
Our Experiences With Agile

http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-bozonier.aspx[2/15/2012 2:55:43 PM]

ISSUE 37 | OCTOBER 2010

Table of Contents

Letter From The Chair

Editor's Notes

Our Experiences With

Agile

Excel 2010–An Analyst's

Perspective

Actuaries Looking To The

SCAI For Answers

R Corner–Memory

Management

Number Puzzle 

Last Issue's Number

Puzzle Solved 

The 9th Speculative

Fiction Contest

Articles Needed

Technology Section 

Web site

 

OUR EXPERIENCES WITH AGILE
By Robert Ream and Justin Bozonier

MG-ALFA is financial projection

software developed and

supported by Milliman and used

by leading life insurance and

financial firms worldwide to perform financial projections. Among

other things, our product is known for consistently delivering

quarterly software releases.

Historically these regular, content-rich releases were delivered with a

small team of very talented developers. We were an agile

development team, but it was by accident. We were not aware of

why we were so effective, so as we tried to expand, our team

struggled to maintain the agility. We decided to evaluate our

development process from the ground up, and allow for the

possibility of radical change. After several team members and our

stakeholders read The Art of Agile Development by James Shore,

we decided to bring James in to help us understand how to regain

our effectiveness with our larger team. Often, moving to an Agile

approach is difficult to sell to the stakeholders, but because the core

principles and expected outcomes of Agile software development

were consistent with the lost expectations of the stakeholders, it was

an easy decision.

In today's software development world there are few buzz words that

are more overloaded and overused than "Agile." Coined by a group

of 17 thought leaders in "lightweight" software development

methodologies, this "Agile Alliance" authored what became known as

http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37.aspx
http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37.aspx
http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-deitz.aspx
http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-callif.aspx
http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-chan.pdf
http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-chan.pdf
http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-beach.aspx
http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-beach.aspx
http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-craighead.aspx
http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-craighead.aspx
http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-puzzle.xls
http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-last-puzzle.xlsx
http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-last-puzzle.xlsx
http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-lange.aspx
http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-lange.aspx
http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-articles.aspx
http://www.soa.org/professional-interests/technology/tech-detail.aspx
http://www.soa.org/professional-interests/technology/tech-detail.aspx
http://www.addthis.com/bookmark.php?v=250&pub=soanewsletters
http://www.soa.org/news-and-publications/newsletters/technology/compact-details.aspx


Our Experiences With Agile

http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-bozonier.aspx[2/15/2012 2:55:43 PM]

Council

Links of Interest

Fiction Contest

Howard Callif,  Editor

SOA Staff
Meg Weber, Staff Partner

Sue Martz,

Section Specialist

Sam Phillips, Staff Editor

the "The Agile Manifesto." It is a very succinct statement, so we have

included it here:

"We are uncovering better ways of developing software by doing it

and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools Working

software over comprehensive documentation Customer

collaboration over contract negotiation Responding to change

over following a plan

That is, while there is value in the items on the right, we value the

items on the left more."

–The Agile Alliance

Our Solution

Before James would commit to coming in, he talked with every

person individually to assess his or her comfort level with changing

core processes and communication styles. Taking on this challenge

took a tremendous act of faith, courage and hard work on everyone's

part, from the engineers, eager to provide the required flow of

software, all the way up to our stakeholders, anxious to the regain

our stride and take advantage of emerging market opportunities.

The solution we committed to as a team was to restructure how we

were working and communicating together. James helped us learn

how to rapidly respond to change and keep our software in a

constantly releasable state, and how to communicate as a single

indivisible unit.

The first step in our transformative process was to construct a vision

with our stakeholders. Vision statements are often broad and banal,

and consequently are also often ignored. The vision we created was

tangible and focused on the next six months of product

development. It also focused on the actual challenges we were

facing; it was specific. Simply writing down this direct and honest

statement did something our team hadn't experienced in too long: It

aligned our individual goals and gave us a common purpose.

Now we all knew where we were heading over the next six months,

but how were we going to get there? The vision that we laid out was

concrete enough to ensure we all knew what would make the next

six months a success, but was not specific enough to be

http://www.soa.org/professional-interests/technology/leadership.aspx
http://www.soa.org/professional-interests/technology/tech-links-of-interest.aspx
http://www.soa.org/news-and-publications/newsletters/technology/pub-spec-fiction-contest.aspx
mailto:Howard@Callif.org
mailto:mweber@soa.org
mailto:smartz@soa.org
mailto:smartz@soa.org
mailto:sphillips@soa.org


Our Experiences With Agile

http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-bozonier.aspx[2/15/2012 2:55:43 PM]

independently actionable.

The vision was further divided up into Minimally Marketable Features

(MMF). These are the smallest features we could possibly deliver to

our customers while still providing value. These features formed the

road map to our destination. As you can imagine, there is a large list

of MMFs, but with our vision clearly articulated, we can more easily

prioritize them and identify how each will contribute to achieving our

vision. While this seems simple, we realized that prior to

implementing this process we had been assuming a common vision

and understanding. That had been true when our team was small

and had a long history, but we had lost that during our growth

without realizing it had happened, or the consequences.

Even though we now had features clearly defined and their value

established, they were still rather large chunks of work. How would

we know when these were done? How could we give our

stakeholders visibility into our progress while we worked on these

features that might take six to eight weeks to complete? Even more

important, how can we ensure that we are delivering what our

customers want?

For this James Shore introduced us to "Stories" and "embedded

customers." Stories are ideally the smallest possible body of work

that has any real value. It acts as a sort of visible checkpoint so that

your customers have a real and testable mark for where you are. In

an ideal world, every Story would be an MMF. To ensure we are

delivering what our customers want, our team includes proxies for

our customers–embedded customers. Having users included in the

team room with the programmers provides subject matter expertise

and feedback in real time. This has significantly reduced rework and

developer downtime related to waiting for input from the business

experts.

Many times we found that we had created more stories than we

really needed to finish an MMF. This allowed us to "Maximize Work

Not Done" and focus like a laser on the value we were actually

delivering to our customer base. Previous to our transition to Agile

development, our checkpoints had such a long interval between

them and access to business experts was less convenient, so

decisions on value were often made by the software engineers. The

issue here, of course, is that developers don't always have the same

context as the business customers, and therefore may make

suboptimal decisions.

Prioritizing which MMFs to work on was and still is a team decision



Our Experiences With Agile

http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-bozonier.aspx[2/15/2012 2:55:43 PM]

for us. Our embedded customers ultimately have the final say, but

the cost estimates that the development team provides are taken into

consideration and allow the stakeholders to make fully informed

decisions. If a story will take three weeks to be completed and there

is only one week left in a release cycle, it is in our best interest to

prioritize some smaller stories to fill the gap.

Providing these estimates was a challenge, but we have become

more adept and predictable during our transition process. Our

developers estimate the stories in "Ideal Pair Days." In doing this we

get a consistent idea of how long it would take a pair of engineers

pair programming to finish the story at hand. These estimates also

enable our business to predict how much work we will get done and

enable a good amount of risk management.

To recap: We had a vision, a set of features that would help us

achieve our vision upon completion, and a set of embedded

customer oriented checkpoints that would help to guide us along our

way. The only thing left was for us to plan out the individual tasks for

the software engineers on the team. You might think that this is

where the embedded customers can check out and go about their

day, but that would be dead wrong.

While the customers did work on other tasks while the planning was

going, they remained immediately available for questions from our

engineers. Where debates would occur regarding importance of UI

look and feel, the customers could quickly squash them by making a

value decision. Where engineers may fret over concerns about

performance, customers can provide guidance for acceptable

performance levels with engineer feedback regarding the costs of

solutions.

Finally, we got to work. As the weeks of the release cycle ticked by,

we noted how much value we had delivered to our embedded

customers with what we call "velocity." The value of velocity is driven

by the estimates given by the programmers ,and how it is used can

be somewhat confusing. For example, just because your velocity is

steadily increasing does NOT mean your team is improving in any

way. One of the key ideas behind these Agile methods is that they

are not a silver bullet. James warned us that just following the "rules"

by rote memorization wouldn't solve our problems. He encouraged

us to always ask "why?" What are some reasons other than team

improvement that might cause our velocity to go up? Perhaps we

scheduled a number of stories with a high variance in the same

iteration. Or maybe we were overly pessimistic in our estimates. On

the other hand, what are some of the reasons velocity might



Our Experiences With Agile

http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-bozonier.aspx[2/15/2012 2:55:43 PM]

decrease, other than degradation in team performance? Since we

are measuring velocity each week, absences for illness or vacations

can lead to a drop in velocity.

What did we do when key developers were out sick or away on

vacation? We mitigated this risk by having all of our developers pair

program on all production code that is written. Pair programming was

the one practice about which our stakeholders were most wary. Why

would we pay for two people to do the work of one? However, it did

not take long for everyone to appreciate the benefits of pair

programming–including reduced cost.

Not only does pair programming eliminate the risk of knowledge silos

as mentioned above, it also produces better designed and higher

quality code. Many of our business experts are pairing with each

other as they work on client projects, presentations and other non-

development tasks. Everyone has recognized that working

collaboratively to solve problems, whether through writing code or

writing a report, is productive and ultimately creates a higher quality

product.

Another technique we use to ensure a higher quality product is Test

Driven Development (TDD). TDD centers around the idea of writing a

failing test prior to writing code. In this way we express what the

expectations of our next change are, then hypothesize and

implement the small isolated changes to the system that we think

are necessary to get the test to pass. If our hypothesis is verified and

the code passes the test, we refactor the code to make it as clean as

possible and then move on to the next test. We made a concerted

effort to develop all new code in this manner. Furthermore, we

refactored legacy code to allow for this style of development when

possible.

In fact, what we found is that programmers who were less familiar in

a particular code base asked questions that quickly led to "aha"

moments for those more experienced in those areas. You can

almost always find that someone with fresh eyes for the problem at

hand provides valuable insights. To maximize the advantages of pair

programming, we gave our whole team equal code ownership. We

have no architect and no software designer, just a team of

passionate engineers who are encouraged to discuss new system

designs and architectures together to formulate the future direction

of our product.

Looking Back



Our Experiences With Agile

http://www.soa.org/library/newsletters/compact/2010/october/com-2010-iss37-bozonier.aspx[2/15/2012 2:55:43 PM]

Looking back on our journey until  now, it would be best

characterized as always questioning what "done" looked like. Our

stakeholders had a vision and they communicated what it would like

when we achieved it in a real and measurable way. We worked with

our business team and described the stories that would need to be

done to have a complete feature. Everything, down to each line of

code where a failing test suddenly passes, shows us that we've

completed yet another step in our journey.

This is how Agile software development works for us. It's a process

of continuous change and improvement. We must always make sure

we have time to experiment and never assume we should not

change the process. And most importantly, we must remain focused

on business value. We've taken what James Shore has taught us

and made it our own with our own successes to show for it. That is

really the heart of the lesson in the end. Find what works best for

you; keep searching with the belief that you can always do better,

and that focusing on continuous improvement is the best investment

you can make for individual growth, team growth and business

growth.

Robert Ream is a Senior Software Simian for Milliman's MG-ALFA

team, and can be contacted at robert.ream@milliman.com

Justin Bozonier is a Code Samurai for Milliman's MG-ALFA team,

and can be contacted at justin.bozonier@milliman.com

475 North Martingale Road, Suite 600 Schaumburg, Illinois 60173

Phone: 847.706.3500 Fax: 847.706.3599 www.soa.org

mailto:robert.ream@milliman.com
mailto:justin.bozonier@milliman.com
http://www.soa.org/



