
SOLID Object Oriented Design

http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-chan.aspx[2/15/2012 3:13:06 PM]

ISSUE 36 | JULY 2010

Table of Contents

Letter From The Chair

Editor's Notes

SOLID Object Oriented

Design

Rand-dumb or Random?

Web 2.0 Offers Many

Opportunities for

Actuaries

R Corner: A Toy Copula

ERM Model in R

Number Puzzle

Last Issue's Number

Puzzle Solved

Articles Needed

SOA 2010 Elections:

Let your Voice be Heard!

Technology Section

Web site

SOLID OBJECT ORIENTED DESIGN
by Andrew Chan

A lot of systems were developed using an Object

Oriented (OO) programming language, e.g. C++,

Java, C# or Visual Basic .Net. Why did so many system developers

choose to use OO programming languages? What are the benefits

of OO programming languages?

Without proper object oriented design (OOD), OO programming

languages do not offer any significant advantages. To illustrate,

consider the following scenario:

Let's say we had an old actuarial system that we developed using

Visual Basic 6 that had 20 program files. At some point, we decided

to migrate to the latest Visual Basic.Net and create 20 classes.

Moreover, since we couldn't think of a good name for each class, we

simply named them actuar01, actuar02 ... actuar20, the same name

as each of the program files. We then copied the content of each

program file into the corresponding class. In doing this, we created a

system that uses OO programming language. But what benefits

does our system have from this migration? Not a lot unfortunately!

In order to realize the true benefits of an OO programming language,

we must understand the OO concepts and principles.

Object Oriented Concepts

There are a few object oriented concepts:

Abstraction

http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36.aspx
http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36.aspx
http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-deitz.aspx
http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-editorial.aspx
http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-campbell.aspx
http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-smith.aspx
http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-smith.aspx
http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-smith.aspx
http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-craighead.aspx
http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-craighead.aspx
http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-puzzle.xls
http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-last-puzzle.xls
http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-last-puzzle.xls
http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-article.aspx
http://www.soa.org/leadership/elections/elec-detail.aspx
http://www.soa.org/leadership/elections/elec-detail.aspx
http://www.soa.org/professional-interests/technology/tech-detail.aspx
http://www.soa.org/professional-interests/technology/tech-detail.aspx
http://www.addthis.com/bookmark.php?v=250&pub=soanewsletters
http://www.soa.org/news-and-publications/newsletters/technology/compact-details.aspx

SOLID Object Oriented Design

http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-chan.aspx[2/15/2012 3:13:06 PM]

Council

Links of Interest

Fiction Contest

Howard Callif, Editor

SOA Staff
Meg Weber, Staff Partner

Sue Martz,

Section Specialist

Sam Phillips, Staff Editor

Encapsulation

Inheritance

Polymorphism

You can find some very good definitions and explanations from

Wikipedia. I have posted the hyperlinks and highlighted the summary

for your reference.

Abstraction

Abstraction is "the mechanism and practice of abstraction reduce

and factor out details so that one can focus on a few concepts at a

time." Since abstraction extracts key characteristics of an object and

hides other immaterial complexity, your readers should easily

understand and visualize what we want to discuss.

"I just bought a new Samsung 46-inch 1080p 120Hz LCD TV," my

friend told once told me. Size, number of lines, refresh rate and type

are the key characteristics of an HDTV. He can go on to tell me

about its physical dimension, weight, power consumption, etc., but

most people don't care, and would prefer being told "I just bought a

new TV," abstracting the technical specifications to hide unnecessary

details.

Encapsulation

Encapsulation is "the process of compartmentalizing the elements of

an abstraction that constitute its structure and behavior;

encapsulation serves to separate the contractual interface of an

abstraction and its implementation."

Encapsulation allows programmers to use any method without

understanding the details of implementation. This can drastically

reduce the learning curve or maintenance effort of an actuarial

system.

For example, how many actuarial programmers understand the

implementation of ADO .Net? With ADO .Net, most of us can learn

in a couple of hours how to write a simple function to retrieve data.

If your actuarial system consists of 1,000+ classes, do you want all

your actuarial developers to understand every single class and every

method within? It would take forever to train a new actuarial

developer. Encapsulation will shorten the learning curve of actuarial

programmers and will provide better system manageability and

stability.

http://www.soa.org/professional-interests/technology/leadership.aspx
http://www.soa.org/professional-interests/technology/tech-links-of-interest.aspx
http://www.soa.org/news-and-publications/newsletters/technology/pub-spec-fiction-contest.aspx
mailto:Howard@Callif.org
mailto:mweber@soa.org
mailto:smartz@soa.org
mailto:smartz@soa.org
mailto:sphillips@soa.org
http://en.wikipedia.org/wiki/Abstraction_(computer_science)
http://en.wikipedia.org/wiki/Encapsulation_(computer_science)#Encapsulation

SOLID Object Oriented Design

http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-chan.aspx[2/15/2012 3:13:06 PM]

Inheritance

Inheritance is "a way to form new classes (instances of which are

called objects) using classes that have already been defined.

Inheritance is employed to help reuse existing code with little or no

modification."

When you derive a new reserve calculator from its base class, you

only have to implement the new features. It can save you enormous

development, checking and testing time.

Inheritance also increases overall system stability and reduces

quality assurance effort. It allows developers to reuse code, enhance

and modify existing class.

Polymorphism

"Polymorphism in the context of object-oriented programming, is the

ability of one type, A, to appear as and be used like another type,

B."

Inheritance is required in order to achieve polymorphism.

Polymorphism can greatly simplify coding and allow extensibility for

future enhancements. With polymorphism, you can call 10 different

reserve calculators from a single line of code. When you want to add

five more new reserve calculators, you don't need to modify the

calling function.

SOLID Object Oriented Principles

Single Responsibility Principle

Open Closed Principle

Liskov Substitution Principle

Interface Segregation Principle

Dependency Inversion Principle

Single Responsibility Principle (SRP)

"There should never be more than one reason for a class to

change."–Robert Martin, SRP paper linked from The Principles of

OOD.

Simple is beautiful. Each class should have only one responsibility

and focus to do one single thing.

Your reserve calculator classes are already very sophisticated. If you

also implement policy projection, decrement calculation and cashflow

projection within it, then it would be huge and all your actuarial

http://en.wikipedia.org/wiki/Inheritance_(computer_science)
http://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

SOLID Object Oriented Design

http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-chan.aspx[2/15/2012 3:13:06 PM]

programmers may always work on this big class together.

SRP would promote the reuse of code, clarity and readability. Your

system would also be easier to test, enhance and maintained.

Developers would also find less contention for source code files.

Open Closed Principle (OCP)

"Software entities (classes, modules, functions, etc.) should be open

for extension, but closed for modification."–Robert Martin

paraphrasing Bertrand Meyer, OCP paper linked from The Principles

of OOD.

Most of us work on existing systems rather than build new systems

from scratch. When you add new features to a system, you often feel

more comfortable adding new functions than modifying an existing

codebase. Why? You worry that your modifications would

accidentally add new bugs to the systems, especially fragile

systems. OCP recommends extending existing codebase, not

modifying it.

If you already have 10 different reserve calculator classes, adding a

new one should not modify any existing code.

Once you have followed SRP to build your system, it would be easier

to implement OCP. Systems following OCP are often more stable

because existing code does not change, and new changes are

isolated. Deployment is also faster because existing features would

not be accidentally modified.

Liskov Substitution Principle (LSP)

"Functions that use pointers or references to base classes must be

able to use objects of derived classes without knowing it."–Robert

Martin, LSP paper linked from The Principles of OOD

This principle is just an extension of the Open Close Principle, and it

means that we must make sure that new derived classes are

extending the base classes without changing their behavior so that

the derived classes must be completely substitutable for their base

class. Otherwise the new classes can produce undesirable effects

when they are used in existing program modules.

Below is a classic example of LSP:

public class Rectangle

{

protected int _width;

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

SOLID Object Oriented Design

http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-chan.aspx[2/15/2012 3:13:06 PM]

protected int _height;

public int Width

{

get { return _width; }

}

public int Height

{

get { return _height; }

}

public virtual void SetWidth(int width)

{

_width = width;

}

public virtual void SetHeight(int height)

{

_height = height;

}

} public class Square: Rectangle

{

public override void SetWidth(int width)

{

_width = width;

_height = width;

}

public override void SetHeight(int height)

{

_height = height;

_width = height;

}

}

[TestFixture]

public class RectangleTests

{

[Test]

public void AreaOfRectangle()

{

Rectangle r = new Square();

r.SetWidth(5);

SOLID Object Oriented Design

http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-chan.aspx[2/15/2012 3:13:06 PM]

r.SetHeight(2);

// Will Fail - r is a square and sets

// width and height equal to each other.

Assert.IsEqual(r.Width * r.Height,10);

}

}

Square class is derived from Rectangle class; so C++ allows a

Square object to be cast into a Rectangle object. However, Square

class has its own setter functions; so r.SetWidth and r.SetHeight

would set width and height equal to each other. What do you expect

r.Width * r.Height to be equal to? Is r a Rectangle or Square object?

LSP would make the system easier to test and provide a more stable

design.

Interface Segregation Principle (ISP)

"Clients should not be forced to depend upon interfaces that they do

not use."–Robert Martin, ISP paper linked from The Principles of

OOD

Again, it is another "simple is beautiful" principle. We should have

multiple slim interfaces rather than a giant interface. Each interface

should serve one purpose only.

If you have both policy month and calendar month projections, put

them in two separate interfaces. For example, use IPMCashflowProj

and ICMCashflowProj rather than just one interface named

ICashflowProj.

With ISP, design would be more stable and flexible; changes are

isolated and do not cascade throughout the code.

Dependency Inversion Principle (DIP)

"A. High level modules should not depend upon low level modules.

Both should depend upon abstractions.

B. Abstractions should not depend upon details. Details should

depend upon abstractions."–Robert Martin, DIP paper linked from

The Principles of OOD.

Low-level classes implement basic and primary operations, and

high-level classes often encapsulate complex logic and rely on the

low-level classes. It would be natural to implement low-level classes

first and then to develop the complex high-level classes. This seems

logical as the high-level classes consume low-level classes.

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

SOLID Object Oriented Design

http://www.soa.org/library/newsletters/compact/2010/july/com-2010-iss36-chan.aspx[2/15/2012 3:13:06 PM]

However, this is not a flexible design. What happens if we need to

add or to replace a low-level class?

If your reserve classes (high level) contain cashflow classes (low

level) directly, and you want to introduce a new cashflow class, you

will have to change the design to make use of the new cashflow

class.

In order to avoid such problems, we can introduce an abstraction

layer between the high-level classes and the low-level classes.

Since the high-level modules contain complex logic, they should not

depend on the low-level modules. The new abstraction layer should

not be created based on the low-level modules. The low-level

classes are created based on the abstraction layer.

Once you implement DIP, your actuarial system will be significantly

easier to extend, and deploying new features will take less time.

Conclusion

Please keep in mind that all of these principles are just guidelines

that would make your system more stable, easier to maintain and

enhance; but they are not ironclad rules. You must apply your own

judgement and experience.

Andrew Chan can be contacted at chanpangchi@rogers.com.

475 North Martingale Road, Suite 600 Schaumburg, Illinois 60173

Phone: 847.706.3500 Fax: 847.706.3599 www.soa.org

mailto:chanpangchi@rogers.com
http://www.soa.org/

