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If you want to model the observed against all variables 
(except itself) in a dataset, you may use the “.” conven-
tion, such as:

observed ~ .  

If you want to eliminate a specific term within a model, 
you may use the “-” convention, 

observed ~ -1 + predictor1 + predictor2 +…+ pre-
dictorN

Here the “-1” indicates that you do not want to have an 
intercept term calculated within your model.
 
For instance, if you want to model observed against all 
predictors except for predictor3, you can use the “.” and 
“-” in this way:

observed ~ . – predictor3

The symbol “:” with continuous variables indicates the 
actual product of variables. The symbol “*” denotes a 
factor crossing. So that predictor1*predictor2 denotes 
predictor1 + predictor2 + predictor1:predictor2. Note 
how “*” is not a true product of the variable in the same 
way that “+” is used above. The “^” symbol denotes a 
factor crossing to a specific degree. For instance, (pre-
dictor1 + predictor2 + predictor3)^2 is the same as 
(predictor1 + predictor2 + predictor3)*(predictor1+p
redictor2+predictor3), which is a formula of the form:

(predictor1 + predictor2+predictor3 + 
predictor1:predictor2+ predictor1:predictor3+predic
tor2:predictor3)

Usually, you will just use the actual variable names, 
but you can use functions of the variables as well. For 
instance, exp(observed) ~ exp(predictor1) is a valid 
formula. Now, note however, that there appears to be 
a contradiction to this format, however, if you need to 
create formulae that actually need the normal arithme-
tic meaning of the operators. You overcome this by 
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Editor’s note:  R Corneri is a series by Steve 
Craighead introducing readers to the “R” language 
used for statistics and modeling of data.  The first 
column was published in the October 2008 issue, 
and explains how to download and install the pack-
age, as well as providing a basic introduction to the 
language.  Refer to each CompAct issue since then 
for additional articles in the series.  The introducto-
ry article can be found on p. 24 of the October 2008 
on the SOA Web site: http://soa.org/library/newslet-
ters/compact/2008/october/com-2008-iss29.pdf

I n this article we will examine the Model Formula 
Framework within R1 for linear and generalized 
linear models. You may use this framework to set 

up a large number of different statistical models.

Since we are going to concentrate on linear-like 
models, we will assume that both the predictors and 
the resultant variables are continuous. You may also 
use	 the	 framework	 to	 model	 Analysis	 of	 Variance	
(ANOVA)	models	on	factor	or	categorical	data	(vari-
ables that take on discrete values), but that will be 
discussed in a future column.

The simplest formula will look like this:

observed ~ predictor1 + predictor2 + predictor3 + … 
+  predictorN,

where observed is the variable that you wish to model, 
by determining some relationship with the various 
predictor variables. Note: The “+” convention is used 
to include a variable in the model in a linear fashion. 
For a linear regression, the actual model that is fit is 
of this form:

observed = (C1)predictor1 + (C2)predictor2 +…+ 
(CN)predictorN + residual_error.

Here the Cn denote the separate coefficients of this 
model.
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Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
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using a I() format to surround the model components 
that need to actually use these arithmetic operators. So 
if you wanted to create a formula that actually adds 
two predictors together, before creating the model, you 
would use a form like this:

 observed ~ I(predictor1+predictor2)

Now, to further clarify the idea of the “:” format 
from above, predictor1:predictor2 is the same as 
I(predictor1*predictor2).

If you want to create transformed observed and predic-
tor models, you can use a formula like this:
 
 I(1/Observed) ~ I(1/predictor1^2) + 
sqrt(predictor2)

Here the multiplicative inverse of the observed variable 
is fit against the multiplicative inverse of predictor1 
squared and the square root of predictor2.

If you wish to create a polynomial model of a predictor, 
you may use the poly(,) convention. For instance, sup-
pose you want to model predictor1 as a cubic equation 
and predictor2 as quadratic and predictor3 as linear. 
The formula would look like this:

 observed ~ poly(predictor1,3)+poly(predictor2,2) 
+ predictor3

In generalized linear models, you may use the s() con-
vention. When you surround a variable by this conven-
tion, it tells R to fit a smoothed model. For instance:

 observed ~ s(predictor1) + predictor2 + 
s(predictor3)

would fit observed by creating non-parametric smoothed 
models of predictor1 and predictor3 and use the actual 
values of predictor2.

Let’s look at a couple of examples of a linear regression 
model using some of the formulas above. Define a data-
set containing three predictors (say the variable names 
are x, y and z. In our model, we will let x contain 100 
samples of the standard normal distribution, y will con-

tain 100 samples of the continuous uniform distribution 
on the interval (2,5), and z will be (x+y)^3. The observed 
variable will be r. Let r take on the values of x^2 + 1/y + 
z. To generate these, use the following commands:

 x <- rnorm(100,mean=0,sd=1)
 y <-runif(100,min=2,max=5)
 z <- (x + y)^3
 r <- x^2 + 1/y + z

Now, create a dataframe called RTest containing these 
variables by executing this command:

 RTest <- data.frame(cbind(r,x,y,z))
  
Here cbind() will concatenate the four variables into 
a matrix whose columns are r, x, y and z. The data.
frame() function then converts the matrix into a data-
frame. If you type 
 
 (names(RTest))

R will display the separate column names:

 [1] “r” “x” “y” “z”

Using the “.” convention, create the following simple 
regression model:
 
 (model <- lm(r ~ ., data=RTest))

Note how the data input parameter is used to reference 
the dataframe RTest.  Now, R will display:

Call:
lm(formula = r ~ ., data = RTest)

Coefficients:
(Intercept)            x                y              z  
      4.217       -1.175       -1.303        1.028  

So the linear model is:
 
r = 4.217 + -1.175x -1.303y+1.028z
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To observe additional information regarding the model, 
use this command:

(summary(model))

R will display:

Call:
lm(formula = r ~ ., data = RTest)

Residuals:
    Min      1Q      Median      3Q     Max 
-1.5187 -0.6738 -0.3520  0.4036  3.1998 

Coefficients:
              Estimate  Std.  Error  t value  Pr(>|t|)    
(Intercept)  4.217229   0.537224      7.850   5.89e-12 ***
x                -1.175125   0.195919    -5.998       3.52e-08 ***
y                -1.303079   0.199134    -6.544       2.93e-09 ***
z                 1.027829   0.003924 261.915         < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.044 on 96 degrees of freedom
Multiple R-squared: 0.9998, Adjusted R-squared: 0.9998 
F-statistic: 1.354e+05 on 3 and 96 DF,  p-value: < 2.2e-16 

The F-statistic is very significant as well as each coef-
ficient and the R-squared values are almost 1, so you 
may be tempted to just stop here and just use this 
simpler model. However, if you use the plot() function, 
you will see that the model’s behavior is not that good. 
There are four separate graphs produced with the plot() 
function, but below we will only display the Quantile-
Quantile (Q-Q) plot, to demonstrate that the residuals 
are not normal. We will use these commands to plot 
just Q-Q plot:

qqplot(resid(model))
qqline(resid(model))

R will display the graph above (right):

If the residuals were actually normal, the sorted residu-

als would follow the 45-degree line. However, this 
graph indicates that the left tails are actually heavier 
than a normal curve and the right tail is lighter, so since 
linear regression models require the residuals to be 
normal, we can say that this model is faulty. Also, note 
how the tails are not symmetric.

Let’s examine the results of the actual formula that we 
used to model r, as a regression model:

 (model2 <- lm(r ~ I(x^2) + I(1/y) + 
z,data=RTest))

R displays this:

Call:
lm(formula = r ~ I(x^2) + I(1/y) + z, data = RTest)

Coefficients:
(Intercept)         I(x^2)            I(1/y)                  z  
  6.879e-15    1.000e+00    1.000e+00    1.000e+00  

Notice how the coefficients are all equal to one, but 
there is an intercept term, which isn’t in the original 
model, so revise the regression to eliminate the inter-
cept term:



CompAct  |  JULY 2009  |  17

 (model3 <- lm(r ~ -1 + I(x^2) + I(1/y) + 
z,data=RTest))

R displays:
 
Call:
lm(formula = r ~ -1 + I(x^2) + I(1/y) + z, data = 
RTest)

Coefficients:
I(x^2)  I(1/y)       z  
     1         1           1  

Now examine the results of summary:

(summary(model3))

Call:
lm(formula = r ~ -1 + I(x^2) + I(1/y) + z, data = 
RTest)

Residuals:
       Min         1Q          Median        3Q           Max 
-1.298e-13 -3.347e-15 -1.798e-16  4.946e-15  3.037e-14 

Coefficients:
        Estimate  Std. Error   t value       Pr(>|t|)    
I(x^2) 1.000e+00   1.372e-15    7.289e+14   <2e-16 ***
I(1/y)  1.000e+00   7.584e-15    1.319e+14   <2e-16 ***
z         1.000e+00   2.278e-17     4.389e+16   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.655e-14 on 97 degrees of free-
dom 
Multiple R-squared:     1,      Adjusted R-squared:     1 
F-statistic: 1.148e+33 on 3 and 97 DF,  p-value: < 2.2e-16 

Note how the F-statistic is larger than the first model 
above and that the t values have greater significance 
as well. Note that the R-square statistic is also equal to 
one. Now, look at the Q-Q plot:

qqnorm(resid(model3))
qqline(resid(model3))

Notice how the tails are symmetric like a normal distri-
bution. Also, both tails are slightly lighter than normal. 
But, the largest residual in absolute value is -1.298e-13, 
which is effectively zero, so we can say that this model 
is definitely very good.

If you want to see how R explains how to use the for-
mulae format, please use the help command:

help(formula)

Another good resource on how to use the formulae 
format is “The R Book” by Michael J. Crawley. This 
book is published by Wiley and its ISBN is 978-0-470-
51024-7.

In the next article, I will actually use R to create an 
efficient actuarial modeling technique by using my two 
most favorite non-parametric models with R. These 
models are the CLARA clustering algorithm and the 
Projection Pursuit Regression (PPR) predictive model. 
I will use CLARA to extract a small set of representa-
tive scenarios from a collection of 10,000 scenarios, 
and then I will use PPR to create a predictive model 
of   specific corporate surplus results. I will also dem-
onstrate the effectiveness of this combined approach 
when trying to quickly model the Conditional Tail 
Expectation (CTE) on the surplus. 




