

Article from:

CompAct

 July 2009 – Issue 32

20 | JULY 2009 | CompAct

 This may be difficult to answer, as again, so many
times we think we’re doing a one-time task and
then come to find that we have to keep doing
it every month. The below dimensions may be
more or less important depending on the scope of
change.

 If the underlying structure won’t need to change,
but numbers are updated regularly, it may make
sense to develop something on a less flexible plat-
form than Excel. If the structure and tasks change a
great deal, and one may need to experiment a great
deal, it may not make sense to write a program in
C++ from scratch.

	 •		Flexibility
 The reason for Excel’s popularity is that it’s a

general-purpose tool, with so many features, a
relatively easy-to-use interface, and the ability to
add on more functions as one needs. That said, this
can also easily lead to a mess. It may make sense
to do experiments in Excel in one’s models, and
then put the result that will have to be maintained
in a different software form.

	 •	 Cost
 The cost here should be split into the development

and maintenance phases. Too often people think
of the development cost as the full cost, but forget
the costs of updating and maintaining the project
in question. It can be easier to point out the devel-
opment costs (in terms of software, hardware and
personnel) than maintenance in many cases, as one
might not know exactly what’s involved until the
dreaded maintenance comes.

	 	 	According	to	Barry	Boehm	and	Victor	R.	Baesili,	
in their article “Software Defect Reduction Top
10 List,” highly-dependable software tends to be
more expensive in initially developing than low-
dependability software—but that the operational
and maintenance costs can easily swamp the “sav-
ings.”

	 •	 	Development Time/Maintenance Time
 Excel spreadsheets usually come together more

quickly than other choices … unless there’s a soft-

A nd so I come to the end of this series on
spreadsheet design, concentrating on what I
consider the most important set of end users:

the maintainers of the spreadsheets.

I will admit, the reason I give this group primacy is
from a purely selfish perspective: the likely maintainers
of the spreadsheets you create will be other actuaries …
or yourself one year later. Nothing is more frustrating
than wondering “What the heck were they thinking?”
when “they” refers to one’s self. Also, I would rather
not be on the receiving end of Byzantine messes of
Excel files should I ever have the joy of being handed
your	spreadsheets;	perhaps	I	will	have	saved	myself	a	
lot of trouble later by writing this article. (I highly rec-
ommend other people with similar motives also write
for CompAct. Nothing motivates like self-interest.)

So let’s jump into it. While I generally have Excel
in mind, most of the principles below belong to any
spreadsheet setup, as well as computing projects in
general.

1. IS A SPREADSHEET APPRoPRIATE?
 Obviously, this question should be asked before

making any spreadsheet, for any use, but we’re
thinking from the point of view of something that
will need to be maintained—input updated, inter-
faces changed, techniques reprogrammed, etc. When
it’s a one-off use, it’s not as crucial a question …
but so often those one-off, throwaway spreadsheets
morph into something more permanent.

 In “Spreadsheet Modelling Best Practices,” authors
Nick Read and Jonathan Batson give a pro/con chart
of using different software. Their paper was written
10 years ago, and Excel has evolved quite a bit since
then, but the question of pros and cons can be used
if one considers the options. As software features
change along with the resources available, in terms
of people’s skills, and software and hardware already
owned (or budget available for the project), it may be
more helpful to make a pro/con list, considering the
following dimensions:

	 •		How	 much	 might	 need	 to	 be	 changed	 in	 the	
future?And what would be changing?

The End Users Justify the Means: IV
The Journey Home
By Mary Pat Campbell

Mary Pat Campbell,
FSA, MAAA, is a
vice president at
The Infinite Actuary.
She can be
contacted at
marypat.campbell@
gmail.com.

CompAct | JULY 2009 | 21

the temptation is to do it all within one software
setup. I think the better path may be to modularize
the task and give each part to the most appropri-
ate software. I have been known to program some
file manipulation tasks in Perl, pull the resulting
files into a C++ program to do calculations, and
then take those results into Excel for graphing
purposes.

 Fit the tool to the task, rather than trying to keep
everything within one file. Now, one may think
this is asking for more trouble, but it is easier to
debug a modularized setup than a monstrosity
where all parts are rammed into the same file. It
also makes it easier to split a task for group pro-
gramming purposes.

2. oWNERSHIP
 There needs to be a clear ownership of a spreadsheet,

as well as a history of said ownership. In a corpo-
rate environment, one always needs to know who
to blame (OK, not the best of motives), but more
benignly, the maintainer needs to know of whom one
can ask questions.

 Also important, and considered in the next item,
there needs to be clear ownership of the spreadsheet
as one may find multiple versions of a spreadsheet
flying about when there’s no clear, single owner of a
spreadsheet.

3. VERSIoN CoNTRoL
 One should have one sheet of the spreadsheet dedi-

cated to following version control. Also, all previous
versions (at least major versions) should be saved
(with different filenames, indicating the versions).
You never know when you’ll have to redo a calcula-
tion, using a previous version.

 Read and Batson (Spreadsheet modelling Best
Practices) propose the following elements of ver-
sion control and documentation:

 The documentation should include:

	 	 	 •	a	short	description	of	the	model’s	purpose;	
	 	 	 •	who	built	the	model;	

ware package already set up for the type of task
you’re trying. The development time is a function
not only of the flexibility of the software, but also
the years of knowledge most actuaries have with
using spreadsheets.

 • Run Time
 There are ways to optimize Excel runs (such as

turning off screen updates), but in general, if speed
is what’s foremost, Excel is suboptimal. I remem-
ber writing a Monte Carlo simulation in Excel
about five years back … pretty much, I comman-
deered a few workstations, set the spreadsheets to
running, and then walked away. If I were doing it
now, I would use R, given that I had to do a lot of
experimentation. There are also software packages
on the market, such as Crystal Ball, that are espe-
cially set up for this sort of thing.

 • Transparency/Complexity
 The reason I like using Excel compared with

proprietary software packages is that the stuff I
want to mess with, I can. In some packages, the
underlying code is too much of a black box for me.
However, not everyone wants or needs this level
of control. If one is using a black box-type setup
for important calculations, I recommend doing
stress-testing to make sure it’s giving you correct
(or at least reasonable) results.

 • Computational power/optimization for the par-
ticular task

 This is a variant of some of the issues above, but
the point is this: spreadsheets tend to be a general-
purpose tool. There are software packages, such as
R and SAS, that were developed specifically for
statistical	computation;	database	programs	such	as	
Access for slicing/categorizing large amounts of
data;	actuarial	illustration	software	set	up	for	vari-
ous insurance products—while many of the same
tasks can be done in Excel, they may optimally be
done in other software environments.

 Of course, you may have a bunch of disparate
tasks to do, such as file manipulation, data pro-
cessing, heavy calculation and visualization—then

CONTINUED ON PAGE 22

22 | JULY 2009 | CompAct

person or people who made the changes. Other infor-
mation can be included, but those are the key items. An
example is given in the chart below (left).

The dates in the chart are totally made up, but other
than	that,	these	are	the	kinds	of	notes	I	make	on	Version	
Control sheets. The particular version numbering is
unimportant, but note that I kept moving forward with
versions, even when I did something that looked like it
undid a feature I had added previously.

Note that sometimes I gave general notes as to what I
had been doing in changing a particular version, and
sometimes I gave specific details relating to variables
or named ranges. It would also be useful to put any run-
time bugs discovered in such a version control sheet,
which can give direction to fixes that may need to be
made for future versions, and can serve as notes if one
needs to revert to a previous version.

4. DoCUMENTATIoN
 This is a more general category than version control.

I have discussed documentation in the previous
article in this series, “The End Users Justify the
Means III: The Search for Problems.” I will expand
a bit more on this topic, as maintainers will have a
perspective different from testers and auditors.

 One of the key tasks of a maintainer is updating any
inputs, and it may be useful to have a Maintenance
or Updating Doc sheet, which would indicate which
cells would need to be updated within the spreadsheet.
Ideally, one would auto-update any information, but
the problem often is that the maintainer has no control
over the location of the information needed. Once I got
a call from across the country, from a user I didn’t even
know I had, because the spreadsheet was looking for an
external file and the file system structure had changed
since the last time they updated the spreadsheet.

 One thing I have tried, when the updating process
was fairly predictable in terms of what needed updat-
ing, I made the update sheet a checklist. Something
like the chart on page 23.

	 	 	 •		how	to	contact	the	person	responsible	for	the	
model;	and	

	 	 	 •		the	 model	 version	 number	 and	 when	 it	 was	
written.

Depending on the model, other useful items to include
on the documentation sheet are:

	 	 	 •		details	of	 the	data	which	are	currently	 in	 the	
model;	

	 	 	 •		some	brief	instructions,	describing	the	layout	
of	the	model	or	how	to	use	it;	

	 	 	 •		a	list	of	recent	changes	to	the	model;	and	

	 	 	 •		a	summary	of	key	logical	assumptions	in	the	
model.

Now, they were writing when Excel 97 was the most
 recent version on the market, so the complexity of the
models they had in mind may be a little lower than
what people are using now. I think the general docu-
mentation (data sources, purpose of spreadsheet, etc.)
as well as version control be on a separate sheet.

The details in a version control entry should be: version
number, changes made from previous version, and the

Version Author Date Notes

1.0 MP Campbell 10/1/2006 Original

1.01 MP Campbell 10/15/2006 Fixed VBA code for explanations of results form

1.5 MP Campbell 1/1/2007 Added: mortality improvement, explanations of

methods, new Social Security table (not that dif-

ferent from before), printable explanations sheet

1.6 MP Campbell 1/8/2007 Looking at projection scale G

1.7 MP Campbell 1/15/2007 Implemented projection scale G, looking at cal-

culation comparisons

1.8 MP Campbell 1/30/2007 Removed projection scale G stuff, explanation

sheet wording edited, cleaning up VBA

1.8.1 MP Campbell 2/15/2007 Fixed text areas on “Printable Explanations”

sheet and ExplanationForm user form

The End Users Justify the Means … | from page 21

CompAct | JULY 2009 | 23

range names as well as the references. Even though
if one names a range well, the range name is its own
documentation, it’s a good idea to make notes for the
benefit of the maintainer so they know what the vari-
ous named ranges are used for. Providing notes on
which	VBA	macros	will	refer	to	those	named	ranges	
is also helpful.

 Other things to consider including on documenta-
tion sheets: list of macros and their use (can be
done	 within	 the	 VBA	 code	 itself,	 but	 if	 those	 are	
scattered through multiple modules, it becomes
unwieldy);	list	of	sheets	within	the	spreadsheet	and	
uses	 for	 each	 sheet;	 key	 assumptions	 made	 in	 the	
models;	desired	features	for	future	versions.	Having	
these “overview” kinds of documentation helps the
maintainer get the big picture of the spreadsheet,
and thus their particular learning curve is greatly
shortened. Given that you may be the person using
this documentation, one year after you last looked at
the spreadsheet, think about the kinds of information
you would want to know.

 Of course, in addition to the big picture, the main-
tainer may need the “detail” view, in that they need
documentation at the level of use/computation. By
this, I mean having cell comments indicating what’s
within a particular cell (or format conventions indi-
cating an input cell, an intermediate calculation cell,
a final result cell, etc.) and having comments within
any	VBA	code	itself.

5. SECURITy – Do NoT “PASSWoRD
PRoTECT”

 The reason I put the above phrase in sarcasm
quotes is that there’s nothing secure about using
most spreadsheets. Excel password “protection”
is (relatively) easily cracked, and I’ve had to do
it before when someone had locked a spreadsheet
and subsequently left the company, or, even more
annoyingly, the person forgot the password they
used.

 I have nothing against “locking” spreadsheets against
changes, without using a password. This will keep
most people who have no business messing with

 Note that I gave references to the particular named
cells that needed to be checked and/or updated, as
well as which macros to run.

	 	If	there	are	items	within	VBA	code	that	would	need	
updating, generally it’s a good idea to keep all con-
stants within a single module so they are easier to
check and find.

 Another thing I’ve found helpful is to do a guide to
named ranges on a documentation page. One can
paste a list of named ranges, which gives you the

STEP 1: Check fund parameter sets

TRUE 1.a Check fund management fees—named

range “MERVector”

TRUE 1.b Check fund categories—range

“FundClassVector”

TRUE 1.c Check fund margin offset—range

“MarginOffsetVector”

STEP 2: Check product parameter sets

TRUE 2.a Check product GMDB design flag—range

“GMDBtype”

 2.b Check partial withdrawal option flag—range

“PartialWithdrawaltype”

STEP 3: Populate policy information

 3.a Clear previous policy information—macro

“Policy_Info_Reset”

 3.b Paste in seriatim policy info—check with IA

group

 3.c Paste in aggregate product info—check with

IA group

 3.d Cross-check seriatim and agg info—ranges

“GMDBcheck” and “AccValcheck”

STEP 4: Run Alternative Method

 4.a Run macro “AltMethodCalculate” - DO NOT

TOUCH ANYTHING WHILE RUNNING - runtime

~1 hr

 4.b Check aggregate result - range

“TotAltMeth”

 4.c Do reasonability checks - run macro

“AltMethReports”

CONTINUED ON PAGE 24

24 | JULY 2009 | CompAct

REFERENCES:
Banham, Russ. “Up and Away,” CFO.com, December
2008 http://www.cfo.com/article.cfm/12665848

Boehm,	Barry	and	Basili,	Victor	R.	“Software	Defect	
Reduction Top 10 List,” Software management, January
2001. http://www.cs.umd.edu/projects/SoftEng/ESEG/
papers/82.78.pdf

Califf, Howard. “Spreadsheets and Specifications”,
CompAct, October 2007, http://soa.org/library/news-
letters/compact/2007/october/csn-0710.pdf

Campbell, Mary Pat. “The End Users Justify the Means
III: The Search for Problems,” CompAct, April 2009,
http://soa.org/library/newsletters/compact/2009/april/
com-2009-iss31.pdf

European Spreadsheet Risks Interest Group. http://
eusprig.org/

O’Beirne, Patrick. Spreadsheet Check and Control,
Systems Publishing, 2005.

Read, Nick and Batson, Jonathan. “Spreadsheet
Modelling Best Practices,” April 1999 http://www.
eusprig.org/smbp.pdf

locked cells and code from doing anything, and
the people who know what they’re doing are only
momentarily annoyed.

However, let us suppose that password protection is
actually effective—this greatly complicates mainte-
nance. Given how often people not only leave jobs,
but also move around within an organization, if you
have a spreadsheet that’s run once a year and it’s
password-protected, the chances are high that the
password will be forgotten. And if you have to write
down the password somewhere … that’s not very
secure, is it?

Again, these are just some general ideas to make the
task of maintaining a spreadsheet easier, and I’m sure
there are many that could be added to the above list.

If you have practices that help in maintenance of
spreadsheets, or other programming packages, consider
sharing them with the actuarial community. Too often
we are thrown into various software practices as entry-
level actuarial students, and good computing practices
are picked up piecemeal, if at all.

I can be contacted at marypat.campbell@gmail.com.

The End Users Justify the Means … | from page 23

