
Horses For Courses

http://www.soa.org/library/newsletters/compact/2010/april/com-2010-iss35-gold.aspx[2/15/2012 3:30:30 PM]

ISSUE 35 | APRIL 2010

Table of Contents

Letter From The Chair

Editorial

Horses For Courses

Visual Basic NET

References

R Corner-Graphics

Number Puzzle

Articles Needed

Technology Section

Web site

Council

Links of Interest

Fiction Contest

Howard Callif, Editor

SOA Staff
Meg Weber, Staff Partner

Sue Martz,

HORSES FOR COURSES
by Phil Gold

Editor's note: This article originally appeared in the January 2007

issue of CompAct.

We live in an environment where the word open has positive

connotations, while closed has a negative feeling to it. Linux is open

source, and Windows is proprietary or closed. So Linux must be

better, right? Well, for some people it is, and if you read the Internet

blogs, there's no contest. Yet Windows has the bigger market share.

How many of us are running on Linux today? Strangely, Apple's

OS/X gets even better reviews and that is a closed system. So let's

keep an open mind.

There is no universal answer that open code is better than closed

code, or vice versa, although it seems almost an item of religion for

some people. You have to look at the requirements of the

application, the quality of the vendor, the size of the organization,

initial and ongoing costs of each approach, corporate governance

control requirements, the rate of change in the environment and the

availability of skilled resources.

I am a software developer and I have chosen an approach closer to

the closed end of the spectrum than the open end. I thought you

might like to know why I made that decision, and what I have done

in my application to meet the requirements for flexibility that many

claim can only be satisfied by open code.

The first problem is to define my target market. Let's say my target

http://www.soa.org/library/newsletters/compact/2010/april/com-2010-iss35.aspx
http://www.soa.org/library/newsletters/compact/2010/april/com-2010-iss35.aspx
http://www.soa.org/library/newsletters/compact/2010/april/com-2010-iss35-deitz.aspx
http://www.soa.org/library/newsletters/compact/2010/april/com-2010-iss35-callif-editor.aspx
http://www.soa.org/library/newsletters/compact/2010/april/com-2010-iss35-callif.aspx
http://www.soa.org/library/newsletters/compact/2010/april/com-2010-iss35-callif.aspx
http://www.soa.org/library/newsletters/compact/2010/april/com-2010-iss35-craighead.aspx
http://www.soa.org/library/newsletters/compact/2010/april/com-2010-iss35-puzzle.xls
http://www.soa.org/library/newsletters/compact/2010/april/com-2010-iss35-articles.aspx
http://www.soa.org/professional-interests/technology/tech-detail.aspx
http://www.soa.org/professional-interests/technology/tech-detail.aspx
http://www.soa.org/professional-interests/technology/leadership.aspx
http://www.soa.org/professional-interests/technology/tech-links-of-interest.aspx
http://www.soa.org/news-and-publications/newsletters/technology/pub-spec-fiction-contest.aspx
mailto:Howard@Callif.org
mailto:mweber@soa.org
mailto:smartz@soa.org
http://www.addthis.com/bookmark.php?v=250&pub=soanewsletters
http://www.soa.org/news-and-publications/newsletters/technology/compact-details.aspx

Horses For Courses

http://www.soa.org/library/newsletters/compact/2010/april/com-2010-iss35-gold.aspx[2/15/2012 3:30:30 PM]

Section Specialist

Sam Phillips, Staff Editor
market is all life actuaries, everywhere. I am writing a system to

perform all manner of actuarial calculations, first to support the

requirements within my own country, then internationally. By far the

easiest solution for me is to write an open code system. All I need to

do is develop a nice framework, probably based on Excel or

something that looks like it, add some database support and a report

writer, then prototype some typical products and let the client or a

consultant worry about adjusting the sample code to fit the real world

products. Then I could look forward to a lucrative stream of

consulting assignments to implement and maintain your systems. In

fact, I must be nuts not to have followed this model. Why? Because

the alternative is to code every possible combination of product

features and regulatory requirements myself, as well as user-specific

methodologies and approaches, and that would take forever. And

yet, masochist that I am, that is indeed the path I chose. I'll tell you

how later. Right now, I'll concentrate on why.

Why take the closed code route?

Because I've been down the open code route before, in three

companies. In every case each new product resulted in a

new model with new source code, incompatible with other

models in the company, and a variety of errors because of

the lack of a proper testing environment. I want a reliable

universal model, not a collection of independent models.

Because I believe actuarial resources are scarce and

expensive, and they should be employed on real actuarial

problems, not developing software. Those actuaries that want

to develop software should come and work with me–I'll need

them for sure.

Because despite the unique characteristics of each company

and product, there is a lot more common ground between us

than elements that separate us.

Because I like a challenge. When someone tells me it can't

be done, that's when I get interested.

Because I was working in a reinsurance company, where we

required a quick turnaround on each new product and the

volume of such products prohibited the down time of

developing a new model each time around.

Why persevere?

Because the senior management of my company encouraged

my efforts.

mailto:smartz@soa.org
mailto:sphillips@soa.org

Horses For Courses

http://www.soa.org/library/newsletters/compact/2010/april/com-2010-iss35-gold.aspx[2/15/2012 3:30:30 PM]

Because my initial efforts were met with surprising success in

the market.

Because I found partners and employees who shared my

philosophy.

Because our clients gave us encouraging feedback.

Now the golden rule in software is do not bite off more than you can

chew. The whole industry is tarred by those who promise the world

and don't deliver. We developed a different philosophy. We never

promised something unless we were certain to achieve it, and we

encouraged potential customers to simply try what we had right now,

and see if it would be useful to them. I would urge all in the industry

to follow this model. This way, you get clients who trust you, and

recommend you to their friends. We have lost new business along

the way by refusing to make aggressive promises, but I am

convinced it is the right way to proceed.

We proceeded by concentrating on particular market segments. We

could not be all things to all people, especially at first. So we built out

our portfolio gradually–first conventional products, then UL, then Par,

then Disability, then Assets and so on, at the rate of about one new

product line or module per year. We started off with just one country,

then two, until today we operate on five continents.

Most of all, we concentrated on keeping our current customers

happy. When you write closed code, you are taking on the

responsibility of providing good service and fast response time. In

our system there is only one code base and everyone gets the same

software. So every client gets the benefit of each new feature no

matter where the request came from.

OK, there's a problem right there–what about secret new features

you don't want your competition to know about? This does happen,

although as you know, there are few secrets in this industry. Suffice it

to say there are various ways to solve this problem, and we can

build in enough flexibility so that proprietary product features will not

be given away by the software.

This is where the closed code approach pays off in a big way. If you

have just one code base, then you can have many users reviewing

and validating the calculations. It helps enormously when regulators

and consultants review your software and during acceptance testing

at each new client. If you have something wrong or missing in your

code, you're going to find out and have a chance to fix it. This simply

is not the case for open code. Think for a minute about the SOX

Horses For Courses

http://www.soa.org/library/newsletters/compact/2010/april/com-2010-iss35-gold.aspx[2/15/2012 3:30:30 PM]

implications here, their importance simply cannot be overestimated.

Actually this is not a consequence of closed code but of common

code. By going open code you simply preclude this level of scrutiny.

If you ask actuaries what is the biggest problem they face with their

software, the most common answer will probably be the problem of

keeping it up to date, the problem of conversions. Let's examine how

these work on a completely closed system and a completely open

system. On a completely open system, the vendor can really only

provide changes to the framework and some new sample code.

Changes to the framework must be limited or they will disrupt the

current implementations. So the onus is on the developer to come up

with the perfect framework for all time on day one. Let's be honest

here. How many system architectures from 15 years ago are

currently state of the art? If you got something wrong on day one,

you can't always fix it later because users will have built their

application around your architecture–change it and it breaks their

applications. Now in the closed code context, we can provide

automatic conversions of user models no matter what changes we

make to the architecture. We have changed from DOS to Windows,

from Basic to C++, from FoxPro to JET, and from a separate system

for each country to a unified system, all without breaking the users'

applications. Sure it takes a lot of work on our part, but the

advantages are overwhelming. Users get a system that can be kept

up-to-date with all the latest technology and functionality without

massive conversion problems. They can upgrade in hours and not

months. This is one of the biggest justifications for the closed code

approach.

Now I promised to tell you how we tackle the need for flexibility,

given we don't have infinite resources. Actually, it really does take an

enormous effort to build in all the features clients require, and we

have a very large and highly skilled workforce here we would not

need if we were an open code shop. We have found that in most

areas of the actuarial system we can provide enormous flexibility

through the switches, scalars, tables and objects we have built up

over the years, some at our own instigation and some to meet user

request (about a 50:50 split). But there are some types of logic that

are very hard to accommodate in this way. Take policyholder

behavior for example, or crediting rate strategies or experience

refunds.

Some closed code systems are really closed down tight. Others

allow you insertion points, and with the aid of a compiler or by using

a non-compiled language, they allow you to change the source code.

The first option seems too rigid to me, although it is what we offered

Horses For Courses

http://www.soa.org/library/newsletters/compact/2010/april/com-2010-iss35-gold.aspx[2/15/2012 3:30:30 PM]

for a number of years because we felt the second option simply

negates most of the advantages of closed code systems. Then one

day our developers came up with a third way that provides the

advantages of open code wherever you need it most, but preserves

the integrity of the source code and allows for full automatic

conversions between software releases. I won't go into too much

detail, but the breakthrough involves treating user code as data input

to the system, and some very sophisticated use of the .NET

framework. The cost of having this type of expertise in house may be

prohibitive for the end user.

If I were starting over today, would I do the same again? I'd have to

say that from a financial and marketing point of view maybe not. It is

cheaper to develop an open code system and probably easier to

sell. But when I think of the client's best interest, I would have to say

yes. For less ambitious software projects where the scope is more

focused, the balance may be completely different. Each case should

be taken on its own merits. So the golden rule is there is no golden

rule. Choose instead the right horse for your particular course.

Phil Gold, FSA, MAAA, FIA, is a founding partner of GGY AXIS. He

can be contacted at phil.gold@ggy.com.

475 North Martingale Road, Suite 600 Schaumburg, Illinois 60173

Phone: 847.706.3500 Fax: 847.706.3599 www.soa.org

mailto:phil.gold@ggy.com
http://www.soa.org/

