with

unfamiliar code. And don’t forget to price-in

the additional costs of validating, testing and

documenting the customizations as well as

developing the necessary reporting tools.

Of course, you can’t really compare system A

to system B unless you also budget for the

complete IT installation required for each sys-

tem to meet the anticipated volume and run

times. This requires performance benchmarks

from each vendor plus consideration of

whether any distributed processing or grid

processing capability will be needed. Plan for

the costs of additional processors, networking,

enabling software and initial and ongoing IT

support sufficient to comfortably meet your

projected demands. Concrete evidence back-

ing performance claims, from benchmarking

or from actual experience of current users,

will go a long way to increasing your comfort

with your cost estimates.

Soft Dollar Costs
Soft dollar costs for a new system can be

significant, and may require an even greater

element of judgment to quantify. These soft

costs relate to the overall effort required by

your staff to learn to use the software, to

implement it successfully and then maintain

it under projected business demands.

Actuarial staff productivity depends directly

on the functionality and ease of use of the

software and the quality of vendor support.

Some software is ready to go, straight from

the box, but all systems presumably require

some expert hands-on training in addition to

built-in help and reference materials, so

check the availability and quality of both.

While the best strategy is to involve current

staff in the implementation of a new system,

you must also carry on business as usual. If

you are relying on a vendor or consultant to

implement your new software, ask for refer-

ences to confirm their ability to perform simi-

lar work on time and within budget, and add

on the additional learning curve costs as

your staff take over the maintenance.

Critical financial reporting processes impose

additional costs in setting up and managing

production environments. Sarbanes-Oxley

demands more detailed documentation and

new control procedures, and may force

replacement of those ubiquitous spreadsheet

calculations with more robust processes. Will

your new software increase or reduce these

costs? Will your vendor provide IT consult-

ing assistance for the design of a controlled

production environment at an extra cost, or

consider it part of the regular client support?

Good Software Increases
Efficiency and Effectiveness
Actuarial practice is increasingly turning to sto-

chastic risk analysis requiring thousands of sce-

narios. The risks being analyzed are often more

policy and insured specific, increasing the costs

of building and validating compressed models.

But if your software can avoid models by using

full seriatim data, consider the significant reduc-

tion in time and effort, as well as the increase in

comfort with the results that will be gained.

Better yet, look for additional increases in

efficiency possible by using the same busi-

ness data or model for another actuarial

application. How much time is spent now in

performing reconciliations of reserve calcula-

tors and modeled representations of in-force

business between applications?

Look Beyond the Short Term
There is a lot to consider in evaluating the

costs and benefits of new software. The chal-

lenge of that evaluation may make the idea of

looking down the road to the next software

replacement seem fanciful if not masochistic.

Yet, changing actuarial and accounting stan-

dards and emerging technology will place huge

demands on your software to keep up. If it

can’t, another system replacement project

may have to be planned before the paint has

dried on the currently planned purchase.

The key questions are:

• Will your software vendor be willing and

able to make continued timely enhance-

ments to the software to keep up with

environmental changes while exploiting

new technology effectively?

• Are the required system enhancements

likely to be delivered as part of the system

maintenance fees you are paying, or will

they be chargeable projects?

• Will the vendor have to develop a new

system and then charge you new license

fees to cover their costs?

CompAct • 11

•
(continued on page 12)

12 • CompAct

•

• Real Costs of Actuarial Software • continued from page 11 •

Trevor Howes

BMath, FSA, FCIA,

MAAA, is vice

president & actuary

with GGY AXIS,

an actuarial soft-

ware firm located

in Toronto, Canada.

Trevor has over 30

years experience in

the life insurance

industry including 12

years with GGY

AXIS. Trevor can be

reached at

Trevor.Howes@

ggy.com.

• If the vendor upgrades the software, how

difficult and time consuming will the

installation of system upgrades or new

system versions be and what assistance

will the vendor provide, at what costs?

• If the software requires user customiza-

tion or coding, what are the implications

on installing future vendor updates and

on the costs of ongoing maintenance?

If the answers to these questions are not

comforting, then maybe you should increase

your current software budget to cover pre-

funding of the next required software

upgrade and conversion and the collateral

costs of replacing your actuarial staff who

have quit in frustration.

Consider the Risks
Of course relying on a vendor’s intentions

or his track record may not be sufficient. If

the vendor becomes unwilling to commit the

resources to support and grow a software

product that has become obsolete, uncom-

petitive or unprofitable, intentions will count

for nothing. Vendors, like insurers, may fail

financially, change ownership and business

direction, or lose key personnel. These are

hard risks to price-in to your purchase, but

you can at least look at them and ask the

vendor what protection you have.

You can also look at the business practices

of the vendor relating to actuarial software

and determine if it is being run as a viable,

stand-alone business or if it is a sideline to a

more profitable activity or software offering.

As a last resort, you, or a consortium of

users, might want contractual access to the

source code.

How Much Work Should
You Do?
Many of the costs and considerations outlined

above are impossible to quantify with preci-

sion. Clearly, the first question is whether

these soft–dollar costs and business risks are

material to the buying decision? To get a

feel for that:

a) ballpark your ongoing direct and

indirect expenses of performing the

affected actuarial functions, in staffing,

equipment and outside services,

b) compare the software alternatives

using a rough grading scale as to the

anticipated relative impact on ongoing

costs and expenses,

c) use (a) and (b) to produce an estimate

of the comparable cost differentials with

each alternative.

If that analysis produces a basis for a

clear business decision, then no further work

is necessary. If it raises serious questions

about the alternative costs, then additional

attention to these questions would be well

advised.

If you make the right decision now, you may

not have to face one again for a long time.

And your actuarial staff will thank you. :

CompAct • 13

WHO WE ARE:
A broad-based community of actuaries and technology
professionals.

WHAT WE DO:
Help actuaries understand and get the most out of
technology.

BENEFITS OF MEMBERSHIP:
• Networking – Interact with other professionals who
 share similar interests and challenges.
• Information Sharing – Identify and communicate
 information and ideas on emerging technologies and
 their implementation.
• Publications – Keep up with current professional
 and industry trends through publications. Read or
 contribute articles to the online Technology Section
 newsletters.
• Conference Sessions – Participate in section-
 sponsored sessions at Society of Actuaries meetings
 and seminars.
• Participation – Gather information to enhance your
 work or volunteer to write, present or lead.

The Society of Actuaries, an educational, research and
professional organization, sponsors a wide range of
professional interest sections. Each section is a unique
knowledge community formed around common profes-
sional issues related to an area of practice or a special
interest. For more information about this section and
others, go to www.soa.org and click on sections and
practice areas.

ACTUARIAL AND
TECHNOLOGY
PROFESSIONALS:
Increase your
understanding of
actuarial applications
of technology by joining ...

Technology
SECTION

A knowledge community for the Society of Actuaries

Section: Technology

To join, detach the form below and mail it, along with the

membership fee of $20, payable to Society of Actuaries, P.O.

Box 95668, Chicago, IL 60694 or fax it to 847-273-8552.

THE LAST THREE
DIGITS ON THE BACK
OF YOUR CARD

•

•

14 • CompAct

••

Articles Needed for the CompAct Electronic Newsletter
Your help and participation is needed and welcomed. All articles will include a byline to give you full cred-

it for your effort. CompAct is pleased to publish articles in a second language if a translation is provided

by the author. For those of you interested in working on CompAct, several associate editors are needed

to handle various specialty areas such as meetings, seminars, symposia, continuing education meet-

ings, new research and studies by SOA committees and so on. If you would like to submit an article or

be an associate editor, please call Nariankadu Shyamalkumar, editor, at 319.335.1980.

CompAct is published as follows:

Publication Date Submission Deadline

July 1, 2007 April 15, 2007

October 1, 2007 July 15, 2007

Preferred Format
In order to efficiently handle articles, please use the following format when submitting material:

Please e-mail your articles as attachments in either MS Word (.doc) or Simple Text (.txt) files. We are able

to convert most PC-compatible software packages. Headlines are typed upper and lower case. Please use a

10-point Times New Roman font for the body text. Carriage returns are put in only at the end of paragraphs.

The right-hand margin is not justified.

If you must submit articles in another manner, please call Susie Ayala, 847.706.3573 at the Society of

Actuaries for assistance.

Please send electronic copies of the articles to:

N.D. Shyamalkumar

Technology Section Editor

e-mail: shyamal-kumar@uiowa.edu

Thank you for your help.

	Letter from the Chair
	Illustration Software Testing-Part 2: Calculation Testing
	Emulating A Random Surfer Is Not That Bad!
	The Real Costs of Actuarial Software

